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Chapter

Deformed Sine-Gordon Models,
Solitons and Anomalous Charges

Harold Blas, Hector F. Callisaya, Jodo P.R. Campos,
Bibiano M. Cerna and Carlos Reyes

Abstract

We study certain deformations of the integrable sine-Gordon model (DSG). Itis
found analytically and numerically several towers of infinite number of anomalous
charges for soliton solutions possessing a special spad¢ene symmetry. Moreover, it
is uncovered exact conserved charges associated to two-solitons with a definite
parity under space-reflection symmetry, i.e. kink-kink (odd parity) and kink-
antikink (even parity) scatterings with equal and opposite velocities. Moreover, we
provide a linear formulation of the modified SG model and a related tower of
infinite number of exact non-local conservation laws. We back up our results with
extensive numerical simulations for kink-kink, kink-antikink and breather config-

urations of the Bazeiaet al. potential V jdw P 1/%% tan?% 1 sin%* ‘& RP
which contains the usual SG potentialV,dv b Y224  cosd2v b.

Keywords: quasi-integrability, solitons, deformed sine-Gordon, anomalous
charges, non-local charges

1. Introduction

Solitons can be regarded as isolated waves that travel without loss of energy. The
solitons emerge with their velocities and shapes completely unchanged after colli-
sion to each other, the only outcome being their phase shifts. The soliton solution is
the main feature of the integrable models [1-3]. However, certain non-linear
models in physics, with solitary wave solutions, are not integrable. Recently, certain
deformations of integrable models such as the sine-Gordon (SG), nonlinear
Schrodinger (NLS), Korteweg-de Vries (KdV) and Toda models have been intro-
duced, such that they exhibit soliton-type solutions with some properties resem-
bling to their counterparts of the truly integrable ones. In this context the so-called
quasi-integrability concept has been put forward [4]. These properties have been
examined in the frameworks of the anomalous zero-curvature [4-7] and the
Riccati-type pseudo-potential approaches [810], respectively.

The main developments have been focused on the construction of infinite number
of quasi-conservation laws which give rise to asymptotically conserved charges, i.e.
conserved charges, such that their values vary during the scattering of the solitons
only. The main observation in the both approaches to quasi-integrability is that, in
general, the conserved charges of the standard integrable systems turn out to be the
so-called asymptotically conserved charges in the deformed models. In fact, the exact
conservation laws of the usual integrable systems become quasi-conservation laws of
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the deformed integrable models. The non-homogeneous terms of the quasi-
conservation laws are dubbed as anomalies such that they vanish when integrated on
the spacetime plane, provided that the fields satisfy a special spacetime symmetry.

The properties of the soliton-like configurations in the quasi-integrable models are,
so far, largely unknown. We summarize the main results. First, the one-soliton sectors
exhibit infinite conserved charges. Second, the spacdime integration of the anomalies
vanish when one-soliton like solutions are located far away from each other. The
anomalies are significant around the spacetime regions of their interaction. Third, a
sufficient condition for the vanishing of the space—time integrated anomalies is that the
N soliton possesses definite parity under a shifted parity and delayed time reversion
(PsT 4) symmetry. When the anomaly densities possess odd parities the spaegme
integration of them vanish, which imply the existence of anomalous charges. Fourth,
the conserved charges of the usual integrable systems turn out to be the anomalous
charges upon deformation. Fifth, there exist infinite towers of infinitely many anoma-
lous charges, different in form from the ones of the usual integrable models. New
towers of anomalous charges have been uncovered in f80]. Remarkably, even the
usual integrable models possess quasi-conservation laws with anomalous charges for
analytical N soliton with CP<T 4 symmetry [9, 10]. For the standard SG theory it has
been discussed for the 2-soliton sector of the theory [8]. Sixth, there is a subset of exact
conserved charges for soliton eigenstates simply of the shifted space-reflectioRs. The
deformed NLS model for two-soliton solutions [6, 7] and the deformed sine-Gordon
model [11] for two-kink and breather solutions exhibit this property.

In the context of the Riccati-type method there have been shown that the
deformed SG, KdV and NLS models [8-10], respectively, possess linear system
formulations and that they exhibit infinite towers of exact non-local conservation
laws. The NLS-type, KdV-type and SG-type models share the same importance due
to their potential applications, since they are ubiquitous in all areas of nonlinear
physics, such as Bose-Einsten condensation and superconductivity [£24], soliton
gas and soliton turbulence in fluid dynamics [15-20], the Alice-Bob physics [21, 22]
and the understanding of a kind of triality among the gauge theories, integrable
models and gravity theories [23].

Here, we discuss the previous results in the field by utilizing a deformed sine-
Gordon model. We will introduce the relationship between the space-time parity and
asymptotically conserved charges. Next, we clarified on the space-reflection parity
related to the linear combination of the dual sets of anomalous quantities. In addition, it
is focused on the space-reflection symmetry of some two-soliton solutions of deformed
sine-Gordon models. Then one proceeds to construct a tower of exactly conserved
charges for each solution possessing a definite space-reflection parity. Lastly, by con-
sidering linear combinations of the anomalous conserved charges it is showed, through
analytical and numerical methods, that there is a subset of exactly conserved charges.

A modified SG model and the spacetime symmetries are presented in the next
section. In Section 3, the towers of quasi-conservation laws are presented. In Section
4 our numerical simulations are described. The linear formulation and the non-local
conservation laws are discussed in the Riccati-type pseudo-potential approach in
Section 5. Finally, in Section 6 we present some conclusions.

2. A deformation of the sine-Gordon model

Let us consider the relativistic field theories in d1p 1kdimensions with equation
of motion*

2
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wh V&R P v, 1)

where w is a real scalar fieldw, Véw His the scalar potential andv®dw b Lvavp
The family of potentials V dw bwill represent certain deformations of the usual SG
model. The theory (1) has been studied using the techniques of integrable field theo-
ries, such as the anomalous zero-curvature [4, 11] and deformed Riccati-type pseudo-
potential formulations [8], respectively. In our simulations we will consider [4, 24].

2 - N
VaN,qD1/4@tan2W1/& jsinwjd 2, (2)

where q is a real parameter such that forg % 2 the potential reduces to the SG
potential

Vaw, 257 %31/& cosddw b 3)

So, we introduce the deformation parameter asq¥2p , such thatin the limit
%0 one reproduces the SG model.

The model (1) possesses several towers of anomalous charges associated to
quasi-conservation laws [4, 8, 11]. In [11] it has been introduced a subset of exactly
conserved charges associated to space-reflection eigenstates as kink-antikink, kink-
kink and breather configurations, respectively. New types of two sets of dual towers
of asymptotically conserved charges have been uncovered [8]. Remarkably, even
the usual sine-Gordon models possesses anomalous charges. So far, itis attributed to
the spacetime symmetry properties of the solitons. Those charges can be relevant
in the study of soliton gases and formation of certain structures, such as soliton
turbulence, soliton gas dynamics and rogue waves [16].

The quasi-integrability has been introduced for deformed sine-Gordon models
such that the field w and the potential V satisfy the symmetry [4, 8, 11].

P:w! wp const; Vavb! Vavb (4)

under the special spacetime reflection

—_~

P P Ty Psix! % Tg:t! T % x x,t¥t t, (5)

defined around a given point & ,t P Moreover, let us consider the space-
reflection transformation

Py:x$ X, (6)
and assume that the scalar field is an eigenstate of the operatd?,
Py:w! w, ¥ I (7)
In addition, consider an even potential V under Py
PxdV b Y/: (8)

Several towers of quasi-conservation laws, with anomaly terms possessing
odd parities under (6)—8), have been found [8, 11]. Next, we consider those
quasi-conservation laws and examine their anomalies in view of the symmetries
(4) —(5) and (6) —«8), respectively.
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3. Quasi-conservation laws of the deformed SG model

We will discuss some of the infinite towers of quasi-conservation laws of the
deformed SG model (1).

3.1 First type of towers: The SG-type quasi-conservation laws

The usual SG charges turn out to be the anomalous charges of the DSG. So, one
has the infinite set of quasi-conservation laws [4, 11].

0

%qunplD1/4 dx GZHIOlD’ nv.1,2,3,... (9)

where the quantities qul"gefine the anomalous charges, provided that the
time-integrated anomalies dt dx ®"Pyanish for solitons satisfying (4) and (5).
This condition, when combined with Eq. (9), implies gt !p P/
2P 1Ry | P So, we have thatg®" tPare anomalous forn %2 1, 2,3,: .... The

chargesqf”p Pmaintain the same form as the ones of the usual SG.

In dl p 1kdimensional Lorentz invariant integrable field theories one has dual
integrability conditions or Lax equations. Analogously, for the deformations of the SG
model there exist a dual formulation for each equation as in (9) by interchanging

$ inthe procedure to obtain the relevant quasi-conservation laws. So, one can get

0
%qu”plp% dx~ P nv1,2,3, .. (10)

where the quantities qunb“’define the du% as%/mptotically conserved charges,

&np 1b

provided that the time-integrated anomalies dt dx~ vanish. Likewise, this

resultimplies 2Pt 1p  Prug®Piiy ! b

These towers of quasi-conservation laws reproduce the same polynomial form as
. . . . @
in the usual sine-Gordon charge densities. In fact, the anomalies®" *Pand ~ nbib

vanish identically provided that the deformed potential V dwv bPrecovers the form of
the standard SG potential.

The importance and the relevance of such a dual construction will become clear
below when the linear combinations of the charges in (9) and (10) give rise to
infinite towers of exactly conserved charges, provided that the space-integral of the

&np 1p

. . . . _®np1b . .
linear combination of the anomaly densities and ~*"™ *vanish for special

two-soliton solutions.

3.1.1 Space-reflection parity and conserved charges

The above dual sets of quasi-conservation laws are used to construct a sequence
of conserved charges and vanishing anomalies. The space-reflection symmetry of
some soliton solutions of the deformed SG model will imply the existence of an
infinite tower of conserved charges. So, let us examine a linear combination, at each

order n%1,2, ..., of the above two sets of quasi-conserved chargeg®" 1P(9) and
§2"P 1P(10). Consider the new quasi-conservation laws
o}

d
aqf”b“’% dx 2P ny1.2, . (11)
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®@np 1b

with the charges g, and anomalies ®"P*" respectively, defined as
@np 1p 1
qa’nlo 1_6 Ea§2np 1p iéalznp 1p , (12)
&nb 1p 1 _®np1lpb
a’np 1_6 62nb =} (13)

in which the quantities g2 1Pand 2" Pdefined in (9) and the quantities =" *P

and ~"*"in (10) have been used, respectively.

Since the theory (1) is invariant under space-time translations one has that the
energy momentum tensor is conserved. In fact, one has %Pv, ~"P1, 0 at the zero'th
order n % 0, and the linear combinations of the chargesqglpand qglbleads to the
energy and momentum, respectively [11].

o
b 1 1
gpve  dx 50 wBp 50 WBp V| (14)
S
q®PYs  dx W w, (15)

where E Y4 qﬁlpis the energy andP ¥ gPis the momentum.
The first non-trivial anomalies become [11].
1 n h i h 2io
By, 5Z ow B w’ o, Z VE®pi1ev 1 (16)
h [

&P Z 245 wB2wp ‘w w24 w’2wp ‘w w: (17)

Ya

NI

Notice that for the SG potential (3) the factor Z above vanishes identically;

therefore, the anomalies vanish ®Py, 0, and the relevant chargesq&pturn out to be
the exactly conserved charges of the standard SG model at this order.

The properties of the quantities qaznp Pand “dx ®"PPin (12) will depend on the

symmetry properties of the solitons, in particular on the space-reflection symmetry of
@b 1P as we will see below. So, let us examine the space-reflection symmetry of them.
Let us write the anomalies in terms of the 4 and ; derivatives. So, once the eq.
of motion (1) is used to substitute 2w! 2w V%w b, as well as, neglecting

surface terms one has
3
2P 2 dx Ptk (18)
n h i h io
it VPp16v 3 wB b 3wB (19)

where we have defined the anomaly densityfﬁg". Notice that for even parity
potentials (8) and for definite parity (even or odd) fields w the density fﬁepis an odd

function, and thus the x integrated anomaly gepvanishes.
Following analogous procedure as above one has
0
BP, 4 dx FERX th (20)
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f8,th VPp 16V w 2wph W W (21)

where we have defined the anomaly densityf&b. Notice that for even parity

potentials (8) and for definite parity (even or odd) fields w the density f®Pis an

even function, and thus the x integrated anomaly ®Pwill not vanish solely by a
space-reflection parity reason.

The anomalies ®and dt ®in (18) and (20), will be computed numerically
for two-solitons and breather-like solutions below.

By direct construction it has been found new towers of anomalous charges in

[8]. In the next subsections we will discuss those charges and anomalies in relation
to the symmetry (4) and (5).

3.2 Second type of towers

The quasi-conservation laws [8].

d QN Py, NP (22)
dt
QNP dx Nla wBpvs wh 2, (23)
5
aNP  dxaN 2B wP 2wV, N 3 (24)

define the asymptotically conserved charge;Qg\' Pand the corresponding
anomalies &\ P
The dual quasi-conservation laws become

Sl e (25)
3
QP olxNl wVpv wh?, (26)
3
&P dxaN 2p w " P2w, N 3, (27)

. : AP
where we have introduced the dual asymptotically conserved charge§), and
the relevant anomaliesa™ ?

The densities of the anomalies & Pand a® Pin (24) and (27), respectively,
possess odd parities under (4) and (5), so the quasi-conservation laws (22) and (25),
respectively, allow the construction of asymptotically conserved charges.

3.3 Third type of towers

Let us define the quasi-conservation laws [8].

d

an\' P1y, AP (28)

QNP dx %VN 5 wBp vaN , (29)
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NP dx 58 wB VW1 N 2 (30)

. . AP
where we have introduced the asymptotically conserved c:hargeé)a and the
corresponding anomalies NP

The interchange $ allows us to reproduce the dual quasi-conservation laws.
So, one has

d _ap
aQa 1, NP (31)
ol'®  dx %VN 15 wBp vaN , (32)
3
Nbp 1 2 N 1
~ dxé w- VY SN 2, (33)

where we have defined the dual asymptotically conserved chargeQiN Pand the
anomalies~N P

Similarly, the densities of the anomalies 3 Pand ~ Pin (30) and (33), respec-
tively, possess odd parities under (4) and (5), so the quasi-conservation laws (28)
and (31), respectively, allow the construction of asymptotically conserved charges.

The relevant anomalies of the lowest order quasi-conservation laws of the above
towers will be simulated below for 2-soliton interactions.

Remarkably, the above charges turn out to be anomalous even for the standard
sine-Gordon model. In fact, the relevant 2-soliton solutions have been constructed
analytically [4, 11] which possess a definite parity under (4)—5), such that the odd
anomaly densities vanish upon spacetime integration. The usual explanation for
the appearance of novel anomalous charges in the standard sine-Gordon model is
the symmetry argument. The anomalous charges also appear in the standard KdV
and its deformations [9].

These charges have been computed for soliton collisions in the treatment of
soliton gases and formation of some structures in integrable systems, such as integra-
ble turbulence and rogue waves. In the context of the usual KdV model it has been
analyzed_the behavior of the statistical moments defined by (see e.g. [16, 17])

Mpab ¥4 vidx,n 1;wherevisthe KdV field. The M, , cases are conserved
charges. It is remarkable that the momentsM s 4, respectively, in the interaction
region of two-solitons, behave as the anomalous charges of the quasi-integrable KdV
models [9]. In fact, in the quasi-integrable KdV models the moments M, 3 are in fact
anomalous charges [9]. So, since the two-soliton collision is an important ingredient
in the formation of soliton turbulence and the dynamics of soliton gases, we can
expect they will be important in the quasi-integrable counterparts. In the case of the
SG soliton ensemble, to our knowledge, it is needed a further theoretical research.

4. Numerical simulations

Here we will check numerically the lowest order expressions of the various
towers of quasi-conservation laws presented above. For this purpose we will
numerically solve the Eq. (1) with the particular deformed potential (2). In the
Figures 1 and 2 we plot the kink-kink and kink-antikink collisions, respectively.
Moreover, we show the first conserved charges, i.e. the energy and momentum for
these field configurations.
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Figure 1.
Kink-kink with velocities v %2 v; % 0:15 and g% 2:01 in (2), for initial (green), collision (blue) and final
(red) times. Bottom, the energy (E) and momentum (P) charges of the kink-kink.
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Figure 2.
Kink-antikink with velocities v ¥4 v; % 0:15 and q ¥ 2:01 in (2), for initial (green), collision (blue) and
final (red) times. Bottom, the energy (E) and momentum (P) charges of the kink-antikink.

4.1 First non-trivial anomalies of the SG-type quasi-conservation laws

We have checked our results by numerical simulation of the anomalies &p(18)—
(21) for kink-antikink, kink-kink and breather solutions of the model (2).
So, let us write (11) in the form

6t
qua p quao by, dt ®% [} (34)

to

where %% bwere defined in (18) and (20) and tg is the initial time.

The simulations of the kink-antikink, kink-kink and breather systems of the
deformed SG model will consider, as the initial condition, two analytic solitary wave
solutions presented in Eq. (1.2) of [4], located some distance apart and stitched
together at the middle point.

4.1.1 Kink-antikink

In the Figures 3 and 4 we show the results for kink-antikink system with
velocitiesv, ¥4 v1 ¥20:5and %, 0:06. The plots of (19) and (21) asf&pé(, t wsxare
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Figure 3.
fﬁeb, ,‘?band dt f?pin (18) and (19) for kink-antikink with velocities v, ¥ vy % 0:5and ¥4 0:06. The
density figure shows initial {green), collision § (blue) and final t ¢ (red) times of the kink-antikink.
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Figure 4.

fEP 8Pand dt ®Pin (20) (21) for kink-antikink with velocities v, ¥4 vy ¥ 0:5and % 0:06. The
density figure shows initia] {green), collision § (blue) and final t ¢ (red) times of the kink-antikink.

shown for three successive times (top figures). Their integration in space furnish
vanisr%i)ng E,BFE& Fand non-vanishing %% B(middle figures). The bottom figures
show dt° gg?iol?vanishing in Figure 3 and dt® 3®&%pasymptotically vanishing in
Figure 4, respectively. According to (34) our numerical simulations show the
asymptotically conservation of the chargqu3p and the exact conservation of the

chargeqf; , Within numerical accuracy.

4.1.2 kink-kink

In the Figures 5 and 6 we show the results for kink-kink system with velocities

Vo ¥4 v % 0:5and % 0:06. The plots of (19) and (21) as f&%(, t wsxare shown
for three successive times (top figures). Their integration in space furnish vanishing

Eepd Fand non-vanishing ®%® Kmiddle figures). The bottom figures show
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Figure 5.
£%% $Pand dt 5 in (18) and (19) for kink-kink with velocities v, ¥ v; % 0:5and %4 0:06. The
density figure shows initial {green), collision § (blue) and final t ; (red) times of the kink-kink.

Ddt0 ?%Opvanishing in Figure 5 and Ddto ER°Fasymptotically vanishing in
Figure 6. According to (34) our numerical results show the asymptotically conser-
vation of the charge qg?p and the exact conservation of the chargequp, within
numerical accuracy.

So, one can conclude that for kink-antikink (kink-kink) solution the definite
parity related to the space-reflection symmetry is a necessary condition in order to

achieve a conservedqg‘?pD charge, within numerical accuracy.

The both kink-antikink and kink-kink solitons of the SG model with opposite
and different velocities do not possess the required parity symmetry. However, it
has been shown that in the center-of-mass reference framex? t9 the parity sym-
metries are recovered, as discussed in [11]. So, the simulations performed in these
reference frames, in the both kink-antikink and kink-kink cases, will provide

vanishing ’"anomalies as shown above.
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Figure 6.

f8P ®BPand dt ®Pin (20) and (21) for kink-kink with velocities v, ¥4 vy %40:5and % 0:06. The
density figure shows initial {green), collision ¢ (blue) and final t + (red) times of the kink-kink.
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4.1.3 Breather: kink-antikink bound state

Figures 7 and 8 show the results for breather (kink-antikink bound state) with
Y, 0:06. The densities f ®"&, t Fin (19) and (21), respectively, have been plotted as
functions of x for three successive times (top figures). They show the vanishing SBDd p
and non-vanishing (periodic in time)  ®® Kmiddle figures). The bottom figures of
Figures 7 and 8 show the vanishing dt° ?%%and periodic dt® E®t°pexpressions.
According to (34) our numerical results show the oscillation of the chargesqg?b around

a fixed value and the exact conservation of the chargqup, within numerical accuracy.

4.2 Lowest order anomalies of the second and third types of towers

We will compute the linear combinations of the lowest order anomalies of the
second and third types of towers in (22)27) and (28)—33), respectively,

=
i
—_;

0.10 Der?sity

0,08 [P
22 0.00 ;
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-0.10 I I i i I

0.010 T T T T
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Figure 7.

fﬁeb, gsband dt S”in (18) and (19) for breather with ¥4 0:06. The density is shown for three times

t ty To.tf, To¥%7:025. The long-lived breather for;t 10°.
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Figure 8.
f8P ®BPand dt ®Pin (20) and (21) for breather with ¥4 0:06. The density is shown for three times
t ty To.tf, To¥%7:025. The long-lived breather for;t 10°.
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a aF &%h (35)
®Poh (36)
4.2.1 Second and third types of towers and lowest order anomalies
The two anomalies in (35) can be written as
o}
a Y% dx2 2wp 2wV, (37)
o}
a Y dx4% 4w V: (38)
Similarly, the two anomalies in (36) can be written as
0 h i
o Ya dx B wB  d,wB LV, (39)
0 h i
Yy dx d.wB 8,wB V: (40)

Notice that under the space-time reflection transformation (4) and (5), the

densities of the above anomalies &"and

, respectively, are odd; then they must

vanish upon spacetime integration. Therefore, one has asymptotically conserved

charges associated to the relevant quasi-conservation laws.

Under the space-reflection symmetry (6) and (8), some of the densities of the
above anomalies will present odd parities; therefore, they must vanish upon space
integration. So, in such cases one can have exact conserved charges. These results
will be verified for certain solutions as we will see below in the numerical simula-

tions for the kink-kink and kink-antikink solutions.
Figures 9-12 show the anomalies a and
The anomalies a and

and their corresponding densities.
vanish as shown in theFigures 9 and 10, respectively, for

symmetric kink-antikink soliton (see Figure 2), within numerical accuracy, since
their densities are odd under space reflection. Similarly, for anti-symmetric kink-

kink soliton (see Figure 1) the anomalies g and
respectively, since their densities are odd under space reflection.

vanish in the Figures 11and 12,

These results suggest that the quasi-integrable models set forward in the litera-
ture [4, 6, 7], and in particular the model (1), would possess more specific integra-

bility structures, such as an infinite set of exactly conserved charges, and some type

50

25+

0

—25

e

— |

=50
=20

100

=15

-10

-5

0

5

10

501

0

15 20

— a.(n]

—50

-100

J\/”

Figure 9.

10

20

30

40

200

i

I m—

— 5 |
s b

ty

=15

-10

5

o 5 10

13 Zb

— a-(t)

—-100

10

20 30

40

Top: The anomaly densities (37) and (38), respectively, plotted incoordinate for three timeg(green),
tc (blue) and t; (red). Bottom: The anomalies avs t, for kink-antikink collision shown irFigure 2.

12



Deformed Sine-Gordon Models, Solitons and Anomalous Charges
DOI: http:/dx.doi.org/10.5772/intechopen®432

Figure 10.
Top: Anomaly densities (39) and (40), respectively, plotted in goordinate for three timeggreen), t.(blue)
and t; (red). Bottom: Anomalies vs t, for kink-antikink shown inFigure 2.
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Top: Anomaly densities of (37) and (38), respectively, plotted in goordinate for three successive times
ti(green), t(blue) and ts (red). Bottom figures show the relevant anomaliesva t, for kink-kink shown in
Figure 1.
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Top: Anomaly densities of (39) and (40), respectively, plotted in oordinate for three successive times t
(green), t(blue) and t; (red). Bottom: Anomalies vs t, for kink-kink shown inFigure 1.

of linear formulations for certain deformed potentials. So, in the next section we
will tackle the problem of extending the Riccati-type pseudo-potential formalism to
the deformed sine-Gordon model (1).

5. Riccati-type pseudo-potentials and non-local conservation laws
The Lax equations and Backlund transformations, as well as the conservation

laws for the well-known non-linear evolution equations can be generated from the
pseudo-potentials and the properties of the Riccati Equation [2529].
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So, in the next steps we consider a convenient deformation of the usual
pseudo-potential approach to integrable field theories. Let us consider the system of
Riccati-type equations

u¥% 2 up wp wu? (41)
1 1
u¥% 2 & 2 5 va“’|oé VEaR2p (42)

and the next linear first order equation for
b2 ! 2uw wu® ulZ, z Vv®dwbplevawb 1. (43)

The compatibility condition o ub u %0 of the system (41) and (42),
taking into account (43), provides the equation of motion of the DSG model (1).
Moreover, the ordinary differential equation for  in the variable can be inte-
grated by quadratures [8]. Its expression will become highly non-local and, once
inserted into (42), the system of Egs. (41) and (42) will provide a non-local Riccati-
type representation of the DSG model (1).

From the system (41) and (42) one can get a quasi-conservation law

1
& wH ¥ 2p 3 uva® v wuzp w o (44)

This equation has been used to construct a tower of infinite number of quasi-
conservation laws [8]. For the standard SG one haZ ¥4 %2 0; so the Eqg. (44) can
generate the well known conservation laws of the usual SG model.

5.1 Pseudo-potentials and a linear system associated to DSG

In this section we search for a linear system formulation of the DSG model. It is
achieved by taking into account the Riccati Eq. (41) and the conservation law (44),
as well as the Eq. (43). So, the following system of equations has been proposed as a
linear formulation of the deformed SG model [8].

L. %0, L, %O, (45)
L, A A -5 wB 29 ZWS, (46)
2 w
L, A,A 2 Vp , (47)

where the auxiliary non-local field is defined as

2 3
8 ap oW2 ®b 0W4
v dfevar o aver TG (48)
0 2
oW

In fact, taking into account the expression for the auxiliary field , the compat-
ibility condition of the linear problem (45) provides the equation

W 5 whb
8, b 6, 8, PP2 > 3, byp, (49)

2w
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with
8, b wh V&dwp (50)

In (49) the coefficient of the linear term in 0, Pmust vanish, providing the
DSG equation of motion (1). The other terms in (49) must also vanish provided that
0, P¥Disimposed. SoL;andL;in (45) become a pair of linear operators
associated to the DSG model (1).

5.2 Non-local conservation laws

For non-linear equations, not necessarily integrable, which can be derived from
a compatibility condition of an associated linear system with spectral parameter,
explicit expressions of local and non-local currents can be obtained (see e.g.
[30, 31]). In the non-linear model the non-local conserved charges imply the
absence of particle production and the first non-trivial one alone fixes almost
completely the on-shell dynamics of the model (see e.qg. [3, 32]). These charges may
be constructed through an iterative procedure [33]. Following this method one gets
a set of infinite number of non-local conservation laws for the system (45). In fact,
this system satisfies the properties: i) A ,A isa“pure gaug€;ie. A Y

1w, ;i) J ¥a A,A isaconserved current satisfying

A A %0: (51)

So, one can construct an infinite set of non-local conserved currents through an
inductive procedure. Let us define the currents

Py, &b , 5 NnY0,1,2, ... (52)
d@PyAd pAd digd, Ppdid, b (53)
N N 2 (54)

where

digd, P ad, B pbed, ®, d:d, P ad, B pbd, W, (55

where
2 3
8 wb 6 ow 2 ow
22 X by v dfevar = over T L (5p)
W oW 2
oW
1
a 56 w B; by 2 V: (57)

Then one can show by an inductive procedure that the (non-local) currents P
are conserved

PP v0, n¥%1,2,3,...pb (58)

The first current conservation law ~ JP %40 reduces to the Eq. (51), and then
provides the first two conservation laws
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dp bo Y40, a1 b]_ Y4 0: (59)

The next conservation law  J2P %40, in powers of , furnishes

SoloP  &glo P40, (60)
@.0|1p ailo P a)o|1b b1|0 P/ 0, (61)
dayl. P oyl P Y0: (62)

The construction of analogous linear systems have been performed for defor-
mations of the KdV and NLS models [9, 10]. The construction of the classical
Yangian as a Poisson-Hopf type algebra [34] for those non-local currents is worth to
pursue in a future work.

6. Conclusions

Our work presents an in-depth demonstration of the quasi-integrability prop-
erty of the modified sine-Gordon models and the presence of several towers of
infinite number of asymptotically conserved charges for soliton configurations
satisfying the spacetime symmetry (4) and (5). In addition, it is observed that
there exist a subset of towers of infinite number of exactly conserved charges,
provided that some two-soliton configurations are eigenstates (even or odd) of the
space-reflection symmetry (6)—(8).

Moreover, we have uncovered a linear system formulation (45) of the modified
SG model, and an infinite set of exact non-local conservation laws (58) associated to
that linear formulation.

The spacetime and internal symmetries related to quasi-integrability deserve
further investigations, due to their applications in several areas of non-linear sci-
ence, but we hope that the results reported here have opened new lines of research
in the context of the quasi-integrability phenomena.

Acknowledgements
JPRC acknowledges brazilian CAPES for financial support. HB thanks FC-UNI

(Lima-Pert) and FC-UNASAM (Huaraz-Per0) for partial support and kind
hospitality. BMC and CR thank UNASAM for partial financial support.

16



Deformed Sine-Gordon Models, Solitons and Anomalous Charges
DOI: http:/dx.doi.org/10.5772/intechopen®i32

Author details

Harold Blas™, Hector F. Callisay&, Jodo P.R. Campds Bibiano M. Cerna®
and Carlos Reye$

1 Instituto de Fisica-UFMT, Cuiaba, Brazil
2 Departamento de Mateméatica-UFMT, Cuiab4, Brazil
3 Facultad de Ciencias-UNASAM, Huaraz, Peru

*Address all correspondence to: blas@ufmt.br

IntechOpen

© 2021 The Author(s). Licensee IntechOpen. his chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

17



Recent Developments in the Solution of Nonlinear Differential Equations

References

[1] A. Das, Integrable Modelsworld
Scientific, 1989.

[2] L. D. Faddeev and L. A. Takhtajan,
Hamiltonian Methods in the Theory of
Solitons Springer, Berlin, 2007,
Translated from the 1986 Russian
original by Alexey G. Reyman.

[3] Abdalla, E., Abadalla, M.C.B., Rothe,
K.: Non-perturbative methods in two-
dimensional quantum field theory.
Singapore: World Scientific, 2nd Ed.
2001.

[4] L.A. Ferreira and Wojtek J.
Zakrzewski (2011) JHEP 05 130.

[5] L.A. Ferreira, G. Luchini and

Woijtek J. Zakrzewski (2012) JHEP 09
103. F. ter Braak, L. A. Ferreiraand W. J.
Zakrzewski (2019) NPB 939:49.

[6] H. Blas, and M. Zambrano (2016)
Quasi-integrability in the modified
defocusing non-linear Schrédinger model
and dark solitons JHEP 03005: 1-47.

[7] H. Blas, A.C.R. do Bonfim and A.M.
Vilela (2017) Quasi-integrable non-
linear Schrédinger models, infinite
towers of exactly conserved charges and
bright solitons JHEP 05106: 1-28.

[8] H. Blas, H. F. Callisaya and J.P.R.
Campos (2020) Riccati-type pseudo-
potentials, conservation laws and solitons
of deformed sine-Gordon models.Nucl.
Phys. B950:114852114905.

[9] H.Blas, R. Ochoa and D. Suarez (2020)
Quasi-integrable KdV models, towers of
infinite number of anomalous charges and
soliton collisions JHEP 03136: 1-48.

[10] H. Blas, M. Cerna and L.F. dos
Santos (2020) Modified non-linear
Schrédinger models, CPT invariant N-
bright solitons and infinite towers of
anomalous chargesarXiv:2007.13910
[hep-th]

18

[11] H. Blas and H. F. Callisaya (2018),
Commun Nonlinear Sci Numer Simulat
55105-126. see also the Research
Highlight: “An exploration of kinks/anti-
kinks and breathers in deformed sine-
Gordon modelsin Advances in
Engineeringhttps://advanceseng.c
om/kinks-anti-kinks-breathers-def
ormed-sine-gordon-models.

[12] D. J. Frantzeskakis (2010),J. Physics
A: Math. Theor.43:213001.

[13] A. Gurevich and V. M. Vinokur
(2003), Phys. Rev. LetB0:047004.

[14] Y. Tanaka (2002), Phys. Rev. Lett.
88:017002.

[15] D. S. Agafontsev and V. E. Zakharov
(2016), 29:3551.

[16] E.N. Pelinovsky et al. (2013)Phys.
Lett. A377.272.

[17] E. N. Pelinovsky and E. G.
Shurgalina (2015),Radiophysics and
Quantum Electronic®7:737.

[18] G. Robertj G. El, S. Randoux
and P. Suret (2019),Phys. Rev. BOO:
032212.

[19] A. A. Gelash and D. S. Agafontsev
(2018), Phys. Rev. B8:042210.

[20] I. Redor, E. Barthelemy, H.
Michallet, M. Onorato, and N. Mordant
(2019), Phys. Rev. Lettl22214502.

[21] S.Y. Lou and F. Huang (2017) Sci.
Rep.7:869.

[22] M. Jiaand S. Y. Lou (2018),Phys.
Lett. A 3821157.

[23] J. Nian (2018), JHEP 03032.

[24] D. Bazeia et al (2008), Physica D
237 937.



Deformed Sine-Gordon Models, Solitons and Anomalous Charges
DOI: http:/dx.doi.org/10.5772/intechopen®432

[25] M.C. Nucci (1988), J. Physics A:
Math. Gen.21:73.

[26] M.C. Nucci, Riccati-type pseudo-
potentials and their applications, in
Nonlinear Equations in the Applied
Sciencegds. W. F. Ames and C. Rogers,
Academic press, Inc. London, 1992.

[271 H. D. Wahlquist and F. B. Estabrook
(1975), J. Math. Phys16:1.

[28] H.-H. Chen (1974), Phys. Rev. Lett.
33:925.

[29] M. Wadati, H. Sanuki and K. Konno
(1975), Prog. Theor. Phy$3419.

[30] V.S. Vladimirov and I. V. Volovic
(1990), Annalen der Physik7:228.

[31] V.S. Vladimirov and I. V. Volovic
(1985), Theor. Math. Phys62:1.

[32] M. Luscher (1978), Nucl. Phys. B
1351.

[33] E. Brezin, C. Itzykson, J. Zinn-Justin
and J.-B. Zuber (1979),Phys. Lett. BB2:
442,

[34] N. J. Mackay (2005), Int. J. Mod.
Phys. A30:7189.

19



