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Chapter

Deformed Sine-Gordon Models,
Solitons and Anomalous Charges
Harold Blas, Hector F. Callisaya, João P.R. Campos,
Bibiano M. Cerna and Carlos Reyes

Abstract

We study certain deformations of the integrable sine-Gordon model (DSG). It is
found analytically and numerically several towers of infinite number of anomalous
charges for soliton solutions possessing a special space–time symmetry. Moreover, it
is uncovered exact conserved charges associated to two-solitons with a definite
parity under space-reflection symmetry, i.e. kink-kink (odd parity) and kink-
antikink (even parity) scatterings with equal and opposite velocities. Moreover, we
provide a linear formulation of the modified SG model and a related tower of
infinite number of exact non-local conservation laws. We back up our results with
extensive numerical simulations for kink-kink, kink-antikink and breather config-

urations of the Bazeiaet al. potential Vq wð Þ ¼64
q2 tan 2 w

2 1 � sin w
2

�
�

�
�q� � 2

, q � Rð Þ,

which contains the usual SG potentialV2 wð Þ ¼2 1� cos 2wð Þ½ �.

Keywords: quasi-integrability, solitons, deformed sine-Gordon, anomalous
charges, non-local charges

1. Introduction

Solitons can be regarded as isolated waves that travel without loss of energy. The
solitons emerge with their velocities and shapes completely unchanged after colli-
sion to each other, the only outcome being their phase shifts. The soliton solution is
the main feature of the integrable models [1–3]. However, certain non-linear
models in physics, with solitary wave solutions, are not integrable. Recently, certain
deformations of integrable models such as the sine-Gordon (SG), nonlinear
Schrödinger (NLS), Korteweg-de Vries (KdV) and Toda models have been intro-
duced, such that they exhibit soliton-type solutions with some properties resem-
bling to their counterparts of the truly integrable ones. In this context the so-called
quasi-integrability concept has been put forward [4]. These properties have been
examined in the frameworks of the anomalous zero-curvature [4–7] and the
Riccati-type pseudo-potential approaches [8–10], respectively.

The main developments have been focused on the construction of infinite number
of quasi-conservation laws which give rise to asymptotically conserved charges, i.e.
conserved charges, such that their values vary during the scattering of the solitons
only. The main observation in the both approaches to quasi-integrability is that, in
general, the conserved charges of the standard integrable systems turn out to be the
so-called asymptotically conserved charges in the deformed models. In fact, the exact
conservation laws of the usual integrable systems become quasi-conservation laws of
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the deformed integrable models. The non-homogeneous terms of the quasi-
conservation laws are dubbed as anomalies such that they vanish when integrated on
the space–time plane, provided that the fields satisfy a special space–time symmetry.

The properties of the soliton-like configurations in the quasi-integrable models are,
so far, largely unknown. We summarize the main results. First, the one-soliton sectors
exhibit infinite conserved charges. Second, the space–time integration of the anomalies
vanish when one-soliton like solutions are located far away from each other. The
anomalies are significant around the space–time regions of their interaction. Third, a
sufficient condition for the vanishing of the space–time integrated anomalies is that the
N� soliton possesses definite parity under a shifted parity and delayed time reversion
(PsT d) symmetry. When the anomaly densities possess odd parities the space–time
integration of them vanish, which imply the existence of anomalous charges. Fourth,
the conserved charges of the usual integrable systems turn out to be the anomalous
charges upon deformation. Fifth, there exist infinite towers of infinitely many anoma-
lous charges, different in form from the ones of the usual integrable models. New
towers of anomalous charges have been uncovered in [8–10]. Remarkably, even the
usual integrable models possess quasi-conservation laws with anomalous charges for
analytical N� soliton with CPsT d symmetry [9, 10]. For the standard SG theory it has
been discussed for the 2-soliton sector of the theory [8]. Sixth, there is a subset of exact
conserved charges for soliton eigenstates simply of the shifted space-reflectionPs. The
deformed NLS model for two-soliton solutions [6, 7] and the deformed sine-Gordon
model [11] for two-kink and breather solutions exhibit this property.

In the context of the Riccati-type method there have been shown that the
deformed SG, KdV and NLS models [8–10], respectively, possess linear system
formulations and that they exhibit infinite towers of exact non-local conservation
laws. The NLS-type, KdV-type and SG-type models share the same importance due
to their potential applications, since they are ubiquitous in all areas of nonlinear
physics, such as Bose-Einsten condensation and superconductivity [12–14], soliton
gas and soliton turbulence in fluid dynamics [15–20], the Alice-Bob physics [21, 22]
and the understanding of a kind of triality among the gauge theories, integrable
models and gravity theories [23].

Here, we discuss the previous results in the field by utilizing a deformed sine-
Gordon model. We will introduce the relationship between the space–time parity and
asymptotically conserved charges. Next, we clarified on the space-reflection parity
related to the linear combination of the dual sets of anomalous quantities. In addition, it
is focused on the space-reflection symmetry of some two-soliton solutions of deformed
sine-Gordon models. Then one proceeds to construct a tower of exactly conserved
charges for each solution possessing a definite space-reflection parity. Lastly, by con-
sidering linear combinations of the anomalous conserved charges it is showed, through
analytical and numerical methods, that there is a subset of exactly conserved charges.

A modified SG model and the space–time symmetries are presented in the next
section. In Section 3, the towers of quasi-conservation laws are presented. In Section
4 our numerical simulations are described. The linear formulation and the non-local
conservation laws are discussed in the Riccati-type pseudo-potential approach in
Section 5. Finally, in Section 6 we present some conclusions.

2. A deformation of the sine-Gordon model

Let us consider the relativistic field theories in 1þ 1ð Þ-dimensions with equation
of motion 1

1 In the x and t laboratory coordinates:� ¼ tþ x
2 , � ¼ t� x

2 , � � ¼ � t þ � x , � � ¼ � t � � x , � � � � ¼ � 2
t � � 2

x

2
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� � � � w þ V 1ð Þ wð Þ ¼0, (1)

where w is a real scalar fieldw, V wð Þis the scalar potential andV 1ð Þ wð Þ � d
dw V wð Þ.

The family of potentials V wð Þwill represent certain deformations of the usual SG
model. The theory (1) has been studied using the techniques of integrable field theo-
ries, such as the anomalous zero-curvature [4, 11] and deformed Riccati-type pseudo-
potential formulations [8], respectively. In our simulations we will consider [4, 24].

V w, qð Þ¼
2
q2 tan 2w 1� sinwj jq½ �2, (2)

where q is a real parameter such that forq ¼ 2 the potential reduces to the SG
potential

V w, 2ð Þ¼
1
16

1 � cos 4wð Þ½ �: (3)

So, we introduce the deformation parameter� asq ¼ 2 þ � , such that in the limit
� ¼ 0 one reproduces the SG model.

The model (1) possesses several towers of anomalous charges associated to
quasi-conservation laws [4, 8, 11]. In [11] it has been introduced a subset of exactly
conserved charges associated to space-reflection eigenstates as kink-antikink, kink-
kink and breather configurations, respectively. New types of two sets of dual towers
of asymptotically conserved charges have been uncovered [8]. Remarkably, even
the usual sine-Gordon models possesses anomalous charges. So far, it is attributed to
the space–time symmetry properties of the solitons. Those charges can be relevant
in the study of soliton gases and formation of certain structures, such as soliton
turbulence, soliton gas dynamics and rogue waves [16].

The quasi-integrability has been introduced for deformed sine-Gordon models
such that the field w and the potential V satisfy the symmetry [4, 8, 11].

P : w ! � w þ const:; V wð Þ ! V wð Þ, (4)

under the special space–time reflection

P � P sT d, Ps : ~x ! � ~x, T d : ~t ! � ~~t, ~x � x � x� , ~t ¼ t � t� , (5)

defined around a given point x� , t�ð Þ. Moreover, let us consider the space-
reflection transformation

Px : x $ � x, (6)

and assume that the scalar field is an eigenstate of the operatorPx

Px : w ! � w, � ¼ � 1: (7)

In addition, consider an even potential V under Px

Px Vð Þ ¼V: (8)

Several towers of quasi-conservation laws, with anomaly terms possessing
odd parities under (6)–(8), have been found [8, 11]. Next, we consider those
quasi-conservation laws and examine their anomalies in view of the symmetries
(4) –(5) and (6) –(8), respectively.

3
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3. Quasi-conservation laws of the deformed SG model

We will discuss some of the infinite towers of quasi-conservation laws of the
deformed SG model (1).

3.1 First type of towers: The SG-type quasi-conservation laws

The usual SG charges turn out to be the anomalous charges of the DSG. So, one
has the infinite set of quasi-conservation laws [4, 11].

d
dt

q 2nþ 1ð Þ
a ¼

ð
dx� 2nþ 1ð Þ, n ¼ 1, 2, 3,… (9)

where the quantities q 2nþ 1ð Þ
a define the anomalous charges, provided that the

time-integrated anomalies
Ð

dt
Ð

dx� 2nþ 1ð Þvanish for solitons satisfying (4) and (5).
This condition, when combined with Eq. (9), implies q 2nþ 1ð Þ

a t ! þ �ð Þ¼
q 2nþ 1ð Þ

a t ! � �ð Þ. So, we have thatq 2nþ 1ð Þ
a are anomalous forn ¼ 1, 2, 3,: …. The

chargesq 2nþ 1ð Þ
a maintain the same form as the ones of the usual SG.

In 1 þ 1ð Þ-dimensional Lorentz invariant integrable field theories one has dual
integrability conditions or Lax equations. Analogously, for the deformations of the SG
model there exist a dual formulation for each equation as in (9) by interchanging
� $ � in the procedure to obtain the relevant quasi-conservation laws. So, one can get

d
dt

~q 2nþ 1ð Þ
a ¼

ð
dx~�

2nþ 1ð Þ
, n ¼ 1, 2, 3,… (10)

where the quantities ~q 2nþ 1ð Þ
a define the dual asymptotically conserved charges,

provided that the time-integrated anomalies
Ð

dt
Ð

dx~�
2nþ 1ð Þ

vanish. Likewise, this

result implies ~q 2nþ 1ð Þ
a t ! þ �ð Þ¼ ~q 2nþ 1ð Þ

a t ! � �ð Þ.
These towers of quasi-conservation laws reproduce the same polynomial form as

in the usual sine-Gordon charge densities. In fact, the anomalies� 2nþ 1ð Þand ~�
2nþ 1ð Þ

vanish identically provided that the deformed potential V wð Þrecovers the form of
the standard SG potential.

The importance and the relevance of such a dual construction will become clear
below when the linear combinations of the charges in (9) and (10) give rise to
infinite towers of exactly conserved charges, provided that the space-integral of the

linear combination of the anomaly densities� 2nþ 1ð Þand ~�
2nþ 1ð Þ

vanish for special
two-soliton solutions.

3.1.1 Space-reflection parity and conserved charges

The above dual sets of quasi-conservation laws are used to construct a sequence
of conserved charges and vanishing anomalies. The space-reflection symmetry of
some soliton solutions of the deformed SG model will imply the existence of an
infinite tower of conserved charges. So, let us examine a linear combination, at each
order n ¼ 1, 2, …, of the above two sets of quasi-conserved chargesq 2nþ 1ð Þ

a (9) and
~q 2nþ 1ð Þ

a (10). Consider the new quasi-conservation laws

d
dt

q 2nþ 1ð Þ
a,� ¼ �

ð
dx� 2nþ 1ð Þ

� , n ¼ 1, 2, …, (11)

4
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with the chargesq 2nþ 1ð Þ
a,� and anomalies� 2nþ 1ð Þ

� , respectively, defined as

q 2nþ 1ð Þ
a,� � �

1
16

q 2nþ 1ð Þ
a � ~q 2nþ 1ð Þ

a

� �
, (12)

� 2nþ 1ð Þ
a,� � �

1
16

� 2nþ 1ð Þ� ~�
2nþ 1ð Þ

� �
(13)

in which the quantities q 2nþ 1ð Þand � 2nþ 1ð Þdefined in (9) and the quantities ~q 2nþ 1ð Þ
a

and ~�
2nþ 1ð Þ

in (10) have been used, respectively.
Since the theory (1) is invariant under space–time translations one has that the

energy momentum tensor is conserved. In fact, one has� 1ð Þ¼ ~�
1ð Þ

¼ 0 at the zero’th
order n ¼ 0, and the linear combinations of the chargesq 1ð Þ

a and ~q 1ð Þ
a leads to the

energy and momentum, respectively [11].

q 1ð Þ
þ ¼

ðþ �

� �
dx

1
2

� twð Þ2 þ
1
2

� xwð Þ2 þ V
� �

, (14)

q 1ð Þ
� ¼

ðþ �

� �
dx � xw� tw, (15)

where E ¼ q 1ð Þ
þ is the energy andP ¼ q 1ð Þ

� is the momentum.
The first non-trivial anomalies become [11].

� 3ð Þ
� ¼ �

1
2

Z � � � � wð Þ2
h i

� � � � � w
� � 2

h in o
, Z � V 2ð Þþ 16V � 1: (16)

� 5ð Þ
� ¼ �

1
2

Z 24 � � wð Þ2� 2
� w þ � 4

� w
� �

� � w � 24 � � w
� � 2� 2

� w þ � 4
� w

� �
� � w

h i
: (17)

Notice that for the SG potential (3) the factor Z above vanishes identically;

therefore, the anomalies vanish� 3ð Þ
� ¼ 0, and the relevant chargesq 3ð Þ

� turn out to be
the exactly conserved charges of the standard SG model at this order.

The properties of the quantitiesq 2nþ 1ð Þ
� and

Ð
dx� 2nþ 1ð Þ

� in (11) will depend on the
symmetry properties of the solitons, in particular on the space-reflection symmetry of

� 2nþ 1ð Þ
� , as we will see below. So, let us examine the space-reflection symmetry of them.

Let us write the anomalies in terms of the � x and � t derivatives. So, once the eq.
of motion (1) is used to substitute � 2

t w ! � 2
xw � V0 wð Þ

	 

, as well as, neglecting

surface terms one has

� 3ð Þ
þ � � 2

ð
dx f 3ð Þ

þ x, tð Þ, (18)

f 3ð Þ
þ x, tð Þ � V00þ 16V

	 

� x � twð Þ2

h i
þ � x � xwð Þ2

h in o
, (19)

where we have defined the anomaly densityf 3ð Þ
þ . Notice that for even parity

potentials (8) and for definite parity (even or odd) fields w the density f 3ð Þ
þ is an odd

function, and thus the x� integrated anomaly � 3ð Þ
þ vanishes.

Following analogous procedure as above one has

� 3ð Þ
� ¼ � 4

ð
dx f 3ð Þ

� x, tð Þ, (20)
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f 3ð Þ
� x, tð Þ � V00þ 16V

	 

� tw� 2

xw þ � xw� x� tw
� �

, (21)

where we have defined the anomaly densityf 3ð Þ
� . Notice that for even parity

potentials (8) and for definite parity (even or odd) fields w the density f 3ð Þ
� is an

even function, and thus the x� integrated anomaly � 3ð Þ
� will not vanish solely by a

space-reflection parity reason.

The anomalies� 3ð Þ
� and

Ð
dt � 3ð Þ

� in (18) and (20), will be computed numerically
for two-solitons and breather-like solutions below.

By direct construction it has been found new towers of anomalous charges in
[8]. In the next subsections we will discuss those charges and anomalies in relation
to the symmetry (4) and (5).

3.2 Second type of towers

The quasi-conservation laws [8].

d
dt

Q Nð Þ
a ¼ a Nð Þ, (22)

Q Nð Þ
a �

ð
dx

1
N

� � wð ÞN þ V � � wð ÞN� 2
� �

, (23)

a Nð Þ�
ð

dx N � 2ð Þ� � wð ÞN� 3� 2
� wV, N � 3, (24)

define the asymptotically conserved chargesQ Nð Þ
a and the corresponding

anomalies aNð Þ.
The dual quasi-conservation laws become

d
dt

~Q
Nð Þ

a ¼ ~a Nð Þ, (25)

~Q
Nð Þ

a �
ð

dx
1
N

� � w
� � N þ V � � w

� � N� 2
� �

, (26)

~a Nð Þ�
ð

dx N � 2ð Þ� � w
� � N� 3� 2

� wV, N � 3, (27)

where we have introduced the dual asymptotically conserved charges~Q
Nð Þ

a and
the relevant anomalies~a Nð Þ.

The densities of the anomalies aNð Þand ~a Nð Þin (24) and (27), respectively,
possess odd parities under (4) and (5), so the quasi-conservation laws (22) and (25),
respectively, allow the construction of asymptotically conserved charges.

3.3 Third type of towers

Let us define the quasi-conservation laws [8].

d
dt

Q Nð Þ
a ¼ � Nð Þ, (28)

Q Nð Þ
a �

ð
dx

1
2

VN� 1 � � wð Þ2 þ
1
N

VN
� �

, (29)

6
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� Nð Þ�
ð

dx
1
2

� � wð Þ2� � VN� 1, N � 2, (30)

where we have introduced the asymptotically conserved chargeŝQ
Nð Þ

a and the
corresponding anomalies� Nð Þ.

The interchange� $ � allows us to reproduce the dual quasi-conservation laws.
So, one has

d
dt

~Q
Nð Þ

a ¼ ~� Nð Þ, (31)

~Q
Nð Þ

a �
ð

dx
1
2

VN� 1 � � wð Þ2 þ
1
N

VN
� �

, (32)

~� Nð Þ�
ð

dx
1
2

� � w
� � 2� � VN� 1, N � 2, (33)

where we have defined the dual asymptotically conserved charges~Q
Nð Þ

a and the
anomalies~� Nð Þ.

Similarly, the densities of the anomalies� Nð Þand ~� Nð Þin (30) and (33), respec-
tively, possess odd parities under (4) and (5), so the quasi-conservation laws (28)
and (31), respectively, allow the construction of asymptotically conserved charges.

The relevant anomalies of the lowest order quasi-conservation laws of the above
towers will be simulated below for 2-soliton interactions.

Remarkably, the above charges turn out to be anomalous even for the standard
sine-Gordon model. In fact, the relevant 2-soliton solutions have been constructed
analytically [4, 11] which possess a definite parity under (4)–(5), such that the odd
anomaly densities vanish upon space–time integration. The usual explanation for
the appearance of novel anomalous charges in the standard sine-Gordon model is
the symmetry argument. The anomalous charges also appear in the standard KdV
and its deformations [9].

These charges have been computed for soliton collisions in the treatment of
soliton gases and formation of some structures in integrable systems, such as integra-
ble turbulence and rogue waves. In the context of the usual KdV model it has been
analyzed the behavior of the statistical moments defined by (see e.g. [16, 17])
Mn tð Þ ¼

Ðþ �
� � vn dx, n � 1; wherev is the KdV field. The M1,2 cases are conserved

charges. It is remarkable that the moments,M3,4, respectively, in the interaction
region of two-solitons, behave as the anomalous charges of the quasi-integrable KdV
models [9]. In fact, in the quasi-integrable KdV models the moments M2,3 are in fact
anomalous charges [9]. So, since the two-soliton collision is an important ingredient
in the formation of soliton turbulence and the dynamics of soliton gases, we can
expect they will be important in the quasi-integrable counterparts. In the case of the
SG soliton ensemble, to our knowledge, it is needed a further theoretical research.

4. Numerical simulations

Here we will check numerically the lowest order expressions of the various
towers of quasi-conservation laws presented above. For this purpose we will
numerically solve the Eq. (1) with the particular deformed potential (2). In the
Figures 1 and 2 we plot the kink-kink and kink-antikink collisions, respectively.
Moreover, we show the first conserved charges, i.e. the energy and momentum for
these field configurations.
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4.1 First non-trivial anomalies of the SG-type quasi-conservation laws

We have checked our results by numerical simulation of the anomalies� 3ð Þ
� (18)–

(21) for kink-antikink, kink-kink and breather solutions of the model (2).
So, let us write (11) in the form

q 3ð Þ
a,� tð Þ � q 3ð Þ

a,� t0ð Þ ¼ �
ðt

t0
dt� 3ð Þ

� tð Þ, (34)

where � 3ð Þ
� tð Þwere defined in (18) and (20) and t0 is the initial time.

The simulations of the kink-antikink, kink-kink and breather systems of the
deformed SG model will consider, as the initial condition, two analytic solitary wave
solutions presented in Eq. (1.2) of [4], located some distance apart and stitched
together at the middle point.

4.1.1 Kink-antikink

In the Figures 3 and 4 we show the results for kink-antikink system with

velocities v2 ¼ � v1 ¼ 0:5 and� ¼ 0:06. The plots of (19) and (21) as f 3ð Þ
� x, tð Þvsxare

Figure 1.
Kink-kink with velocities v2 ¼ � v1 ¼ 0:15 and q ¼ 2:01 in (2), for initial (green), collision (blue) and final
(red) times. Bottom, the energy (E) and momentum (P) charges of the kink-kink.

Figure 2.
Kink-antikink with velocities v2 ¼ � v1 ¼ 0:15 and q ¼ 2:01 in (2), for initial (green), collision (blue) and
final (red) times. Bottom, the energy (E) and momentum (P) charges of the kink-antikink.

8

Recent Developments in the Solution of Nonlinear Differential Equations



shown for three successive times (top figures). Their integration in space furnish

vanishing � 3ð Þ
þ tð Þand non-vanishing � 3ð Þ

� tð Þ(middle figures). The bottom figures

show
Ð

dt0� 3ð Þ
þ t0ð Þ, vanishing in Figure 3 and

Ð
dt0� 3ð Þ

� t0ð Þasymptotically vanishing in
Figure 4 , respectively. According to (34) our numerical simulations show the
asymptotically conservation of the chargeq 3ð Þ

a,� and the exact conservation of the

chargeq 3ð Þ
a,þ , within numerical accuracy.

4.1.2 kink-kink

In the Figures 5 and 6 we show the results for kink-kink system with velocities

v2 ¼ � v1 ¼ 0:5 and� ¼ 0:06. The plots of (19) and (21) as f 3ð Þ
� x, tð Þvsxare shown

for three successive times (top figures). Their integration in space furnish vanishing

� 3ð Þ
þ tð Þand non-vanishing � 3ð Þ

� tð Þ(middle figures). The bottom figures show

Figure 3.
f 3ð Þ

þ , � 3ð Þ
þ and

Ð
dt� 3ð Þ

þ in (18) and (19) for kink-antikink with velocities v 2 ¼ � v1 ¼ 0:5 and � ¼ 0:06. The
density figure shows initial ti (green), collision tc (blue) and final t f (red) times of the kink-antikink.

Figure 4.
f 3ð Þ

� , � 3ð Þ
� and

Ð
dt� 3ð Þ

� in (20) –(21) for kink-antikink with velocities v2 ¼ � v1 ¼ 0:5 and � ¼ 0:06. The
density figure shows initial ti (green), collision tc (blue) and final t f (red) times of the kink-antikink.
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Ð
dt0� 3ð Þ

þ t0ð Þ, vanishing in Figure 5 and
Ð

dt0� 3ð Þ
� t0ð Þasymptotically vanishing in

Figure 6 . According to (34) our numerical results show the asymptotically conser-

vation of the charge q 3ð Þ
a,� and the exact conservation of the chargeq 3ð Þ

a,þ , within
numerical accuracy.

So, one can conclude that for kink-antikink (kink-kink) solution the definite
parity related to the space-reflection symmetry is a necessary condition in order to

achieve a conservedq 3ð Þ
a,þ charge, within numerical accuracy.

The both kink-antikink and kink-kink solitons of the SG model with opposite
and different velocities do not possess the required parity symmetry. However, it
has been shown that in the center-of-mass reference frame (x0, t0) the parity sym-
metries are recovered, as discussed in [11]. So, the simulations performed in these
reference frames, in the both kink-antikink and kink-kink cases, will provide

vanishing � 3ð Þ
þ anomalies as shown above.

Figure 5.
f 3ð Þ

þ , � 3ð Þ
þ and

Ð
dt� 3ð Þ

þ in (18) and (19) for kink-kink with velocities v2 ¼ � v1 ¼ 0:5 and � ¼ 0:06. The
density figure shows initial ti (green), collision tc (blue) and final t f (red) times of the kink-kink.

Figure 6.
f 3ð Þ

� , � 3ð Þ
� and

Ð
dt� 3ð Þ

� in (20) and (21) for kink-kink with velocities v2 ¼ � v1 ¼ 0:5 and � ¼ 0:06. The
density figure shows initial ti (green), collision tc (blue) and final t f (red) times of the kink-kink.
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4.1.3 Breather: kink-antikink bound state

Figures 7 and 8 show the results for breather (kink-antikink bound state) with

� ¼ 0:06. The densities f 3ð Þ
� x, tð Þin (19) and (21), respectively, have been plotted as

functions of x for three successive times (top figures). They show the vanishing� 3ð Þ
þ tð Þ

and non-vanishing (periodic in time) � 3ð Þ
� tð Þ(middle figures). The bottom figures of

Figures 7 and 8 show the vanishing
Ð

dt0� 3ð Þ
þ t0ð Þand periodic

Ð
dt0� 3ð Þ

� t0ð Þexpressions.
According to (34) our numerical results show the oscillation of the chargesq 3ð Þ

a,� around

a fixed value and the exact conservation of the chargeq 3ð Þ
a,þ , within numerical accuracy.

4.2 Lowest order anomalies of the second and third types of towers

We will compute the linear combinations of the lowest order anomalies of the
second and third types of towers in (22)–(27) and (28)–(33), respectively,

Figure 7.
f 3ð Þ

þ , � 3ð Þ
þ and

Ð
dt� 3ð Þ

þ in (18) and (19) for breather with � ¼ 0:06. The density is shown for three times
t � t f � T0, t f

	 

, T0 ¼ 7:025. The long-lived breather for tf � 105.

Figure 8.
f 3ð Þ

� , � 3ð Þ
� and

Ð
dt� 3ð Þ

� in (20) and (21) for breather with � ¼ 0:06. The density is shown for three times
t � t f � T0, t f

	 

, T0 ¼ 7:025. The long-lived breather for tf � 105.
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a� � a 3ð Þ� ~a 3ð Þ, (35)

� � � � 2ð Þ� ~� 2ð Þ: (36)

4.2.1 Second and third types of towers and lowest order anomalies

The two anomalies in (35) can be written as

aþ ¼
ð

dx2 � 2
t w þ � 2

xw
	 


V, (37)

a� ¼
ð

dx4 � t� xw½ �V: (38)

Similarly, the two anomalies in (36) can be written as

� þ ¼
ð

dx � twð Þ2 � � xwð Þ2
h i

� tV, (39)

� � ¼ �
ð

dx � twð Þ2 � � xwð Þ2
h i

� xV: (40)

Notice that under the space–time reflection transformation (4) and (5), the

densities of the above anomalies a3ð Þ
� and � � , respectively, are odd; then they must

vanish upon space–time integration. Therefore, one has asymptotically conserved
charges associated to the relevant quasi-conservation laws.

Under the space-reflection symmetry (6) and (8), some of the densities of the
above anomalies will present odd parities; therefore, they must vanish upon space
integration. So, in such cases one can have exact conserved charges. These results
will be verified for certain solutions as we will see below in the numerical simula-
tions for the kink-kink and kink-antikink solutions.

Figures 9–12show the anomalies a� and � � and their corresponding densities.
The anomalies a� and � � vanish as shown in theFigures 9 and 10, respectively, for
symmetric kink-antikink soliton (see Figure 2), within numerical accuracy, since
their densities are odd under space reflection. Similarly, for anti-symmetric kink-
kink soliton (see Figure 1) the anomalies aþ and � � vanish in the Figures 11and 12,
respectively, since their densities are odd under space reflection.

These results suggest that the quasi-integrable models set forward in the litera-
ture [4, 6, 7], and in particular the model (1), would possess more specific integra-
bility structures, such as an infinite set of exactly conserved charges, and some type

Figure 9.
Top: The anomaly densities (37) and (38), respectively, plotted in x� coordinate for three times ti (green),
tc (blue) and t f (red). Bottom: The anomalies a� vs t, for kink-antikink collision shown inFigure 2.
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of linear formulations for certain deformed potentials. So, in the next section we
will tackle the problem of extending the Riccati-type pseudo-potential formalism to
the deformed sine-Gordon model (1).

5. Riccati-type pseudo-potentials and non-local conservation laws

The Lax equations and Backlund transformations, as well as the conservation
laws for the well-known non-linear evolution equations can be generated from the
pseudo-potentials and the properties of the Riccati Equation [25–29].

Figure 10.
Top: Anomaly densities (39) and (40), respectively, plotted in x� coordinate for three times ti (green), tc(blue)
and t f (red). Bottom: Anomalies� � vs t, for kink-antikink shown inFigure 2.

Figure 11.
Top: Anomaly densities of (37) and (38), respectively, plotted in x� coordinate for three successive times
ti (green), tc(blue) and t f (red). Bottom figures show the relevant anomalies a� vs t, for kink-kink shown in
Figure 1.

Figure 12.
Top: Anomaly densities of (39) and (40), respectively, plotted in x� coordinate for three successive times ti
(green), tc(blue) and t f (red). Bottom: Anomalies� � vs t, for kink-kink shown inFigure 1.
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So, in the next steps we consider a convenient deformation of the usual
pseudo-potential approach to integrable field theories. Let us consider the system of
Riccati-type equations

� � u ¼ � 2� � 1u þ � � w þ � � w u2, (41)

� � u ¼ � 2� V � 2ð Þu �
1
2

� V 1ð Þþ
1
2

� V 1ð Þu2 þ 	 , (42)

and the next linear first order equation for 	

� � 	 þ 2� � 1	 � 2u� � w	 ¼ 2� � 2u � � � � uð ÞZ, Z � V 2ð Þ wð Þ þ16V wð Þ � 1: (43)

The compatibility condition � � � � uð Þ � � � � � u
� �

¼ 0 of the system (41) and (42),
taking into account (43), provides the equation of motion of the DSG model (1).
Moreover, the ordinary differential equation for 	 in the variable � can be inte-
grated by quadratures [8]. Its expression will become highly non-local and, once
inserted into (42), the system of Eqs. (41) and (42) will provide a non-local Riccati-
type representation of the DSG model (1).

From the system (41) and (42) one can get a quasi-conservation law

� � u� � wð Þþ � � � V � 2ð Þ�
1
2

� uV 1ð Þ
 �

¼ � � � � wuZ þ � � w	 : (44)

This equation has been used to construct a tower of infinite number of quasi-
conservation laws [8]. For the standard SG one hasZ ¼ 	 ¼ 0; so the Eq. (44) can
generate the well known conservation laws of the usual SG model.

5.1 Pseudo-potentials and a linear system associated to DSG

In this section we search for a linear system formulation of the DSG model. It is
achieved by taking into account the Riccati Eq. (41) and the conservation law (44),
as well as the Eq. (43). So, the following system of equations has been proposed as a
linear formulation of the deformed SG model [8].

L 1� ¼ 0, L 2� ¼ 0, (45)

L 1 � � � � A � , A� �
�
2

� � wð Þ2 � 2
� � wð Þ3

� 2
� w

, (46)

L 2 � � � � A� , A � � � 2� � � V þ 
 , (47)

where the auxiliary non-local field 
 is defined as


 ¼
ð

d� 0 6V 1ð Þ � � 0w
� � 2

� 2
� 0w

� 2V 2ð Þ � � 0w
� � 4

� 2
� 0w

� � 2

2

6
4

3

7
5: (48)

In fact, taking into account the expression for the auxiliary field 
 , the compat-
ibility condition of the linear problem (45) provides the equation

� � , �ð Þ� � 6
� � w
� 2

� w
� � , �ð Þ þ2

� � wð Þ2

� 2
� w

� � 2 � � � � , �ð Þ ¼0, (49)
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with

� � , �ð Þ � � � � � w þ V 1ð Þ wð Þ: (50)

In (49) the coefficient of the linear term in � � � , �ð Þmust vanish, providing the
DSG equation of motion (1). The other terms in (49) must also vanish provided that
� � , �ð Þ ¼0 is imposed. So,L 1 and L 2 in (45) become a pair of linear operators
associated to the DSG model (1).

5.2 Non-local conservation laws

For non-linear equations, not necessarily integrable, which can be derived from
a compatibility condition of an associated linear system with spectral parameter,
explicit expressions of local and non-local currents can be obtained (see e.g.
[30, 31]). In the non-linear � � model the non-local conserved charges imply the
absence of particle production and the first non-trivial one alone fixes almost
completely the on-shell dynamics of the model (see e.g. [3, 32]). These charges may
be constructed through an iterative procedure [33]. Following this method one gets
a set of infinite number of non-local conservation laws for the system (45). In fact,
this system satisfies the properties: i) A� , A�

� �
is a “ pure gauge” ; i.e. A � ¼

� � �� � 1, � ¼ � , � ; ii) J� ¼ A � , A�
� �

is a conserved current satisfying

� � A� � � � A� ¼ 0: (51)

So, one can construct an infinite set of non-local conserved currents through an
inductive procedure. Let us define the currents

J nð Þ
� ¼ � �  nð Þ, � � � , � ; n ¼ 0, 1, 2, … (52)

d 1ð Þ¼ A � d� þ A � d� � dI0 � , �ð Þ þ� dI1 � , �ð Þ; (53)

J nþ 1ð Þ
� ¼ � �  nð Þ� A�  nð Þ;  0ð Þ¼ 1, (54)

where

dI0 � , �ð Þ � a0 � , �ð Þd� þ b0 � , �ð Þd� , dI1 � , �ð Þ � a1 � , �ð Þd� þ b1 � , �ð Þd� , (55)

where

a0 � � 2
� � wð Þ3

� 2
� w

; b0 � 
 ¼
ð

d� 0 6V 1ð Þ � � 0w
� � 2

� 2
� 0w

� 2V 2ð Þ � � 0w
� � 4

� 2
� 0w

� � 2

2

6
4

3

7
5; (56)

a1 �
1
2

� � wð Þ2; b1 � � 2 � V: (57)

Then one can show by an inductive procedure that the (non-local) currentsJ nð Þ
�

are conserved

� � J nð Þ� ¼ 0, n ¼ 1, 2, 3,…, þ � : (58)

The first current conservation law � � J 1ð Þ� ¼ 0 reduces to the Eq. (51), and then
provides the first two conservation laws
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� � a0 � � � b0 ¼ 0, � � a1 � � � b1 ¼ 0: (59)

The next conservation law� � J 2ð Þ� ¼ 0, in powers of � , furnishes

� � a0I0ð Þ� � � b0I0ð Þ¼ 0, (60)

� � a0I1 þ a1I0ð Þ� � � b0I1 þ b1I0ð Þ¼ 0, (61)

� � a1I1ð Þ� � � b1I1ð Þ ¼0: (62)

The construction of analogous linear systems have been performed for defor-
mations of the KdV and NLS models [9, 10]. The construction of the classical
Yangian as a Poisson-Hopf type algebra [34] for those non-local currents is worth to
pursue in a future work.

6. Conclusions

Our work presents an in-depth demonstration of the quasi-integrability prop-
erty of the modified sine-Gordon models and the presence of several towers of
infinite number of asymptotically conserved charges for soliton configurations
satisfying the space–time symmetry (4) and (5). In addition, it is observed that
there exist a subset of towers of infinite number of exactly conserved charges,
provided that some two-soliton configurations are eigenstates (even or odd) of the
space-reflection symmetry (6)–(8).

Moreover, we have uncovered a linear system formulation (45) of the modified
SG model, and an infinite set of exact non-local conservation laws (58) associated to
that linear formulation.

The space–time and internal symmetries related to quasi-integrability deserve
further investigations, due to their applications in several areas of non-linear sci-
ence, but we hope that the results reported here have opened new lines of research
in the context of the quasi-integrability phenomena.
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