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Chapter

A Review on AI Control of 
Reactive Distillation for Various 
Applications
Vandana Sakhre

Abstract

In this chapter, previous studies on reactive distillation process control 
including control using conventional as well as soft sensor control, membrane 
assisted reactive distillation design and simulation, estimation and control are 
discussed. The review of literature in different dimensions is carried out to 
explore the opportunities in the field of research work. The chapter is focused 
on dynamics and control of Reactive distillation, its control using Conventional 
Techniques, Model Predictive Control MPC), Reactive Distillation using Soft 
Sensors/Soft Controllers, Membrane assisted reactive distillation, Biodiesel in 
Reactive Divided Wall Column: Design and Control and Membrane reactive 
divided wall column. These control techniques are proposed and analyzed by 
many researchers. These techniques have potential use in process industries to 
have better soft sensor control of nonlinear processes.

Keywords: control, divided wall column, model predictive control, reactive 
distillation

1. Introduction

Reactive distillation is a part of process intensification technique which aims 
at carrying out reaction to form products which are then separated in the same 
column based on difference in boiling points. Dynamic study of any chemical 
process is the most crucial part which should be performed at early design stage 
as the dynamic nature leads to nonlinearity. This nonlinearity introduces slug-
gish behavior in the system which will lead to distract the process output out of 
the range. The dynamic behavior or nonlinearity was usually studied by rigorous 
modeling or using simulation software to predict the nature of system. For this 
advanced control systems are designed and implemented to get effective control 
strategies. Neural network based soft controller are suitable for reactive distilla-
tion system as these are suitable to overcome with multiplicity issues. The dynamic 
performance of reactive divided wall distillation column with nonlinear control 
structures is proven to be cost effective. The use of reactive distillation with mem-
brane separation techniques are emerged as effective separation techniques which 
give corresponding recoveries as well.
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2. Reactive distillation dynamics and control

Non linearity of reactive distillation was first reported by Ciric and Gu et al. [1] 
using simulation of reactive distillation processes involving simultaneous solution 
of material and energy balances and stoichiometric relationship which corresponds 
to the solution of a considerable large set of non-linear modeling equations of reac-
tive distillation column. They have used a mixed integer nonlinear programming 
(MINLP) approach was used to synthesize an optimum reactive distillation column. 
The MINLP minimizes the total annual cost subject to a MESH model. The solution 
of this MINLP yields the optimal number of trays, the tray holdups, the feed tray 
locations, and their feed distribution. Amte et al. [2] presented a MINLP optimiza-
tion technique that would assist to identify a suitable configuration for selectivity 
maximization at conceptual design level. Results obtained through MINLP gives a 
good agreement with those obtained by performing independent simulation using 
ASPEN PLUS. In this work, authors have considered feed and catalyst tray location, 
reflux as the variables for the maximization of selectivity. Thus, MINLP optimiza-
tion process proves conceptual design for the selectivity engineering with reactive 
distillation. Doherty et al. [3] have given pioneering contributions to the analysis 
and design of the reactive distillation and developed thermodynamically based 
approach for analyzing equilibrium limited, thermally neutral reactive distillation 
systems. This work employed a novel composition coordinate system to transform 
the problem into a form completely analogous to nonreactive distillation.

Subawalla and Fair et al. [4] worked on dynamic study of TAME synthesis in 
reactive distillation column by considering different design parameters such as 
number of trays, feed flow rate etc., resulting into nonlinear interaction of these 
input parameters. He has also provided some intuitive guidelines about coupling 
of these design parameters order. Schenk et al. [5] have presented equilibrium 
and non-equilibrium models for predicting the steady state and dynamic behav-
ior of RDC based on a rate-based model in which mass transfer rates between 
liquid and vapor phase are considered explicitly, based on the Maxwell-Stefan 
equations. A switching policy makes it possible to switch from one model to the 
other, based on the knowledge gained, by following the Gibbs free energy as a 
function of time. Cardoso et al. [6] have proposed a new simulation/optimization 
model for the Mixed Integer Nonlinear Programming (MINLP) formulation of 
reactive distillation columns as used by Ciric and Gu [1], where the simulation 
algorithm is based on conventional distillation and optimization is performed by 
stochastic algorithm. Estimate of the initial composition profile in the column 
was obtained by relaxation method and material balance equations are solved 
by Newton–Raphson method, to compute the composition profile. Vora and 
Daoutidis et al. [7] represented work on dynamics of reactive distillation by 
proposing a different feed configuration for two feed and two product system. 
They have also presented control of an ethyl acetate reactive distillation system 
to achieve higher conversion than the previously proposed configuration which 
involves single feed reactive distillation column. Taylor and Krishna et al. [8] 
have presented work on modeling of homogeneous and heterogeneous reactive 
distillation processes by considering equilibrium stage models, non-equilibrium 
stage modeling, the conventional NEQ model, NEQ modeling, hydrodynamics, 
and mass transfer. Dynamic simulation for NEQ model without back mixing was 
also presented by Kataria et al. [9] in which model equation for reactive distil-
lation without back mixing was developed for open loop system. For the NEQ 
model with partial mixing, bifurcation behavior with stability analysis and simu-
lation were carried out which confirmed the existence of oscillation in the NEQ 
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model as well. Once the nonlinear nature of reactive distillation is confirmed, 
various control strategies were reported by the authors to make the system linear. 
Linearization was carried out to make system to oscillate around the set points of 
desired parameters which makes the system easy to operate without much affect-
ing the performance over the time. Mehran et al. [10] have employed Takagi-
Sugeno fuzzy model to express the local dynamics of each fuzzy implication by a 
linear system model to plot the resultant error of surface with time and reported 
that although system’s non linearity can be linearize to some extent but still many 
control problems involve uncertainties in the model. In view of this, Gruner et al. 
[11] have taken an industrial case of reactive distillation and proposed a non-
linear control scheme for the system operated by Bayer AG.

Interaction of various parameters in a reactive distillation leads to higher order 
nonlinearity and dynamics like interaction between number of trays, reflux ratio, 
reboiler duty, etc. This interaction will lead to multiple steady states and multi-
plicity in the system. The type of multiplicity will limit the values which should be 
broken by application of suitable controllers. Heath et al. [12] studied the interac-
tions of design variables and applied control schemes for an ethyl glycol reactive 
distillation system and assumed that the process variables are fixed i.e. no revamp-
ing is done. Author has taken process economics as a major issue which ultimately 
depends on the number of variables interacting in a system and its control was 
achieved as per the desired objective. For the same assumptions, Schenk et al., [13] 
and Georgiadis et al. [14] have worked on interaction of design variables in a reac-
tive distillation column and proposed advanced optimization technique for the 
control of a reactive distillation system to smoothen the operability and increase 
the system efficiency.

Figure 1 shows general control scheme of reactive distillation column. The 
common controls used are Flow Control (FC), Level Control and Composition 
Control (CC). Level control is given in condenser and reboiler while composition 
control is provided to condenser, reboiler and one of the feed flow rates to get 
tighter composition analysis. Flow control is provided to feed flow rate at the top 
of the reactive section.

Figure 1. 
Reactive distillation control.
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2.1 Control using conventional techniques

Simplified models clarify process dynamics but cannot represent the process 
under wide range of operating condition. Thus, various mathematically driven 
controllers like proportional, integral, derivative or a combination of theseareusedas 
hardware sensor-controller system which are mathematically functioned or 
scripted. Furthermore, the RD process contains a large degree of uncertainties, 
which cannot be well described using single mathematical expression. Therefore, 
techniques without using exact process models are more attractive for RD control. 
Monroy-Loperena et al. [15] studied the control problem of reactive distillation 
system for ethyl glycol by proposing a robust PI control configuration. They have 
also revealed the existence of input multiplicity in the system and proposed a first 
order output feedback control system to regulate the product composition. The 
control design involves interpretation of error signal whose dynamic is again 
constructed based on available data. Sneesby et al. [16] moved in process control 
by highlighting an integrated control scheme by taking ETBE as the case column. 
He proposed to change control objective to reflect changing economic variables 
like starting from optimum purity, minimum number of trays, optimum reflux 
ratio, etc. In view of this author has also presented a rigorous MESH based 
modeling to represent the main chemical reaction. Al-Arfaj & Luyben et al. [17] 
applied different conventional PI, PID and other conventional controller scheme 
for reactive distillation as well as for simple reactor. They compared the control 
of both these systems to produce methyl acetate. Various control strategy was 
proposed in this paper, the first one was for a composition and temperature control 
while second scheme was based on tow temperature controllers. A comparison 
between these schemes shows that different scheme corresponds to over design or 
under design system hence proper balancing of degree of freedom of a system is 
equally important.

Various tuning methods are proposed in the literature to calculate the ultimate 
period or ultimate gain. Chandra et al. [18] have calculated ultimate gain and 
ultimate period using Ziegler Nicolas tuning rule for an ARX model structure. 
The objective was to control the desired product purity in distillate stream. In this 
work, an ARX model structure relates the plant output with present and past plant 
input output to formulate a predictive control. Recursive least square estimator 
was used which provides updated parameters to ARX model. Goyal et al. [19] have 
presented support vector regression to tune a PID controller. Model gain scheduling 
was included in one of the control strategies for reactive distillation. Temperature 
control was given priority because to balance the stoichiometry, temperature of 
feed trays can be used to adjust the fresh feed streams. For this the gain of control-
ler was define as the change in temperature with respect to the feed flow rate. 
Nizami et al. [20] have constructed one or two loop composition PID controller, 
however, the conventional controllers applied for the control of reactive distilla-
tion was not capable of actually control the simultaneous interacting parameters 
because of occurrence of reaction and separation in single column. Lei et al. [21] 
have described the design and optimization of reactive distillation column for the 
synthesis of Tert-Amyl Ethyl Ether (TAEE), the temperature–composition cascade 
strategy was proposed to control the Reactive Distillation (RD) process for the 
synthesis of TAEE. In those optimized conditions, the proposed control strategy 
was introduced to manage the RD process by changing the sensitive variables. 
Dimian et al. [22] have carried out thermodynamic analysis in residue curve map 
and simulation of reactive distillation column. Process dynamic and control was 
considered in detail to design the column. The feasibility of fatty acid esterification 
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with individual alcohol was studied by means of residue curve maps. By sensitivity 
analysis it was found that the reflux of heavy alcohol is the key manipulating variable 
for controlling the water content in the reactive liquid phase.

The controllability of the system could be studied using tools from control 
theory. Feedback control of inventory is measured, and a feedback control loop is 
implemented with the fresh feed as manipulating variable. Konakom et al. [23] have 
proposed to control distillate rate subject to a given product purity constraints. A 
conventional batch reactive distillation model described by a system of differential 
algebraic equations is formulated and solved using an optimal control algorithm. In 
open loop simulation of production of industrial grade ethyl acetate of 90% purity, 
dynamic optimization programming was implemented which increases the purity 
as per the product specification.

2.2 Model predictive control and other control techniques

Due to the complexity of the process dynamics involved in reactive distillation, 
conventional control technologies, e.g. PI, PID control, cannot provide satisfactory 
control performance, while the application of modern control technology requires 
good process models. A reasonable process model as described by Sneesby et al. [24] 
contain hundreds of equations for the RD process which is to be controlled. Pattern-
based predictive control (PPC) is such a method that does not rely on exact process 
models while providing improved control performance for complex processes over 
conventional, e.g. PI, control algorithms. Some progress has been made in this 
direction, like for time delay compensation, Zhao et al. [25] worked for dynamic 
models that reject disturbances. Since various chemical processes possess time delays 
and uncertainties, for example, the flowing fluid in a pipe was taken as time delay 
variable. To represent such system the proposed model works on first order lag 
dynamics to compensate for uncertainties. Bode plots were also constructed to show 
that pattern based fuzzy predictive allows a trade-off between robustness and the 
performance. Seem et al. [26] have proposed a novel predictive scheme by consider-
ing a proportional integral controller in which the gain and integral time is calcu-
lated automatically and hence they have given such system a name of self-regulating 
system. However, this scheme was based on the pattern reorganization methodology, 
but author has asserted that this scheme requires less memory and is more efficient 
as compared to the conventional techniques. Jang et al. [27] worked on fuzzy predic-
tive control which does not depends on exact process model but considers a pattern 
predictive control that provides improved performance in both set point tracking 
and disturbance rejection, shown for the RD process. Local optimum was identified 
to minimize prediction error and global optimum was then identified through vari-
ous subsystems. The nonlinear transformation, feature pattern extraction, and PP 
design was discussed in detail by Tian et al. [28] who have designed a pseudo input–
output linear process gain, which needs only a rough and easily obtained knowledge 
of the steady state characteristics of the process. Author has worked on one-point 
control strategy i.e. control of bottom purity by considering reflux ratio and reboiler 
duty as the variables. They also used state estimation approaches for measurement of 
sample at multiple rates.

Bansal et al. [29] have developed an algorithm for solving Mixed Integer 
Dynamic Optimization (MIDO) problems. This algorithm is different from other 
conventional algorithm as they do not depend on the use of a particular primal 
dynamic optimization method. However, overthe last decades, many versions of 
Extended Kalman filter (EKF) has coined that deals with the measurements at 
multiple rates. Patwardhan et al. [30] have worked on output feedback system 
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for the case of plant mismatch. The EKF for nonlinear systems has been explored 
by Beccera et al. [31]. The concept involves the use of a time varying lineariza-
tion of differential algebraic equation in which estimation was performed using a 
simplified EKF that was integrated with the differential algebraic equation model 
which accommodate measurements obtained only from the differential states. This 
technique has serious limitations. This limitation has been overcome by Mandela 
et al. [32]. They presented formulations for EKF and Unscented Kalman Filter, 
in which measurements of differential as well as algebraic states were recorded. 
To achieve more rigorous control of reactive distillation nonlinear system over a 
wide operating range, various successive linearization based nonlinear predictive 
control scheme was developed by Huang et al. [33]. They proposed error feedback 
scheme that introduces integral action in the controller for controlling a multi 
rate sampled data system. Author has not implemented the conventional linear 
feedback but adopted a novel variable feedback concept that effectively reduces 
the noise making the system quite robust for the designer. Akesson et al. [34] have 
developed a scheme in which control objective was to keep the output close to a 
specified reference trajectory in such a way that large control signal variations are 
avoided and possible hard constraints on the state and inputs was satisfied. Main 
control objective of this work was to minimize the cost. Procedure was adopted 
by the authors in which controller was trained directly to minimize the cost for a 
data set, without having to compute the optimal MPC control signals by off-line 
optimizations.

MPC are classified to various type such as dynamic matrix control (DMC), 
quadratic dynamic matrix control (QDMC), robust multivariable predictive 
control technology (RMPCT), generalized predictive control (GPC), and other 
advanced control techniques and was reviewed in brief by Sharma et al. [35]. 
They also presented work on comparison of conventional strategies with MPC 
and neural network predictive control by considering a TAME reactive distillation 
column for different load changes and proved that NNPC and MPC provide much 
accurate result as compared to conventional PIDs. Figure 2 shows the general MPC 
structure.

2.3 Control of reactive distillation using soft sensors/soft controllers

Design of a soft sensor for a reactive distillation column includes three steps: 
first, selection of secondary measurement of the process, second, moving data col-
lection and processing this data, and the last, modeling of process based on selected 

Figure 2. 
General MPC structure.
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secondary measurements and processing of data. Generally, the differential alge-
braic equations (DAE), describes the dynamics of a reactive distillation column. 
Soft computing techniques are methods in which real practical situation could 
be dealt in the same way as human deals them i.e. based on intelligence, common 
sense, reasoning, analogies, etc. Fuzzy logic is the oldest control schemes used not 
only in process industries but in vast area of other engineering applications also. In 
view of this, Babusk et al. [36] have first coined up the detailed concept of fuzzy 
logic in both static and dynamic system and proved fuzzy system as an interactive 
method, facilitating the active participation of the user in a computer-assisted 
modeling session. The fuzzy model proposed by Takagi and Sugeno described by 
fuzzy ‘IF-THEN’ rules represents local input–output relations of a nonlinear system. 
Rico et al. [37] applied the fuzzy control technique to control the process output 
from distillation column inthe desired range for different input disturbances. As 
an initiation to fuzzy logic, industries as well researchers move toward the field of 
soft sensing and control using soft computing techniques. These techniques were 
initially based on local optimization such as given by Pekkanen et al. [38] for a stage 
by stage specification of reactive distillation. They initiated the control procedure 
from each column ends i.e., from top as well the bottom while making the design 
specifications at each stage.

Soft controllers are also known by an alternative name known as intelligent 
control technique or inferential control as these controllers can estimate and 
control the process based on past experiences. Use of soft computing approaches 
take its first start up with the launch of natural evolution based algorithms like 
genetic algorithm, ant bee search algorithm etc. and merged toward more rigorous 
approach by combining one algorithm with other such as artificial neural networks 
or ANN’s and fuzzy logic as a black box technique to model systems and gained 
substantial interest in different areas of engineering. These are also known as hybrid 
techniques which consist of a frame- work of dynamic mass and energy balances, 
supplemented with fuzzy models. The hybrid models have shown that the use of 
fuzzy logic in hybrid modeling introduces flexibility, which enables the descrip-
tion of complex behavior with a pre defined, interpretable overall model structure. 
Araromi et al. [39] designed a continuous RD using hybrid Fuzzy Hammerstein 
(FH) model consisting nonlinear fuzzy model and linear state space model was 
then developed. The developed model was compared with linear autoregressive 
input exogenous (ARX) and nonlinear autoregressive input exogenous (NARX). 
Sumana et al. [40] investigated the use of gramian covariance matrices for sensor 
configuration in continuous multi component reactive distillation by applying 
extended Kalman Filter to obtain the instantaneous composition information from 
temperature sensors data of reactive distillation column. The sensors configurations 
were further evaluated by IAE criteria incorporating the measurements suggested 
by the state estimator. Figure 3 shows general soft sensor control.

Soft computing or inferential computing is the most advanced stage of control 
schemes. At present, neural network is one of the most demanded intelligent con-
trollers which works on the imitation of working of neurons in human brain. Wang 
et al. [41] have taken a case-based modeling program with an industrial example of 
distillation column. The basic features of this case base modeling described in brief 
were discreteness, nonlinearity, contradiction and complexity. Theyreported that 
neural network is promising in process control and fuzzy distributed neural net-
work can be used to design a soft sensor for a high purity distillation column. Multi-
layer neural network was utilized when creating a system inverse neural model. 
In view of this, Zilkova et al. [42] have developed three-layer feed forward neural 
network with one hidden layer elected to approximate nonlinear function. The first 
subsystem served for desired current component reconstruction and second system 
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serves for corresponding voltage components reconstruction for PWM converter. 
This was carried out using Simulink model. Simulation result verified the effective-
ness of proposed controller. Akesson et al. [34] have taken control objective to keep 
the output close to a specified reference trajectory in such a way that large control 
signal variations were avoided and possible hard constraints on the state and inputs 
were satisfied. Main control objective of this work was to minimize the cost. For a 
data set, without having to compute the optimal MPC control signals by off-line 
optimizations. Raghavan et al. [43] have developed a Recurrent Neural Network 
(RNN) based inferential state estimation scheme for an ideal reactive distillation 
column. The performance of the estimator for both open loop and close loop was 
compared with that of kalman filter in terms of qualitative and quantitative indices 
and concluded that RNN has better level of inferential control over the conventional 
suggested methods. Prakash et al. [44] proposed an artificial neural network based 
nonlinear control algorithm for simulated batch reactive distillation column by 
considering a homogenously catalyzed esterification reaction which was controlled 
using ANN based state predictor. The open loop dynamic was presented in detail for 
this system and the proposed law was tested against gain scheduling controller to 
compare the performance. Bahar et al. [45] presented an Elman neural network to 
control the product composition from distillation column using temperature mea-
surements inferentially. The main limitation of the neural network controller was 
that substantial offline computations may be needed in order to train it properly, and 
for some choices of cost functions it may not even be feasible to achieve satisfactory 
accuracies.

Other soft sensing techniques like genetic algorithm, particle swarm optimiza-
tion, ant colony optimization etc. are although very old but are still being employed 
for inferential control which is based on natural evolution theory. Nithya et al. [46] 
have used real world experimentation in which pneumatic control valve is used to 
control the flow of water in and out of the tank. Using the black box modeling, the 
transfer function has been derived which was used to design a PI controller to find 
the values of gain and transfer function. Fuzzy logic controller has been designed 
for spherical tank considering nonlinear system. For tuning of the PI and Fuzzy 
Logic controller, genetic algorithm was used and the responses for servo and load 
disturbance were observed. Idris et al. [47] have considered the case of methyl 
acetate production in a continuous reactive distillation column in which track-
ing index term has been coined which was define as squared sum of differences 
between the predicted outputs and set points change over the prediction horizon. 
The control algorithms were applied in gPROMS against various tuning parameters 
and concluded that optimizing controller can be easily applied to a simulated 
complex model of reactive distillation to enable real time dynamic optimization. 

Figure 3. 
General structure of soft sensor control.
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Sujatha et al. [48] have considered a MIMO system defining integration of manipu-
lated variable and control variable. Various novel techniques such as relative gain 
array, Niederlinski index, singular value decomposition, Morari Resiliency Index, 
dynamic relative gain array, hankel interaction index array, participation matrix 
and H2-norm were studied for the interactions and subsequently for input output 
pairing.

Differential evolution is one of the latest coined soft controlling techniques 
which aims at approaching toward global minimum. Subudhi et al. [49] have 
developed a differential approach based on a jumping rate fittest approach in 
which individual were selected from the union of current population and opposite 
population. The aim was to approach toward global minimum and then LM was 
used to move forward achieving fast convergence. LM is a gradient based algorithm 
to increase convergence speed. Opposition based learning improves the chance of 
starting with better initial population by checking the opposite solutions. Lu et 
al. [50] have developed a differential algorithm based stochastic search technique 
which is a powerful and global optimizer. The author has proposed a Modified 
Differential Evolution Fuzzy Neural Network (MDEFNN) which consists of a FNN 
identifier, a MDE estimator, a computation controller, and a hitting controller. 
Lawrynczuk et al. [51] have reported model predictive control strategy for a high 
purity, high pressure ethylene ethane distillation column. In this study, multi-layer 
perceptron neural network was applied with one hidden layer and a linear output. 
In the MPC-NPL algorithm, the nonlinear neural model was linearizing using eight 
repetitive steps such as estimation, approximation, control increment, and itera-
tion. Kandanapitiya [52] has recently reported Modeling of Reactive Distillation for 
Acetic Acid Esterification. The mathematical model considered material balance 
equations, equilibrium relationships, summation equations and energy balance 
equations. The model was simulated for acetic acid and ethanol esterification 
reaction. Wierschem [53] has worked on design of Continuous Enzymatic Reactive 
Distillation with Immobilized Enzyme Beads. Based on kinetic and thermodynamic 
data, a detailed rate-based model of the ERD is developed. Simulation results 
and experimental data of the ERD setup are in good agreement. Zhang [54] has 
designed centralized and decentralized stochastic adaptive fuzzy output feedback 
control by using dynamic surface control method. Fuzzy systems are used to 
approximate unknown nonlinear continuous function. For the online process, the 
young’s inequality norm of fuzzy basis vector is adjusted. Peng [55] has shown that 
two riccati equations were employed with relaxing the agent dynamics for uncertain 
nonlinear systems. The author has developed a cooperative output feedback adap-
tive control (COFAC). The NN identification of the individual uncertain dynamics 
is decoupled from the network topology, which is useful for practical implementa-
tions since the uncertain nonlinear dynamics can be suppressed by local NN. Cui 
[56] deals with the problem of adaptive decentralized NN control by combining 
Lyapunov-Razamikhin functional approach, minimum learning parameter algo-
rithm and back stepping design technique. Here only adaptive parameter needs to 
be estimated for each subsystem which shows that all signal in close loop system are 
uniformly ultimately bounded in probability.

2.4 Membrane assisted reactive distillation

Membrane not only plays the role of a separator, but also used in the reaction 
itself. Membrane assisted reactive distillation has emerged as a novel technique of 
hybrid process intensification to achieve higher efficiency and yield in the produc-
tion of bulk chemicals. In several cases, non-ideal aqueous-organic mixtures are 
formed which tend to form azeotropes. They can be overcome using membrane 
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separations like pervaporation and vapor permeation since they are very selec-
tive and not limited by vapor-liquid equilibrium Rautenbach [57]. The choice of 
membrane type to be used in membrane reactor depends on parameters such as the 
productivity, separation selectivity, membrane life time, mechanical and chemical 
integrity at the operating conditions and, particularly, the cost. Consequently, a 
hybrid process consisting of membrane-assisted reactive distillation contributes 
to sustainable process improvement due to arising synergy effects and allows for 
reduction of investment and operational costs. A review of hybrid processes com-
bining pervaporation with one or more other separation technologies was given by 
Lipnitzki et al. [58]. The analysis of hybrid separation processes combining mem-
brane separation with conventional distillation was described in Kreis and Gorak 
[59]. They have presented various configurations corresponding to this hybridiza-
tion which offers significant advantages like reduced energy requirement, lower 
production cost, etc.

Membrane hybrid processes can achieve separations which are impractical to 
achieve with either conventional process. An example for the investigation of a 
reactive hybrid process concept is the transesterification of methyl acetate and 
butanol to butyl acetate and methanol by the combination of reactive distillation 
and pervaporation, as studied by Steinigeweg and Gmehling [60]. They carried out 
experiment using various catalytic packing is like Katapak S, Katapak SP and Sulzer. 
However, experiment was not presented for the hybrid technique but only simula-
tion results have been reported. The industrially operated hybrid process for the 
continuous production of fatty acid esters by reactive distillation and pervaporation 
was presented by Scala et al. [61]. Ozdemir et al. [62] presented an overview of 
the commercial polymers used as membranes as well as of other polymers having 
high potentially for application as a membrane material. However, many industrial 
processes involve operations at high temperatures. Luo et al. [63] showed that 
integration of a membrane unit for a side stream withdrawal from the section of 
reactive distillation where the azeoptrope is liable to form which further improves 
the product yield.

Polymeric membranes are not generally useful in hybrid reactor and therefore 
inorganic membranes are preferred. Gorak et al. [64] have shown higher effi-
ciency and capacity of membrane assisted reactive distillation with special focus 
on Pervaporation unit. Author has deeply identified the current challenges and 
future predicted trends for implementation of this hybrid technique in the field of 
chemical and biochemical industry. Holtbruegge et al. [65] represented synthesis 
of dimethyl carbonate using this hybrid technique to overcome the limitation of 
chemical equilibrium and azeotrope formation. Replacing membrane at various 
location in reactive distillation yield different efficiency, which is rigorously studied 
by Bida et al. [66]. They proved that placing pervaporation membrane at the bottom 
shows remarkably improved performance with effective economy and energy effi-
ciency. Thus, we can say that combination of pervaporation and reactive distillation 
exploits the advantages of minimization of cost by reducing energy expenditures 
and making higher degree of separation.

2.5 Biodiesel in reactive divided wall column: design and control

Due to gradual depletion of world petroleum reserves and impact of envi-
ronment pollution there is a need for alternative fuels for use in diesel engine. 
Biodiesel has emerged as a promising alternative because it is renewable and 
environment friendly and leads to reduction of exhaust emission. Masjuki et al. 
[67] first researched on the various aspects of use of biodiesel as future fuel by 
considering the rising cost and increased pollution from conventional carbon 
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containing fuels. They proposed that biodiesel can be manufactured from easy 
to available raw material like animal oil or used vegetable oil which is generally 
discarded as a waste. This mishandling also serves as a matter for pollution in 
water or soil. Thus, biodiesel also minimizes the waste in one way or other. We 
[68] worked on the effect of molecular weight of fatty acid on the octane rating 
of biodiesel. There are many processes to convert vegetable oil into biodiesel, 
but transesterification reaction was found to be most viable process of oil modi-
fication. Biodiesel can be produced from animal as well vegetable oil, which is 
reported by Cr et al. [69]. Today economic factors along with environmental 
concerns are playing a key role in increase in thermal efficiency. Studies show that 
biodiesel is much better fuel than fossil fuel-based diesel in term of engine perfor-
mance, emission reduction, lubricity, and environmental benefits. The production 
of biodiesel by transesterification in existing conventional processes requires 
excess alcohol. This excess alcohol must be recovered and purified for reusing by 
rectification and distillation, which involves additional capital and operating cost. 
Kiss et al. [70] first reported reactive divided wall distillation column consisting 
of one condenser, one reboiler, reactive zone a pre fractionators and main column 
in a single shell leads to process integration and intensification, leading to cost 
saving and increased purity of final product and side streams product. Later on, 
several research works have been carried out in the field of reactive divided wall 
distillation column for biodiesel production. Kiss et al. [71] described the increase 
in purity and energy reduction of 30% in a divided wall column in which at the 
bottom of diving wall section, the vapor flow was split proportionally to the cross 
sectional area of each side. They focused on enhanced methanol recovery from 
the DWC unit. Delgado et al. [72] recommended the use of petluyk distillation 
column when the molar fraction of middle component is low. Figure 4 shows 
divided wall distillation column.

Figure 4. 
Divided wall distillation column.
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Since reactive divided wall distillation column is a case of process intensifica-
tion, there is a complex interaction between vapor liquid equilibrium, vapor liquid 
mass transfer, intra catalyst diffusion and chemical kinetics. Such interactions 
and strong nonlinearity lead to multi steady states and complex dynamics. Bravo 
et al. [73] verified this nonlinearity of divided wall in laboratories as well as small 
pilot plants. The work has been carried out to study the various control system for 
reactive divided wall distillation column which can lead to process optimization. 
R-DWC was designed for a quaternary reactive system – two reactants (one in 
excess) and two products – more difficulties concerning the process control may be 
expected due to consideration of the high degree of integration of the process. Study 
was carried to tackle the optimal design, dynamics, and control of such an inte-
grated unit and proposes an efficient control structure for a biodiesel process based 
on reactive DWC technology. Chongkhong et al. [74] proposed the novel distillation 
technologies for enhanced bioethanol dehydration, by extending the use of dividing-
wall columns (DWC) to energy efficient Extractive Distillation (ED) and Azeotropic 
Distillation (AD). This technology is beneficial because the industrial production of 
anhydrous bioethanol requires energy demanding distillation steps to overcome the 
azeotropic behavior of the ethanol-water mixtures. A recently proposed process by 
Gomez- Castro et al. [75] depicts control of divided wall technology involving the 
use of short chain alcohols at supercritical condition that avoids the use of catalyst 
and this condition was applied to a reactive petlyuk column that results in thermal 
coupling and more of vapor liquid interactions. Aspen Plus and Aspen Dynamics 
were used as computer aided process engineering (CAPE) tools to perform the 
rigorous steady-state and dynamic simulations, as well as the optimization of the 
new R-DWC based biodiesel process. These control structure described the excel-
lent performance of RDWC for biodiesel production.

2.6 Membrane assisted reactive divided wall column

The production of biodiesel by transesterification in existing conventional 
processes requires excess alcohol. This excess alcohol must be recovered and puri-
fied for reusing by rectification and distillation, which involves additional capital 
and operating costs. For production of biodiesel various techniques have been 
proposed such as Reactive Divided Wall. However, a major question remains that 
which material should be used to make that wall in middle of the column. For this 
Atadashi et al. [76] have reported membrane biodiesel production technique to 
provide high quality biodiesel fuel. In this technique the membrane system exploits 
the characteristic of high selectivity, high surface area and their potential for con-
trolling mixing between two phases. The author has taken canola oil as the base oil 
for biodiesel synthesis and has studied the effect of membrane pore size and catalyst 
on the performance of membranes. The results show that membrane reactor restrict 
the passage of unreacted oils to the biodiesel product mixture and the use of alkaline 
catalyst result into soap formation while acid catalyst avoids the same.

There are various types of membrane separation processes available like ultra-
filtration, microfiltration, pervaporation, etc. Vapor permeation along with RD 
is a novel technique in which the volatile components are separated by nonporous 
membrane. One possible process alternative using vapor permeation was suggested 
by Buchaly et al. [77] for n-propyl propionate synthesis, in which Amberlyst 46 
was used to compete the side product formation. The author has used online data 
reconciliation by satisfying mass, component, and reaction rates as boundary con-
ditions. In another work by Buchaly et al. [78] on same case, a comparison of most 
common modeling depths such as Maxwell Stefan’s equation, equilibrium model 
with and without considering reaction kinetics was presented. Thermal coupling 
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between two columns in a sequence has proven to be very successful in provid-
ing energy savings with respect to conventional trades. The control of thermally 
coupled membrane RDWC was presented by Wang et al. [79]. It was reported that 
controlled stage temperature shows no multiplicity and proper temperature control 
can maintain reactant inventory. These thermally coupled systems show higher 
thermodynamic efficiency. Some improvement for dividing wall distillation column 
likes catalytic packing and non-welded walls have also been proposed by Aspiron 
et al. [80]. A rigorous study of ASTM standards for biodiesel was carried out by 
researchers and reported that Membrane biodiesel separation processes provides 
high-quality biodiesel fuel. He et al. [81] and Saleh et al. [82] have shown that a 
refining step is necessary to be accompanied with transesterification of biodiesel. 
Also, the membrane separation processes for biodiesel were carried out under 
moderate temperature and pressure conditions and their scale-up process found less 
cumbersome. Sarmento et al. [83] critically examined the production and refining 
of biodiesel using membrane technology.

Some application and future aspects of dividing wall column with bioethanol 
production was investigated by Delgado [84]. He has also reviewed practical 
application of dividing wall column by performing simulation studies. The major 
emphasis was given on environmental impact of fuel burning and prices of oil and 
biofuels and the results obtained were compared and summarized by taking the 
difference between them. The schematic diagram of membrane reactive distillation 
is presented in Figure 5.

3. Conclusion

Reactive distillation as highly nonlinear and practically difficult to control 
process is challenging study. The current chapter is focused on giving deep 
review of work carried out by many researchers in the field of reactive distilla-
tion design, control and advances in conventional processes. The control of such 
highly interactive and nonlinear process is possible with several models predictive 
control techniques including neural network control, fuzzy models, hybrid control 
structures, adaptive model predictive control and optimization, reactive divided 

Figure 5. 
Membrane reactive distillation column.
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wall concept and membrane divided wall techniques. The focus is given to have 
wide range application and use of reactive distillation column, its control using 
advanced techniques and advanced synthesis methods. Many processes and reac-
tions including catalytic reactions are equilibrium limited and reactive distillation is 
best techniques to get higher conversion. Many advanced techniques of controlling 
such highly nonlinear processes are proven to be cost effective. The increased use of 
membrane and synthesis in membrane assisted reactive distillation is also proven to 
get higher product purity and higher solvent recovery rate.
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