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Chapter

Neuro-Olfactory Regulation and 
Salivary Actions: A Coordinated 
Event for Successful Blood-
Feeding Behavior of Mosquitoes
Tanwee Das�De and Rajnikant�Dixit

Abstract

The synergistic actions of the nongenetic and genetic factors are crucial to shape 
mosquitoes’ feeding behavior. Unlike males, adult female mosquitoes are evolved 
with unique ability to take blood meals from a vertebrate host for reproductive 
success which eventually makes them a potential vector. Processing and integration 
of chemical information in the neuro-olfactory system followed by salivary actions 
facilitate blood meal uptake process. Thus, deciphering the underlying molecular 
mechanism of odor sensing through the detection machinery (olfactory system), 
odor processing and decision-making by decision machinery (brain), and regula-
tion of saliva secretion by the action machinery (salivary gland) is likely to reveal 
molecular pathways which can be targeted to disrupt mosquitoes’ feeding behavior. 
Here we summarize how smart actions of highly specialized neurosensory systems 
guide and manage feeding behavior associated complex events of (i) successful 
navigation to find a suitable host, (ii) making food choice decisions, and (iii) 
regulation of the salivary gland actions in mosquitoes.

Keywords:  mosquito, olfaction, brain, feeding decision, salivary gland, host-seeking, 
blood feeding

�. Introduction

Mosquitoes that belong to the order Diptera and Culicidae family account for 
large biomass of insects’ community and are one of the most notorious animals on 
earth which transmit many blood-borne pathogens. It is only the adult female mos-
quitoes which bite on human and other vertebrate hosts to access the blood and thus 
have strong impact on epidemiological consequences. So far about ���� species of 
mosquitoes have been recognized that are divided into � subfamilies and ��� genera 
[�] which are inhabiting throughout the temperate and tropical regions. Anopheles 
species biodiversity and species richness seem to be one of the dominantly evolved 
blood-feeding insect species race on earth, impacting millions of lives through 
transmitting deadliest disease malaria around the globe. In tropical areas, Anopheles 
gambiae, Aedes aegypti, and Culex quinquefasciatus are the most notorious mosquito 
vectors of infectious diseases such as malaria, dengue, and filariasis, respectively. 
The main causative agents of malaria are Plasmodium falciparum and Plasmodium 



Sino-Nasal and Olfactory System Disorders

�

vivax which infects millions of people each year, posing a major threat to society [�]. 
Arboviruses, viz. dengue, Zika, chikungunya, and yellow fever viruses, are also sig-
nificant mosquito-borne pathogens that are mainly vectored by Aedes mosquitoes.

The mosquito-borne diseases not only are restricted to underdeveloped coun-
tries but also escalate in the developed world. Urbanization, continuous climate 
change, global warming, and other environmental factors are facilitating mos-
quitoes’ adaptation and survival during adverse situations [�, � ]. Taken together, 
it is not hard to predict the situation of mosquito and other insect-borne diseases 
becoming exacerbate in the coming century [�, �]. Even the diverse ecological and 
epidemiological settings within Southeast Asia favor the association of diverse 
Anopheline fauna which makes malaria prevalence and malaria eradication more 
challenging. In order to save humans from the mosquito’s infectious bites, advanced 
chemical insecticide(s) still play a central role; however, fast emergence of insecti-
cide resistance and increased toxicants to the environment demands the develop-
ment of new molecular tools. Thus, it is challenging to understand the complex 
biology of mosquitoes which popularize themselves as the most dangerous animals 
on earth (https://www.statista.com/chart/����/the-worlds-deadliest-animals/).

Disease transmission by mosquitoes is restricted to the blood-feeding behavior of 
adult female mosquitoes which takes blood meal from humans and other vertebrate 
hosts for the completion of their gonotropic cycle. In order to carry out the success-
ful blood-feeding event, the integration of the “olfactory system,” the receiver of the 
chemical/environmental stimuli; the “central nervous system,” the hardware system 
with high processing efficacy; and the “salivary gland,” the output/feedback device 
are obligatory. Here we provide an overview and update the current knowledge on 
how the sensory system of mosquito detects essential chemical information which 
are then processed by the central nervous system for successful navigation and 
stimulate the salivary gland for salivation to facilitate the feeding event.

�. Mosquito feeding behavior

Feeding is a fundamental need of every animal to achieve their optimal growth, 
survival, and reproductive requirements. But the strategy of food intake and the feed-
ing preference largely vary depending on the internal metabolic needs, i.e., whether 
they are starved or satiated; on the internal physiological state, i.e., whether they are 
virgin or mated and gravid or unfed; and also on the external sensory stimuli. In the 
case of mosquitoes, plant sugars such as nectar and honeydew are the primary energy 
source for survival, flight, and foraging activities of both males and females. Only 
adult female mosquitoes take blood meal as an optional dietary supplement, and this 
specialization is predicted to evolve for better fitness [�–� ]. Genetic architecture and 
the allelic polymorphism of different mosquito species influence their traits towards 
selection and preference for feeding hosts. Apart from that other internal factors such 
as circadian rhythm and physiological status including nutritional and mating status, 
as well as environmental factors such as temperature and humidity, affect mosquito 
feeding behavior cumulatively [ �� , �� ] ( Figure � ).

Each feeding event of mosquitoes is initiated by random navigation from a long 
distance, which becomes specific when triggered by a certain group of chemicals 
such as CO� , lactic acid, �-Octen-�-Ol, acetone, ammonia, etc. The detection of 
other additional cues such as visual and thermal factors facilitates the downstream 
events of host localization, landing over the host and searching for a suitable site 
for probing by the proboscis to initiate blood-feeding. But, successful navigation 
does not always corroborate with a successful feeding event, because it involves 
another level of regulation of the central nervous system by discriminating the 
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odor molecules and making a decision for either to feed or not. Post landing and 
piercing on a particular site of the vertebrate host, successful uptake of blood meal 
largely depends on the proper functioning of the salivary gland which acts as the 
final action machinery by facilitating the feeding process through salivation. Thus, 
here we provide a detailed integrative description of (�) how mosquitoes detect 

Figure 1. 
Factors affecting mosquitoes’ feeding behavior. The genetic structure, circadian cycle, mating status, internal 
nutritional status, and external environmental factors such as temperature and humidity cumulatively work to 
shape the mosquitoes’ feeding preference toward either sugar meal or blood meal. The internal nutritional status 
is dependent on larval nutrition, the amount of nutrient storage, and the feeding condition of the mosquito, i.e., 
either starved or satiate.

Figure 2. 
The path of signal processing for achieving successful mosquito navigation and feeding. The tripartite inter-
organ communication among three tissues, viz., olfactory tissue, central nervous system (brain), and the 
salivary gland, is crucial for the completion of feeding events. The olfactory tissue (highlighted by purple circle) 
senses and binds to odor molecules emanating from either plant or vertebrate host and sends the respective 
signal towards the brain system (highlighted as yellow circle). After processing the initial signal of odor in the 
central nervous system, the decision-making process occurs, and then the brain sends the signal towards the 
salivary gland (highlighted as red circle), and the process of salivation started to facilitate feeding. Photo credit 
goes to Zwiebel Lab, Vanderbilt University, for the olfactory system of Anopheles mosquito. The salivary gland 
picture was taken from the research article by Ghosh et�al. [12].
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and discriminate among odorant molecules through olfactory system, (�) how 
the initial signal of odor is processed in the central nervous system/brain and the 
molecular factors responsible for feeding decision-making process, and (�) how the 
brain influences and regulates distant tissue such as salivary gland for salivation and 
consequently helps in food acquisition (Figure � ).

�. Mosquito navigation

A sophisticated olfactory system of mosquitoes enables them to communicate 
and responds to the diverse array of biological and environmental chemical stimuli 
throughout their life cycle. They use olfactory cues for locating a food source (nectar 
sugar), finding a mate partner, locating oviposition site, and most importantly select-
ing a vertebrate host for blood-feeding. Among these olfactory-guided behaviors, 
searching and locating the desired plant for nectar-feeding involves both visual and 
chemical cues emanating from different plant species [�� ]. Volatiles such as mono- 
and bicyclic monoterpenes are major floral odors for mosquito attraction, and lighter-
colored plant flowers have an additional benefit for successful sugar feeding [�� ]. But, 
detection of blood-feeding host requires the integration of olfactory, visual, thermal, 
and humidity cues [�� , �� ]. The pattern of host-seeking behavior and selection of a 
certain host are strictly species-specific. However, the navigation trajectory of all the 
blood-feeding mosquitoes may have some common events (Figure � ).

a. Female mosquitoes are engaged in random, non-oriented navigation until they 
encounter a plume of host odorants including skin emanates consisting of 
hundreds of chemicals.

b. Random navigation became oriented when a female mosquito detects fluctua-
tion in the carbon dioxide concentration above the atmospheric measurement, 
caused by the addition of ~�� CO �  from human breath. The mosquito then 
follows the trail of odor plume and initiates to fly upwind in a zigzag pattern 
which drives mosquitoes to reach the odor source. The concentration gradient 
of different odorants, initiating from CO �  from long distance (> ���m), over-
laps with other host odors such as lactic acid and �-octen-�-ol available at closer 
vicinity, which acts in a synergistic way to make the navigation successful.

Figure 3. 
Mosquito navigation trajectory according to odor plume. The random, non-oriented navigation becomes 
oriented when mosquitoes sense a gradient of different host odors such as CO2, lactic acid, 1-octen-3-ol, etc. 
olfaction along with vision, thermosensation, and hygrosensation facilitates the navigation process and blood 
meal uptake.
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c. When mosquitoes reach in the close vicinity of their potential host through 
olfactory-guided random to specific navigation, the cumulative role of visual 
thermosensors enhances. The compound eyes of mosquitoes enable them to 
visualize a particular host at a distance of �–���m by discriminating the light 
intensity and color of the respective host.

d. After host localization, a mosquito must first land over the host for biting. 
Temperature and humidity also play a crucial role in short-range host orienta-
tion and landing. Then, mosquitoes trace a suitable site for probing through 
mechanosensory system. The olfactory appendages labellum and stylets along 
with the peripheral appendages (legs) of mosquitoes finally determine the 
probing site for successful blood meal uptake.

�. Mosquito sensory system and olfactory signal transduction

It is not difficult to admire that the multimodal sensory system of mosquitoes 
is the critical regulator of different behavioral processes and thus has a potential 
impact on disease transmission. In addition, the wide diversity of host preference in 
mosquitoes is governed by the different genetic makeup of individual species which 
has strong epidemiological consequences. Therefore, decoding species-specific 
molecular factors of the mosquitoes’ olfactory system may unravel the mechanism 
of their behavioral plasticity. Two primary components of the chemosensory system 
are the peripheral system where the chemical information is detected and the central 
processing unit where the initial signal of odor is processed. The appendages present 
on the head of the mosquitoes act as the principal detection system, which includes 
paired antennae, paired maxillary palp, and a labium [� , �� ]. These peripheral 
appendages are equipped with fine hair-like structures called the sensilla, which 
are distributed nonrandomly across these antennae, maxillary palp, and labium. 
The type and number of sensilla present on the olfactory organ are highly species-
specific [� , �� ]. Odorants are thought to penetrate through the numerous pores 
present on the wall of the sensilla and then traverse through the aqueous sensillar 
lymph towards the array of molecular receptors present on the dendrites of olfactory 
receptor neurons (ORNs) [�� ]. Binding of the diverse odorants with their cognate 
receptors either activates or inhibits the receptors by changing the ORN action 
potential. More than two decades of research on insect olfaction uncover several 
molecular factors that are responsible for odor detection and downstream signal 
transduction processes. These include odorant-binding proteins (OBPs), odorant-
degrading enzymes (ODEs), odorant receptors (ORs), sensory neuron membrane 
proteins (SNMPs), G proteins, arrestins, and other signaling molecules [� ].

�.� Odorant-binding proteins and odorant-degrading enzymes

Odorant molecules are hydrophobic in nature which require cargo to traverse 
through the sensillar lymph to reach the receptor molecules, which are present on 
the dendritic membrane [��–��]. This role is carried out by the odorant-binding 
proteins (OBPs), which act as a passive carrier of the chemical odorant molecules. 
OBPs are water-soluble globular proteins containing six � -helical domains with 
conserved cysteine residues [�� ]. The number of genes encoding different OBPs 
varied across different mosquito species and is also dependent on the number of 
odorant receptors [�� ]. The availability of this wide and diverse spectrum of OBPs 
in the insect’s tissues facilitates their rapid adaptation in distinct environment. 
The OBP family broadly includes the pheromone-binding proteins (PBPs) which 
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transport pheromones and different chemosensory proteins (CSPs) which are 
smaller in size but can bind with a broad spectrum of semiochemicals. In mosqui-
toes, the OBP genes are classified in three subfamilies: (i) classic OBPs that carry a 
conserved motif consisting of six cysteine residues; (ii) Plus-C OBPs which contain 
six additional cysteine residues with novel disulfide connectivity along with three 
classic OBP motifs; and (iii) atypical OBPs, the longest OBPs that contain a single 
classic OBP domain in its N-terminal which is extended by a C-terminal extension. 
Among these three subfamilies, Plus-C OBP class is more divergent in nature and 
has only been identified from Diptera Anopheles, Culex, and Drosophila; however, 
Hymenoptera and Lepidoptera did not possess these OBPs. The first OBP of 
mosquito origin was isolated from the antennae of female Culex quinquefasciatus 
(CquiOBP�) in the early twenty-first century [ �� , �� ]. The availability of genome 
sequence of several mosquito species in the public domain facilitates the identifica-
tion and characterization of this large family of OBP genes from different mosquito 
species, for example, the total number of �� OBPs from A. gambiae, ��� OBPs from 
A. aegypti, ��� OBPs from C. quinquefasciatus, and �� OBPs in A. culicifacies [�� , 
�� , �� ]. Activation of the chemosensory receptors by odorants also requires timely 
termination and desensitization of peripheral signaling to maintain sensitivity of 
ORN-based signaling [�� , ��]. In this process, odorant-degrading enzymes (ODEs), 
particularly several esterases and cytochrome p���s, play a crucial role by terminat-
ing the odor-induced signal transduction processes [�� –�� ].

�.� Odorant receptors

After the OBPs, the principal molecules in odor detection are odorant receptors 
that convert the chemical signal into electrical outputs and therefore ensure the 
continuous flow of information from the environment to the insect brain [��–��]. 
Within the insect phylum, odorant receptors (Ors) were first identified and char-
acterized from the model insect Drosophila melanogaster, using an intensive bioin-
formatics approach [��, ��]. Insects’ OR proteins consist of seven transmembrane 
domains with inverted topology, where N-terminus is intracellular, as compared 
to mammalian odorant receptors, which are the conventional G protein-coupled 
receptors (GPCR) [��, ��]. Further experimental evidence suggested that mosquito 
ORs act as ligand-gated ion channels comprising of heteromeric complexes of two 
subunits [��, ��]. One subunit is highly conserved and known as olfactory receptor 
co-receptors (Orco), and the other subunit is largely divergent in terms of number 
as well as amino acid sequences (Orx) [��, �� –��]. Pilot studies of the OR gene 
repertoire primarily in Drosophila melanogaster [��] and later in mosquitoes [��, 
�� ] suggest that despite having a limited number of ORs, mosquitoes can respond 
to an array of varied chemicals depending on the specific demand at different life 
cycle stages [�� ]. This is possible due to the combinatorial coding mechanism of the 
insect’s olfactory system which increases the perceived odor space of each species. 
Combinatorial coding increases odor sensitivity to several-fold, where each OR can 
respond to multiple ligands and a single ligand can activate more than one OR [�� ]. 
Moreover, a single odorant can either elicit attractive responses or activate repellent 
pathway depending on their quality and concentration which subsequently deter-
mine insects’ behavior [�� , �� ].

The number of receptors present in each mosquito species is highly variable, 
e.g., A. gambiae genome contains �� OR genes, C. quinquefasciatus has ���, and 
A. aegypti possesses ��� OR genes [�� ]. Among them the receptor protein Or� is 
predominantly studied in mosquitoes because of its conserved nature and speci-
ficity towards �-octen-�-ol, which is a crucial component of human sweat [ �� , 
�� ]. Deorphanization of other olfactory receptors of mosquitoes was performed 
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using an in�vivo heterologous expression system, the “empty neuron” system, 
originally established in the fruit fly Drosophila. The “empty neuron” system is a 
combination of a GAL� driver line and a mutant ORN line (UAS—“OR gene”) 
where endogenous odorant receptor is missing and thus gives the opportunity to 
express and functionally characterize mosquito olfactory receptor gene repertoire. 
The complexes of both Drosophila and mosquitoes using “empty neuron” model 
indicated that the “odor space” of mosquito and flies is significantly distinct [ �� , 
�� ]. Furthermore, over the evolutionary time scale, the sensitivity of a particular 
mosquito OR either increases towards certain predominant hosts or decreases if 
the host odor profile changes [�� ]. Thus, it is not difficult to predict that ORs have 
evolved with highly sensitive and selective property for the detection of diverse 
odorants which consequently facilitate mosquito adaptation in diverse ecology.

�.� Other sensory receptors

After detection of a particular odor through synergistic actions of OBPs and 
ORs, mosquitoes use other sensory modalities such as vision, thermosensation, and 
hygrosensation to make the differentiation between biting hosts [�� , �� , �� ]. For 
visualization, the photoreceptor cells expressing multiple UV-sensitive and long-
wavelength sensitive opsin proteins are responsible for detecting and transmitting 
visual information towards optic lobe (the region of mosquito brain where optic 
information is processed) [��]. But how mosquitoes integrate visual information 
with other cues to differentiate hosts remains unclear. Following visual selection, 
the temperature and humidity are intricately linked to make biting decision [ �� , 
�� ]. The thermosensory transient receptor potential (TRP) channel protein present 
on the tips of the antennae of mosquitoes can sense the variation of temperature 
associated with vertebrate skin [�� ]. For hygrosensory information processing, the 
ionotropic receptors (IRs) are reported to play a crucial role in Drosophila [�� ]. 
Although the role of IRs in humidity sensing in mosquitoes remains elusive, few 
recent studies highlight their sensitivities against narrow range of odorants such as 
amines and carboxylic acids and thus have potential function in host-seeking [�� ].

Once the host is located by the harmonious actions of all the sensory modali-
ties, the mosquito first lands over the host and engages in a mission of locating a 
proper site for probing by repeated contacting of the skin with the labellum [�� ]. 
The gustatory receptors (taste receptors) (GRs), expressing on the labellum and 
the tarsae (the last segment of their legs through which mosquitoes make contact 
with the host), may play a pivotal role in biting behavior of mosquitoes [ �� , �� ]. 
While the functional characterization of mosquito OR genes are of prime focus, a 
significant number of studies reported that the putative gustatory receptors (Gr�, 
Gr��in A. aegypti and C. quinquefasciatus; Gr��, Gr���in A. gambiae) of mosquitoes 
are sensitive to CO�  and thus influence host-seeking behavioral activities [�� , �� ].

�.� Olfactory signal transduction

The information, i.e., hidden within the odor molecules, are amplified by 
activating the sensory neurons. The activation of a different subset of sensory 
neurons to a different degree is the basis for neuronal coding. When compared with 
the vertebrate OR, the insect’s ORs show a high degree of variation with differ-
ent topologies, which strongly suggest a different signal transduction mechanism 
[�]. Some previous studies highlight that olfactory signal transduction in insects 
involving a ligand-gated ion channel that is formed by the hetero-dimerization of 
diverse odorant receptor and its co-receptors [��]. This fast ionotropic response 
does not postulate the involvement of any G proteins and any intracellular second 
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messengers. In contrast, another study indicated the entanglement of G protein 
and the synthesis of cAMP, IP�, and other secondary messengers that consequently 
induce the downstream effector enzymes and also affect the membrane potential 
through activating the co-receptor protein [��, ��]. The resultant change in the 
membrane potential/permeability by either process causes the generation and 
propagation of action potentials along the ORN axon membrane towards the 
antennal lobes. In contrast to the rapid ionotropic pathway, the G protein-mediated 
metabotropic pathway is slower. However, it plays an important role when the 
odor cues are present in lower concentration, whereas high concentration directly 
involves the ionotropic pathway [�, ��, �� ].

�. The decision-making unit: the brain

The discrimination and integration among the odor molecules and the exchange 
of electrochemical information consequently influence the neuronal decision-making 
abilities of the brain system [�� ]. When an animal is given preference for food, several 
decisions can be made such as whether to eat or not, what to eat, and when to eat, 
which not only depends on the internal physiological condition but also relies on the 
biological clock of the respective animal. In the case of mosquito species, making a 
choice among the different available foods requires a fine-tuning of the nasal system 
and strong integration of the decision-making machinery. The availability of diverse 
nature of blood-feeding hosts not only makes the decision-making process more 
complex but also has an impact on mosquito survival, fitness, and fecundity [�� ].

�.� Structural basis of signal processing

The knowledge about insect olfactory coding is strongly rooted in the fruit fly 
Drosophila melanogaster. Over the last two decades, the cellular and molecular bases 
of Drosophila olfaction have been studied well with the assistance of varied genetic 
tools. The three milestones of olfaction have been documented comprehensively  
in the fruit fly on how odor information is received, concatenated, and processed by 
the peripheral and central nervous systems, respectively [�� , �� ]. Apart from that, 
“the parallel olfactory processing” and “feature detection” mechanism has also been 
unlocked in honey bee brain and sphinx moth, respectively [�� –�� ]. Several studies 
on Drosophila and other insects (Manduca sexta and Bombyx mori) suggested that 
the primary brain structures responsible for receiving initial information of odor are 
the antennal lobes (ALs) [��, �� , �� , �� ]. These antennal lobes consist of a specific 
number of spherical condensed neuropil structures, which are known as glomeruli. 
Depending on the nature and sex of the insect species, the number of glomeruli 
varied between �� and ���, whereas each respective species possess the same num-
ber of glomeruli having identical features (shape, size, location) [�� , �� ]. Olfactory 
receptor neurons that express a particular type of receptor on their dendrites project 
their axons into the same glomerulus [� , �� , �� , �� ]. Furthermore, each glomerulus 
is housed with the arms of the local interneurons (LNs) and the dendrites of the pro-
jection neurons (PNs) [�� ]. Thus, within the antennal lobe, a synaptic connection is 
formed between olfactory receptor neurons and antennal lobe interneurons. From 
the antennal lobe, the olfactory information is transmitted to a higher brain center 
by the projection neurons [� , �� , �� ] ( Figure � ). Horizontal innervation of the local 
interneurons within the glomerulus facilitates interglomerular communication. The 
primary neurotransmitter found to communicate between local interneurons is the 
gamma-aminobutyric acid (GABA) which facilitates the generation of Na +-mediated 
action potential in response to olfactory stimulation [ � ].
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Vertically arranged distinct fiber tract of the projection neurons connects the 
ALs to the higher brain centers such as calyces of the mushroom body and the 
lateral horn of the protocerebrum [�], where olfactory information is integrated 
with other sensory cues. The cell bodies of the PNs are located at the periphery of 
the antennal lobe glomeruli and their axons spread in the higher brain center. The 
branching pattern of PNs is either uniglomerular or multiglomerular [ �� ]. The 
functional characterization of odor coding properties of individual ORN target-
ing each glomerulus revealed the existence of strong sexual dimorphism between 
male and female AL glomeruli which lead to a highly specialized odorant response 
towards general odorants and sex pheromones. PN odor response is not identical to 
the ORN odor response. The majority of the PNs are broadly tuned with respect to 
the general odors and send their dendritic arbor into the ordinary glomeruli (OG) 
(both uniglomerular and multiglomerular) which respond vigorously during the 
odor onset [�� , �� ]. This results from the high convergence of ORNs expressing 
the same odorant receptor into a single glomerulus. Generally, ORNs project its 
axon into a particular glomerulus, and PNs receive input from all of the ORN axons 
entering into that cognate glomerulus. As a result, the signal gets amplified many 
folds which makes the PNs very sensitive to small changes in the presynaptic ORN 
input. But the PNs associated with sex pheromone target different regions of the 
lateral horn in a sexually dimorphic manner, and thus the same pheromone elicits 
distinct behavior in males and females [��, ��, �� ]. Most of the ORNs to PN syn-
apses are cholinergic, and PNs respond more strongly to the fluctuating amount of 

Figure 4. 
Schematic presentation of flow of odor signals from the environment to the central nervous system. Odor 
molecules of diverse nature (highlighted as multicolored small circle) bind to their respective receptors present 
on the olfactory receptor neurons of antennae of mosquitoes. Then the initial signal of odor is transmitted to 
the antennal lobe (AL), and from the AL the signal is transmitted to higher brain centers, i.e., mushroom body 
(MB) and lateral horn (LH) for signal processing and decision-making. The red arrow indicates the path of 
signal flow.
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odors in the odor plume [�, ��, ��]. Next, the PNs form synaptic connections with 
Kenyon cells, neurons of the protocerebrum, and mushroom bodies. Odor informa-
tion from multiple glomeruli finally merges into narrowly tuned Kenyon cells which 
affect memory formation [ �� ].

Despite the knowledge about the neuronal firing path during odor transmission, 
a pilot question arises in mosquito neurobiology on how discrete sensory inputs 
integrate and translate into varied behavior. An in-depth understanding of the neu-
ronal circuitry involved in olfactory signaling and decision-making in mosquitoes is 
limited due to the absence of established neurogenetic methods. A recent study by 
Olena Riabinina et�al. suggested that an integration of the olfactory and gustatory 
signals commenced within the antennal lobe and subesophageal zone of the brain, 
respectively [�� ]. Furthermore, Clement Vinauger et�al. reported that despite hav-
ing a synergistic effect during mosquito navigation, the visual and odor modulation 
is asymmetric and processed by distinct loci of the brain, where olfaction always 
works preceding to visual selection. But detailed understanding of the molecular 
and neurophysiological bases of mosquito olfactory behaviors and crucial decision-
making events in the brain needs further research.

�.� Molecular physiology of neuronal signal processing

Mosquitoes are well known for their plasticity in host preference. The selection 
of host species for blood meal uptake is skewed depending on the availability of the 
preferred host, the quality of blood meal, and the defensive behavior of the host. 
Apart from the neuronal firing and neurotransmitter-mediated signal transmis-
sion, the molecular factors of the brain are shown to play a crucial role in olfactory 
learning, neuronal decision-making, and memory formation in insects [�� , �� ]. 
The diverse neuromodulators that include neurotransmitters, neuropeptides, 
neurohormones, and biogenic amines facilitate the nervous system to transduce 
varied signals and thus enable the insects to manage the complex behavioral events 
with amazing accuracy [�, �� ]. Neurotransmitters are the primary and potent 
neurochemicals that make synaptic connections between neurons and thus relay 
information from presynaptic cells to postsynaptic cells. The crucial neurotransmit-
ters in the insect chemosensory system are acetylcholine, gamma-aminobutyric 
acid (GABA), and nitrous oxide (NO) [ �� , ��, �� ]. Our ongoing study has shown 
that blood meal intake causes dynamic changes in the neurotransmitter abundance 
within the brain, suggesting their possible contribution in cognition and food-
associated memory formation in adult female mosquitoes [�� ]. Furthermore, we 
also showed that the gut of the mosquitoes also can synthesize neurotransmitters 
and play a crucial role in gut-brain-axis communication during metabolic switch 
(sugar-fed condition to blood-fed condition) and thus modulate neuronal decision-
making process [�� ].

Neuromodulators include the neuropeptide and biogenic amines, which have 
an intense effect on mosquito chemosensation, feeding, social behavior, circadian 
rhythm, and also maintenance of general physiological homeostasis [�� , �� , �� –�� ]. 
Usually, these neuromodulators are produced by the specialized neurosecretory 
cells and released into the local vicinity of the brain circuits and in the hemo-
lymph. Both neuropeptides and biogenic amines modulate the response through G 
protein-coupled receptor signaling pathway [�� , �� ]. Two important amine neuro -
modulators are dopamine and serotonin which are found to modulate mosquitoes’ 
learning and memory response. The immunoreactive neurons of serotonin and 
dopamine innervate all the glomeruli of AL and higher brain regions such as lateral 
horn and mushroom body, indicating their role in memory formation [ �� ]. Apart 
from the biogenic amines, �� neuropeptides have been predicted from the genome 
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database of Aedes aegypti through the bioinformatics approach [ �� ]. Among them, 
short neuropeptide F (sNPF) was found to play a crucial role in mosquito feeding 
and inhibition of host-seeking behavior following blood feeding [ �� , �� ]. Recent 
studies provide contrasting evidence that either sNPF is synthesized from male 
accessory gland and transferred to the female during mating or female’s own sNPF 
titer is increased in the hemolymph after consumption of blood meal significantly 
and reduces host-seeking behavior in adult females. While the functions of dif-
ferent neurohormones have been studied in many insects, functional studies in 
mosquitoes are limited. The wide distribution of peptide hormones throughout the 
mosquito body from the neurosecretory cells of the brain (corpora allata, corpus 
cardiacum) to the endocrine cells of the gut enable them to perform diverse func-
tion in mosquito physiology such as (�) regulation of metabolism, (�) maintenance 
of physiological homeostasis, (�) metamorphosis and eclosion, (�) osmoregula-
tion, and (�) regulation of vitellogenesis and gonotropic cycle [ �� ]. Table �  sum-
marizes the name of peptide hormones in mosquitoes and their possible functions.

�. The action machinery: salivary gland

A successful feeding event of mosquitoes is regulated by the synchronized 
action of mosquito navigation and food choice decision which finally tuned 

Sl. no. Peptide hormone name Function

�. Adipokinetic hormone Mobilizes stored carbohydrate

�. Allatostatin A and C Regulate juvenile hormone biosynthesis and gut motility

�. Allatotropin Stimulates juvenile hormone biosynthesis

�. CCHamide � A nutrient-responsive hormone in Drosophila but function not 
known in mosquitoes

�. Corazonin Cardioactive peptide

�. Diuretic hormone Myotropic activity, regulation of Malpighian tubule for fluid 
secretion, osmoregulation, and diuresis

�. Ecdysis triggering hormone Trigger ecdysis during larval and pupal molting

�. Eclosion hormone Function not known in mosquitoes

�. FMRFamide Heart contraction

��. Insulin-like peptide Elevate carbohydrate and lipid storage, female reproduction, 
vitellogenesis, hemocyte differentiation, blood meal digestion

��. Leukokinin Diuresis

��. Neuropeptide F Inhibition of anterior midgut peristalsis in larval stage

��. Ovary ecdysteroidogenic 
hormone

Induces ecdysone production and egg development

��. Prothoracicotropic hormone Regulates metamorphosis

��. Pyrokinin Regulation of diuresis

��. Short neuropeptide F Regulation of host-seeking behavior

��. Sulfakinin Function not known in mosquitoes

��. Tachykinin Function not known in mosquitoes

Table 1. 
List of peptide hormones and their possible functions.
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with the salivary gland action for successful food uptake. The endocrine system 
of the salivary gland induces saliva secretion that gets mixed with foods and 
facilitates the food intake [ �� ]. Mosquitoes have paired salivary glands in their 
thorax which is flanking in the esophagus. During sugar feeding saliva is mixed 
with the sugar, and the mixture enters into the crop where digestion com-
menced. During blood meal ingestion, salivary gland secretions serve in blood 
vessel localization [�� ]. The hemostatic and immune factor of the vertebrate 
host makes the blood meal uptake process challenging for mosquitoes [��]. 
Thus, salivary glands of mosquitoes are evolved and adapted with a unique 
ability to serve the leading function during blood meal ingestion by providing 
secretory salivary factors such as vasodilators, anticoagulant, antihistamines, 
etc. [�� , �� ]. Furthermore, salivary gland components not only support mos-
quitoes to overcome host homeostasis and defense response but also serve as 
the primary route for parasite transmission and maintenance of disease cycle 
[�� , �� ]. Due to the involvement of salivary gland in malaria transmission, 
most of the previous studies are restricted to the role of salivary gland in blood 
feeding and pathogen survival [�� ]. A recent study by Sharma et�al. showed 
that salivary gland has a distinguished ability of gene expression switching to 
manage the meal-specific (sugar vs. blood meal) molecular responses [�� ]. But, 
our understanding of the regulatory mechanism of the neuro-olfactory system 
modulating salivary gland cocktail composition depending on the type of food 
is still in infancy.

�.� Mosquito sialome leads to feeding success

To feed on a vertebrate host, the arthropods are required to overcome a series of 
obstacles [�� ]. The saliva produced by the hematophagous insects contains bioac-
tive molecules that counteract host defense [�� ]. Mosquitoes are reported to feed 
on arterioles and venules rather than capillaries, and they often probe multiple 
times at different sites to find a suitable site for feeding [�� ]. Initiation of feeding 
induces hemostatic cascade within the host including the platelet aggregation 
followed by collagen interaction with ADP which supports the blood coagulation 
pathway [ �� , �� ]. The presence of secretory apyrase enzyme in the salivary gland 
of blood-feeding arthropods inhibits platelet aggregation by hydrolyzing ATP and 
ADP into AMP and inorganic phosphate [�� ]. Vasoconstriction is a common phe-
nomenon following laceration of blood vessels due to insect bite to minimize blood 
flow and hence loss of blood [�� ]. The hematophagous insects, including Aedes 
aegypti mosquito saliva, contain sialokinins which act as a vasodilatory molecule 
by stimulating nitric oxide (NO) production by the endothelial cells via cGMP 
induction [ �� , �� , �� ]. Except apyrase and sialokinin, salivary specific D� family 
proteins have been implicated to function as a scavenger molecule of serotonin, 
histamine, and norepinephrine and antagonize their vasoconstrictor, platelet-
aggregating, and pain-inducing properties [�� , �� ]. Salivary peroxidases are well 
known for their potent function as a vasodilator, as it might act as a hydrogen 
peroxide-dependent destructor of serotonin and noradrenaline [�� ]. Furthermore, 
the secretory anophelin protein is reported to inhibit thrombin activity and 
collagen sequestration and hence delay platelet aggregation [�� ]. An additional 
challenge arises from the immune components of the blood meal itself which have 
been generated during previous exposure of mosquito bites [�� ]. Thus, successful 
blood feeding is dependent on the evolution of salivary composition possessing 
anti-immune molecules to suppress the action of host immune factors. Antitumor 
necrosis factor in female salivary glands is one of the crucial molecule that may 
play anti-immune function in hematophagous insects [�� ].
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�.� Neurological control over salivation

The experimental evidence about the classical conditioning of salivation in dogs 
was demonstrated by Pavlov in the early nineteenth century [�� , ��� ]. By defini-
tion, classical conditioning refers to the learning procedure where a conditioned 
stimulus (CS), for example, the sound of a bell, is paired with an unconditioned 
stimulus (US), such as food which eventually triggers salivation [��� ], although 
secretion of saliva is obligatory to facilitate feeding for majority of animals from 
invertebrates to vertebrates. However, the knowledge of classical conditioning of 
salivation is restricted to mammals and invertebrate cockroaches [�� ]. The salivary 
gland and the saliva make the bridge that joins the mosquito vectors, parasite, and 
the host together by facilitating blood meal uptake and parasite transmission [�� ]. 
But, the cellular and molecular mechanisms underlying the classical conditioning 
of salivation in mosquitoes remain unknown. Considering the finicky host-seeking 
behavior of mosquitoes and their preference towards a certain host [�� ], it can be 
hypothesized that mosquitoes can learn during the repeated exposure of condi-
tioned stimulus such as host odor and unconditioned stimulus, which is a reward of 
blood meal [�� ]. Reward may be appetitive when mosquitoes get benefited from the 
blood meal or aversive if mosquitoes experience any kind of host defensive behavior 
[�� ]. Thus, it can be speculated that mosquitoes should exhibit classical condition-
ing of salivation, i.e., increase saliva secretion which is tightly regulated by the 
neuro-olfactory system (Figure � ).

Our knowledge about control of insects’ salivary secretion is limited to cock-
roaches, locusts, and blowflies, where neuronal innervation of the salivary gland 
or neuro-hormonal regulation was reported to play a significant role in salivation 
[ ��� , ��� ]. Insects’ salivary glands are innervated with nerves that are originated 
from different sources of the central nervous system [��� ]. Stomatogastric ner-
vous system projects its nerves in the salivary gland of Manduca sexta [��� ]. The 
salivary gland of cockroaches (Periplaneta americana) is innervated with nerves 
that are projected from both the stomatogastric system and the subesophageal 
ganglion [��� , ��� , ��� ]. An exception to that is that the blowfly salivary glands 
are not innervated, but the salivary secretion is regulated by the secretion of the 
biogenic amine serotonin [��� , ��� ]. Gustatory stimulation leads to the release of 

Figure 5. 
Graphical illustration of conditioning of salivation in mosquitoes. Mosquitoes navigate towards vertebrate host 
through olfaction when they sense the odor plume emanating from the host (both appetitive and defensive). 
Olfaction also induces the salivary secretion (conditioning of salivation) with the aim to facilitate blood meal 
uptake. But the host’s defensive behavior interrupts successful encountering of the mosquito with the host (red-
colored human), which mosquitoes can memorize, and during consecutive exposure they probably restrict the 
salivation process to avoid the respective host, whereas mosquitoes get a reward from the appetitive host through 
successful blood-feeding without any interference. This positive memory along with olfaction further empowers 
the navigation process by induction of salivation.
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Figure 6. 
The tripartite communication of three tissues [olfactory tissue (OLF), central nervous system (CNS)/brain, 
and salivary gland (SG)] for successful feeding. The left picture showed the flow of signal from odor response 
to salivary action, which is indicated by the downward arrows. The right picture is the detailed representation 
of the left one. Primarily, odorants bind with their cognate receptors, present on the dendritic membrane of 
the olfactory receptor neurons (ORNs). Odor binding initiates the downstream signal transduction procedure, 
which includes the synthesis of either the second messengers (cAMP, IP3) or change in the membrane ion 
channel conformation which then allows the flow of ions (Na+, Ca+, and K+) and facilitates the change in 
membrane potential and consequently generates the action potential. This action potential rapidly moves 
through the axons towards the CNS (indicated as red arrow). The antennal lobe (AL) is the primary site for 
odor perception in mosquitoes. The axons of the ORNs expressing the same receptors which bind to a particular 
odor molecule merge in a single AL (indicated by orange and blue rods). From the AL, the odor signal then 
transmitted to higher brain centers [mushroom body (MB), and lateral horn (LH)] through projection neurons 
(PNs). Along with the neuromodulator-mediated regulation, nerve innervation (originating from the higher 
brain region) also regulates salivation of the salivary gland in insects (indicated by red zigzag lines over the 
salivary gland). One of the biogenic amines, the 5-hydroxy tryptamine (5-HT), and its cognate receptor 
(highlighted in sky blue circle and purple rods) facilitate salivation. But this receptor-mediated downstream 
signal transduction events and the resultant change in salivary gland membrane potential is not known in the 
case of mosquitoes (highlighted in red circle). The involvement of other biogenic amine receptors (BAR) and 
neuropeptide receptors (NPR) in saliva regulation is also yet to be explored. DL, distant lobe; ML, medial lobe 
of the salivary gland.

serotonin from the neurons into the hemolymph which acts as a neurohormone and 
alters the cytosolic calcium (Ca�+ ) and adenosine cyclic monophosphate (cAMP) 
concentration within the secretory cells of the salivary gland [��� ]. The increased 
calcium level consequently facilitates the movement of chloride (Cl� ) ions from the 
hemolymph side into the lumen of the gland. On the contrary, cAMP was found to 
stimulate potassium (K+) transport towards the luminal side of the salivary gland. 
The simultaneous induction of two different pathways leads to the activation of 
either phospholipase C (PLC)/inositol �,�,�-trisphosphate (IP�)/diacylglycerol/
Ca�+  signaling pathway or cyclic AMP/adenylyl cyclase signaling cascade which 
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are the potent secondary messengers found to play a significant role in insect 
salivation [ ��� , ��� ]. Studies in blood-feeding insects are limited to Aedes aegypti 
mosquito and on tsetse flies Glossina pallidipes, depicting the presence of seroto-
nergic innervation in their salivary glands [ ��� , ��� ]. Together it can be stated that 
both the biogenic amines and neuropeptides play a crucial role in insect salivation 
by modulating the salivary glands’ ability to alter second messenger level and ion 
channel conformation. Furthermore, olfactory conditioning of salivation is directly 
linked to long-term memory formation which is accomplished by the active involve-
ment of NO signaling for the induction of protein synthesis required for memory 
signature [��� ]. Salivary conditioning is also suitable to monitor the activity pattern 
of salivary neurons located in specific regions of the brain; thus this conditioning 
system will be suitable for the study of molecular mechanisms of learning and 
memory formation in mosquitoes’ brains ( Figure � ).

�. Conclusion and future direction

Evolution and adaptation to blood-feeding behavior in adult female mosquitoes 
provided a natural mechanism for their reproductive success. Here, we propose a 
system biology approach which defines the harmonious actions of the olfactory, the 
brain, and salivary glands, regulating the complex feeding behavior of mosquitoes. 
However, deciphering the molecular basis on how mosquitoes meet and manage the 
conflicting demands of sugar feeding vs. blood-feeding and how olfactory condi-
tioning of salivation commenced may lead to the identification of crucial molecular 
targets including different neurohormones, biogenic amines, neuropeptides, and 
their receptors for genetic manipulation. Functional genomics and the advance-
ment of electrophysiological techniques illuminate our understanding of mosqui-
toes’ sensory systems. Although it is challenging to identify the species-specific 
potential olfactory factors that play a pivotal role in mosquitoes’ host-seeking 
and blood-feeding behavior, it will be very effective for the development of novel 
approaches to control different mosquito populations. The efficacy of emerging 
genetic tools such as CRISPR/Cas�, a gene drive technology in mosquitoes, can 
facilitate the molecular understanding of neuronal mechanism of olfactory selec-
tion and differential learning and memory formation across different mosquito 
species which can be manipulated for more effective disruption of host-seeking 
behavior. Furthermore, unraveling the microbiome-gut-brain-axis communication 
mechanism during metabolic switch in mosquitoes may enlighten the innovative 
idea of microbiome-mediated alteration of mosquitoes’ olfactory perception.
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