We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,200 Open access books available
116,000 International authors and editors
125M Downloads

154 Countries delivered to

Our authors are among the
TOP 1% most cited scientists
12.2% Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter

Polarization of Tumor-Associated Macrophages by Chinese Medicine Intervention: Mechanisms and Applications

Yuanjun Lu, Hor Yue Tan, Ning Wang and Yibin Feng

Abstract

Macrophage polarization is a spectrum of phenotypes and generally can be classified into two states: (1) classically activated or M1 macrophages, which can be driven by lipopolysaccharide (LPS) alone or in association with Th1 cytokines and produce pro-inflammatory cytokines such as TNF-α, IL-6 and IL-12, and (2) alternatively activated M2 macrophages, which can be promoted by Th2 mediators IL-4 and IL-13 and produce anti-inflammatory cytokines such as TGF-β and IL-10. Current studies have found that the phenotypic switch between M1 and M2 macrophages governs the fate of an organ in inflammation or injury. The imbalance of M1/M2 polarization is closely involved in various pathological processes and is becoming a potential target for therapeutic strategies. Traditional Chinese medicine is an integrated healthcare system composed of many practices and is characterized by multi-target, multi-level, and coordinated intervention effects. Chinese medicines nowadays are applied to regulate phenotype polarization of macrophages to improve the microenvironment, thus ameliorating or even eliminating the symptoms. In this chapter, we will discuss the molecular mechanisms of macrophage polarization, their roles in health and disease, and the intervention with Chinese medicines to modulate the polarization of macrophages in tumor microenvironment (TME) for therapeutic purpose.

Keywords: tumor microenvironment, tumor-associated macrophage, polarization, Chinese medicine

1. Introduction

Primary and metastatic tumors are generally known as a complex ecosystem containing tumor cells and the surrounding environment, called tumor microenvironment (TME). Apart from autonomous changes by genetic alteration of tumor cells, the dynamic changes of TME progress the tumor progression [1]. TME is a multifaceted pool that consists of various cell types including neoplastic cells, stromal cells, and immune cells that interact with one another via numerous secreted cytokines, growth factors, and chemokines. Tumor-associated macrophages (TAMs) take up a large portion of recruited immune cells and constitute up
to 50% of the tumor mass. It was reported that the high level of TAMs is associated with poor prognosis and decreasing overall survival in many cancers, such as liver, breast, gastric, and thyroid cancers, suggesting that TAMs certainly play essential roles during tumor development [2–6].

TAM recruitment and accumulation are regulated by various cytokines and chemokines, such as CCL2, CCL5, CCL7, CXCL12, etc., and growth factors including VEGF, PDGF, and CSF1, as well as other factors such as fibronectin and fibrinogen [7–10]. CSF1 is the major regulator for monocyte proliferation and differentiation. CCL2 is a dominant attractant in many tumors. Since monocytes highly expressed the receptor of CCL2 (CCR2), most of tumors produced a high level of CCL2 that can intensely attract monocytes migrating toward CCL2-CCR2 axis [11–17]. However, CCL2 inhibition studies show that it could not completely suppress TAM accumulation, indicating that other factors affect this process [7, 17–21]. The CCL12-CXCR4 axis is reported to promote TAM regional accumulation under therapeutic treatments. In mice model, breast cancer highly expressed CCL20 and CCL5; Either inhibited CCL20 expression or treated with CCR5 antagonist, the number of TAMs was significantly reduced within tumors. These studies have shown that in breast cancer, CCL20-CCR6 and CCL5-CCR5 axes contribute to TAM accumulation. Another chemokine CCL11 can be induced under hypoxia condition and subsequently recruit TAMs to the hypoxic region.

In turn, TAMs can produce different molecules to remodel TME and influence fundamental aspects of tumor pathology. For instance, TAMs secrete endothelial growth factor (EGF) to increase neoplastic proliferation directly [22]; TAMs release vascular endothelial growth factors (VEGF) [23], angiogenic factor thymidine phosphorylase, and other chemokines including CCL2 and CXCL8 to enhance angiogenesis; TAMs produce metalloproteases (MMPs) to change TME matrix architecture for tumor metastasis [24]; and TAMs express immune regulatory molecules such as arginase-1 (ARG1), IL-10, and IL12 to modulate immune response [2]. The role of TAMs is accomplished by their phenotypic plasticity, either pro-inflammatory or anti-inflammatory phenotype, in response to the complex stimuli in TME. The double-edged sword feature of TAM polarization makes them as a novel and potent target for cancer prevention and treatments.

Traditional Chinese medicine is an integrated healthcare system composed of many practices that were rooted in China for over 5000 years. Due to its multi-target, multi-level, and coordinated intervention effects, Chinese medicine is widely used for therapeutic strategies. Recent studies reported that some of the Chinese herbal medicines have beneficial effects on cancer therapy via modulating TAM polarization, indicating a new mechanism for Chinese medicine treatment. In this chapter, we will explore the molecular mechanisms of TAM polarization and their roles in health and disease, and we will review the intervention by some of the Chinese herbal medicines on TAM polarization.

2. TAM polarization and molecular mechanisms

2.1 TAM polarization

It is widely accepted that the majority of TAMs are derived from circulating monocytes via cytokine recruitment and then differentiate to macrophages. And those at the metastatic sites are called metastatic-associated macrophages (MAMs) according to their location [25]. While recent studies have shown that the tissue-resident macrophages also contribute to TAM population [26, 27], these
progenitors, also called embryonic macrophages, are derived from the yolk sac or fetal liver-derived progenitors, and they can maintain themselves by local proliferation in a hematopoietic system-independent way [28]. The selective depletion studies found that only the tissue-resident macrophages support the established tumor growth. Therefore, TAMs are heterogeneous cell populations from both tissue-resident macrophages and monocyte-derived macrophages and assist TME remodeling.

Besides their heterogeneity, TAMs are also characterized by high plasticity. In the general regard, macrophages can be overgeneralized to two extreme subsets based on the stimuli, surface markers, and secreted molecules, as well as functional properties: the classically activated M1 and alternatively activated M2 macrophages. The M1 phenotype is induced by the Th1 cytokine interferon-γ (IFN-γ), bacterial moieties such as lipopolysaccharide (LPS), and Toll-like receptor (TLR) agonists. The M1 macrophages are characterized by their capacity to produce inflammatory cytokines (e.g., IL-6, IL-1, IL-12, IL-23, and TNF-α) and stimulate immune response, express reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS), and have a cytotoxic effect toward neoplastic cells and phagocytic microorganisms [29–34]. Generally, the M1-like macrophages act as sentries and display tumoricidal function, antimicrobial activity, and tissue destruction effect [33, 35].

In contrast, the M2 phenotype is promoted by Th2 mediators and produces immunosuppressive factors (e.g., IL-10, TGF-β) and growth factors (e.g., VEGF) and exerts anti-inflammatory and pro-tumorigenic activities [34, 36, 37]. Moreover, the M2-like macrophages can be further subdivided into three categories, M2a, M2b, and M2c, based on the type of stimuli. The M2a macrophages are driven by type II cytokines including IL4 and IL13 and expressed a high level of arginase-1; M2b macrophages are activated by immune complexes/TLR, while M2c macrophages by anti-inflammatory cytokines (e.g., IL-10) and glucocorticoids [38]. The M2-like macrophages promote angiogenesis, wound repair, and tumor growth, as well as resistance to parasitic infection. Many studies reported that TAMs mostly represent M2-like macrophages and play pro-tumoral roles.

2.2 Molecular mechanisms in regulating TAM polarization

2.2.1 The JNK signaling pathway

The c-Jun N-terminal kinase (JNK) proteins are a group of stress-activated serine threonine protein kinases of the MAPK and can be activated by various external stimuli including inflammatory cytokines, environmental stresses, growth factors, and GPCR agonists. The outside signals can be transduced by small GTPase to MAP3Ks and further activate M KK4/7. The MAP3Ks play key roles in the JNK pathway and affect tremendous downstream transcription factors including AP-1, Smad3, and STAT3, thus controlling many biological processes [39]. The studies on adipose tissue macrophages (ATMs) have demonstrated that the JNK pathway is indispensable in regulating M1/M2 phenotype formation. In HFD-/NAFLD-induced inflammation and obesity, the activated JNK pathway can promote the expression of the M1-associated genes via CCR2 and NF-kB signaling. The M1-like ATMs are related to the resistance to insulin [40, 41]. Recent studies found that normal adipocytes produce Th2 cytokines, such as IL-13 and IL-4 which can enhance M2-like macrophage polarization via activating STAT6 and PPARδ/β, as well as ACE to block the JNK pathway-induced M1-like phenotype [42]. Studies also found that vigorous exercise can promote M2 state through decrease phosphor-JNK [43].
2.2.2 The PI3K/Akt signaling pathway

Among different pathways, the PI3K/Akt pathway is playing a central role in regulating polarized phenotype alteration. It can be activated by many stimuli such as TLR4, PRRs, FcRs, and cytokines and modify downstream cytokine production [44–47]. In turn, the PI3K/Akt pathway can affect the expression of stimuli and form a feedback loop. For example, the activated PI3K/Akt pathway can inhibit the transcription factors of TLR4 including TRAF6 and FOXO1 either directly or indirectly to suppress TLR4 stimulation. The PI3K has two transducers PIP2 and PIP3 which exert opposite functions during stimulation. It has been reported that PIP2 can enlarge LPS-induced M1-like macrophage polarization, while PIP3 can target mTORC2 via Akt recruitment and promote M2-like macrophage polarization. Other studies found that PTEN and SHIP play an inhibitory effect on PI3K/Akt transduction by transforming PIP3 to PIP2. The downstream signals mTORC1 and mTORC2 also participate in regulating M1/M2 alteration. Deletion of TSC1 can promote LPS-induced M1 polarization and inhibit IL-4-triggered M2 polarization via inhibiting mTORC1-induced Akt signaling, while the deletion of TSC2 gives an opposite response. Furthermore, the isoforms of Akt also contribute to influence the M1-/M2-polarized phenotype transformation in the opposite way. In knocked out Akt1, the expressions of iNOS and IL-12 were enhanced which is a hallmark of M1-like macrophages, and the transcription factor C/EBPβ of M2-related genes was decreased. The deletion of Akt2 led to C/EBPβ and M2 markers enhanced, including Arg1, Fizz1, and Ym1 [48].

2.2.3 The JAK/STAT signaling pathway

The JAK/STAT pathway is one of the principle regulators for transducing different signals and affects various gene expressions. The JAK family consists of JAK1–3 and TYK2 and can be recruited and bind to the intracellular domains of activated receptors. JAKs will subsequently become dimers after autophosphorylation and then phosphorylate their downstream STAT family which has seven members including STAT1–4, STAT5A/B, and STAT6. The activated STAT family will translocate to the nucleus and modulate the expression of their target genes [49]. Increasing evidence found that the JAK/STAT pathway is closely related to M1/M2 phenotypic polarization. Among different stimuli of JAK/STAT signaling pathway, the IFN-γ has been known as a strong inducer of M1 phenotype through STAT1 activation [50]. It is controlled by IRF5 and IRF4 which exert promotive and inhibitory effects, respectively [51]. The IL-4 and IL-10 can activate STAT3 and STAT6 to program the M2-like phenotype and also have cross talk with JNK pathway as mentioned in the JNK signaling pathway. The IL-13 can activate both M1- and M2-associated genes through STAT1, STAT3, and STAT6 activation [52]. There are two regulators of JAK/STAT pathway that affect M1/M2 reprogramming, SOCS1 and SOCS3. The SOCS1 exhibits a suppressive function on STAT1, thus leading to the M1-like phenotype inhibition, while activating STAT6 to induce M2 polarization. The SOCS3 can activate STAT1 activity to contribute M1 polarization [53, 54].

2.2.4 The Notch signaling pathway

The Notch pathway is generally known to play a fundamental role in regulating development and assist to govern the fate in response to different stimuli. There are four members of transmembrane receptors including Notch1–4. When the Notch receptors bind to their ligand family, such as Delta-like proteins (DLLs) and Jagged...
proteins, the Notch intracellular domain (NICD) receptors will be released into the cell nucleus and binds to RBP-J to form a transcription complex, thus driving the target gene expression [55]. For example, LPS stimulation can upregulate DLL4 which is one of the DLLs in the TLR4/NF-κB-dependent way. The increased DLL4 can lead to activated Notch signaling and induce pro-inflammatory genes, such as IL-12 and iNOS [56]. Apart from the direct function of RBP-J, it can also positively regulate IRF8 activation to promote pro-inflammatory cytokine production. And this regulation is associated with PI3K/Akt and TLR4/NF-κB pathways [57].

2.2.5 Other molecular mechanisms

Apart from the signaling pathways mentioned above, there are many other pathways involving in M1/M2 reprogramming. For example, the TLR/NF-κB pathway is important in regulating the innate immune response. TLRs can sense the microbial components and transduce signals to affect NF-κB activity. When the NF-κB is formed as p50/p65, it promotes M1-associated gene expression, while p50/p50 form has beneficial effects on M2-associated gene expression [58, 59]. It is worth noting that the hypoxia-dependent pathway also participates in M1/M2 phenotypic switch. The HIF-1α is induced under hypoxia condition and serves as a transcription factor to regulate protein production. It has been reported that HIF-1α promotes M1-like polarization by enhancing iNOS production and HIF-2α promotes M2 phenotype via increasing Arg-1 expression [60].

3. Roles of TAM polarization and Chinese medicine intervention

The roles of TAMs under physiological and pathological conditions depend on their dichotomic polarization. Generally, when infection of tissue or damage occurs, the first-responding TAMs show M1-like phenotype and secrete pro-inflammatory cytokines to defend against invading pathogens and eliminate necrotic cells. And at the latter stage, the M2-like macrophages have shown as a compensation mechanism to prohibit extensive inflammation and assist in wound healing. In cancers, the M1-like TAMs predominantly exert cytotoxicity effect on cancer cells, while the M2-like TAMs assist in modulating immunosuppressive and pro-tumoral TME for cancer progression. Nowadays, TAMs are becoming promising targets for therapeutic strategies [61, 62]. Many Chinese herbal medicines have been identified to have anti-microbial, anti-inflammatory, immune regulatory, and antitumor effects. It would be interesting to review the intervention of Chinese medicines on TAM polarization in different cancers and diseases. Here, we select some of the Chinese medicines to describe as examples.

3.1 Baicalein

Baicalein (5,6,7-trihydroxyflavone) is isolated from the Chinese herb Scutellaria baicalensis root and has many beneficial effects on antitumor, anti-inflammation, anti-fibrosis, and antimicrobial [63, 64]. The treatment of baicalein in breast cancer is the first to explain its effect on TAM regulation. In breast cancer, TAMs showed M2-like phenotype that produced TGF-β1 and enhanced tumor growth and EMT process via PI3K/Akt signaling pathway. In turn, the tumor cells secreted TGF-β1 to maintain TAMs in M2-like phenotype. The positive feedback loop between tumor cells and M2-like macrophages was formed and further contributed to tumor metastasis in the lung. Baicalein administration could block TGF-β1 via inhibiting PI3K/Akt pathway. Besides, instead of altering the population of TAMs, baicalein could
drive M2-like macrophages to M1-like macrophage differentiation, with M1 markers increased. Therefore, the application of baicalein in regulating TAM polarization in breast cancer may provide a new understanding of other cancer treatments [65].

3.2 Panax notoginseng

The root of Panax notoginseng (PN) (Burk.) F.H. Chen is one of the popular Chinese herbs also known as sanqi, tianqi, or sanchi in Asia [66]. It has been widely used in many disorders for over 400 years due to its anticancer, anti-inflammatory, antiatherosclerotic, and hemostatic properties [67, 68]. Recent studies have shown that PN not only has cytotoxicity on cancer cells but also can redirect TAM polarization. It is commonly known that M2-like macrophages exert pro-tumorigenic effects on cancer, and to redirect M2 phenotype to antitumor M1 phenotype would be one of the promising strategies in cancer treatment. In many lung cancer studies, it has been reported that high doses of PN administration have direct cytotoxic effects on cancer cells, while the lower dose of PN still have inhibitory effects on tumor growth, suggesting there are other regulatory mechanisms. The in vitro study found that a lower dose of PN did not affect cancer cells, but it could reeducate M2-like macrophages toward M1 phenotypic differentiation [69]. It would help to better explain the pharmacological mechanism of PN.

3.3 Osthole

Osthole [7-methoxy-8-(3-methyl-2-butenyl)-2H-1-benzopyran-2-one] is isolated from Cnidium monnieri (Fructus Cnidii) and belongs to coumarin family, which is a benzopyrone and used as tumor-target drug carrier [70]. Osthole not only has cytotoxicity to cancer cells, such as breast cancer, lung cancer, HCC, and nasopharyngeal cancer (NPC) [71–73], but also has immunomodulatory effects on different tumors. In pancreatic tumors, osthole decreased M2-like macrophage population both in tumor site and spleen. But it did not affect M1-like macrophages. An in vitro study found that osthole could significantly inhibit STAT6 pathway and p-ERK1/2-C/EBPβ signal, thus further inhibiting the M2-like macrophage polarization [74].

3.4 Emodin

Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a natural anthraquinone derivative from many Chinese herbs, and it has multiple pharmacological effects [75]. One study focused on the effects of emodin on macrophage polarization has shown that it could bidirectionally regulate both M1 and M2 phenotype programs via different signaling pathways, as well as participated in the epigenetic modification. It seems like that emodin can restrain excessive M1- or M2-like macrophages and assist in maintaining homeostasis in different pathologies. For example, in breast cancer, emodin decreased TAM infiltration and inhibited M2-polarized phenotype by suppressing STAT6 and C/EBPβ signaling pathway. Moreover, it could increase H3K27m3 to downregulate M2-related genes.

3.5 Other Chinese medicine

Many other Chinese medicines have protective functions on different diseases through regulating M1/M2 phenotypic switch (as shown in Table 1). For example, curcumin can promote macrophages toward M2-like phenotype to ameliorate liver fibrosis, and it also assists wound healing [76]. Smiglaside A and Ginsenoside Rb3 have protective functions against acute lung injury via inducing M2-like...
Polarization of Tumor-Associated Macrophages by Chinese Medicine Intervention: Mechanisms...
DOI: http://dx.doi.org/10.5772/intechopen.86484

These findings may throw a new light for the regulatory mechanisms of Chinese medicines and promote their applications in health and diseases.

<table>
<thead>
<tr>
<th>Chinese medicine</th>
<th>M1/M2 phenotype switch</th>
<th>Disease</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angelica sinensis</td>
<td>M2</td>
<td>Cardiac fibrosis</td>
<td>[79]</td>
</tr>
<tr>
<td>Baicalein</td>
<td>M1</td>
<td>Breast cancer</td>
<td>[65]</td>
</tr>
<tr>
<td>Berberine</td>
<td>M2</td>
<td>Colitis; insulin resistance</td>
<td>[80, 81]</td>
</tr>
<tr>
<td>Bergenin</td>
<td>M2</td>
<td>Colitis</td>
<td>[82]</td>
</tr>
<tr>
<td>Celastrol</td>
<td>M2</td>
<td>Diet-induced obesity; acute ischemic stroke</td>
<td>[83, 84]</td>
</tr>
<tr>
<td>Corilagin</td>
<td>M1</td>
<td>Schistosoma egg-induced hepatic fibrosis</td>
<td>[85]</td>
</tr>
<tr>
<td>Crocin</td>
<td>M2</td>
<td>Atherosclerosis</td>
<td>[86]</td>
</tr>
<tr>
<td>Curcumin</td>
<td>M2</td>
<td>Liver fibrosis; wound healing</td>
<td>[76, 87]</td>
</tr>
<tr>
<td>Dioscin</td>
<td>M1</td>
<td>Melanoma</td>
<td>[88]</td>
</tr>
<tr>
<td>Diosgenin glucoside</td>
<td>M2</td>
<td>Neuroinflammatory diseases</td>
<td>[89]</td>
</tr>
<tr>
<td>Emodin</td>
<td>M1</td>
<td>Breast cancer</td>
<td>[90]</td>
</tr>
<tr>
<td>Ganoderma lucidum Karst</td>
<td>M1</td>
<td>Inflammation</td>
<td>[91]</td>
</tr>
<tr>
<td>Gastrodin</td>
<td>M2</td>
<td>Cerebral palsy</td>
<td>[92]</td>
</tr>
<tr>
<td>Ginkgolide B</td>
<td>M2</td>
<td>Ischemic stroke</td>
<td>[93]</td>
</tr>
<tr>
<td>Ginsenoside Rb1</td>
<td>M2</td>
<td>Atherosclerosis</td>
<td>[94]</td>
</tr>
<tr>
<td>Ginsenoside Rb3</td>
<td>M2</td>
<td>Acute lung injury</td>
<td>[78]</td>
</tr>
<tr>
<td>Isoliquiritigenin</td>
<td>M2</td>
<td>Acute kidney injury</td>
<td>[95]</td>
</tr>
<tr>
<td>Kumatakenin</td>
<td>M1</td>
<td>Ovarian cancer</td>
<td>[96]</td>
</tr>
<tr>
<td>Magnesium lithospermate B</td>
<td>M2</td>
<td>Neuronal injury</td>
<td>[97]</td>
</tr>
<tr>
<td>Mylabris phalerata</td>
<td>M1</td>
<td>Lung carcinoma</td>
<td>[98]</td>
</tr>
<tr>
<td>Osthole</td>
<td>M1</td>
<td>Pancreatic cancer</td>
<td>[74]</td>
</tr>
<tr>
<td>Paoniflorin</td>
<td>M2</td>
<td>Neuronal injury</td>
<td>[99]</td>
</tr>
<tr>
<td>Panax notoginseng</td>
<td>M1</td>
<td>Lung carcinoma; influenza A virus infection</td>
<td>[69, 100]</td>
</tr>
<tr>
<td>Pentacyclic triterpene Lupeol</td>
<td>M2</td>
<td>Inflammatory bowel disease</td>
<td>[101]</td>
</tr>
<tr>
<td>Pterostilbene</td>
<td>M1</td>
<td>Lung cancer</td>
<td>[102]</td>
</tr>
<tr>
<td>Punicalagin</td>
<td>M2</td>
<td>Inflammation</td>
<td>[103]</td>
</tr>
<tr>
<td>Saponin</td>
<td>M2</td>
<td>Intestinal polyps</td>
<td>[104]</td>
</tr>
<tr>
<td>Smiglaside A</td>
<td>M2</td>
<td>Acute lung injury</td>
<td>[77]</td>
</tr>
<tr>
<td>Tanshinone IIA</td>
<td>M2</td>
<td>Acute kidney injury</td>
<td>[105]</td>
</tr>
<tr>
<td>Timosaponin AIII</td>
<td>M2</td>
<td>Colitis</td>
<td>[106]</td>
</tr>
<tr>
<td>Trichosanthes Kirilovii lectin</td>
<td>M2</td>
<td>Streptozocin-induced kidney injury</td>
<td>[107]</td>
</tr>
</tbody>
</table>

Table 1.
The intervention of Chinese medicine on M1/M2 switch in different diseases.
4. Conclusions

Current studies have described the heterogeneity and adaptive plasticity of TAMs in the intrinsic and dynamic TME. They are composed of both tissue-resident macrophages and monocyte-derived macrophages and interplay with TME. The latter one is attracted and recruited to the tumor site via various signals in TME, while TAMs can produce different molecules to remodel TME. In response to different stimuli, TAMs can differentiate into either classically activated/M1 macrophages or alternatively activated/M2 macrophage which involves multiple signaling pathways. The role of TAMs depends on their dichotomic polarization in health and disease. Therefore, they are becoming potential targets for many therapeutic strategies. Chinese medicine has been widely used in a long history of Asia and shows multiple effects on different diseases. Knowing the intervention of Chinese medicine on TAMs polarization may help to better understand the principle of Chinese medicine and contribute to the comprehensive applications in many diseases.

Acknowledgements

The study was financially supported by grants from the research council of the University of Hong Kong (Project Codes: 104004092, 104004460, 104004746); the Research Grants Committee (RGC) of Hong Kong, HKSAR (Project Codes: 764708, 766211, 17152116); Wong’s Donation on Modern Oncology of Chinese Medicine (Project code: 200006276); Gala Family Trust (Project Code: 200007008); and Innovation Technology Fund of Hong Kong (ITF. Project code: 260900263).

Conflict of interest

The authors have no conflict of interest.

Abbreviations

AP-1 activator protein 1
ARG1 arginase-1
ATM adipose tissue macrophage
CCR C-C motif chemokine receptors
CSF1 colony stimulating factor
DLL Delta-like protein
EGF endothelial growth factor
Fcr receptor
FOXO1 Forkhead Box O1
GPCR G-protein-coupled receptors
HFD high-fat diet
HIF hypoxia inducible factor
IFN interferon
IL interleukin
iNOS inducible nitric oxide synthase
IRF interferon regulatory factor
JAK Janus kinase
JNK c-Jun N-terminal kinase
LPS lipopolysaccharide
Polarization of Tumor-Associated Macrophages by Chinese Medicine Intervention: Mechanisms...
DOI: http://dx.doi.org/10.5772/intechopen.86484

MAM metastatic-associated macrophage
MAPK mitogen-activated protein kinase
MMP metalloprotease
mTOR mammalian target of rapamycin
NAFLD nonalcoholic fatty liver disease
NICD intracellular domain of notch receptor
NPC nasopharyngeal cancer
PDGF platelet-derived growth factor
PI3K phosphoinositide-3-kinase
PIP2 phosphatidylinositol 4,5-bisphosphate
PIP3 phosphatidylinositol 3,4,5-trisphosphate
PN Panax notoginseng
PPAR peroxisome proliferator-activated receptor
PRR pattern recognition receptor
RBP-J recombination signal binding protein for immunoglobulin Kappa J region
ROS reactive oxygen species
Smad3 SMAD family member 3
SOCS suppressor of cytokine signaling
STAT signal transducer and activator of transcription
TAM tumor-associated macrophages
TGF transforming growth factor
Th1 type 1 T helper
Th2 type 2 T helper
TLR Toll-like receptor
TME tumor microenvironment
TRAF TNF receptor-associated factor
VEGF vascular endothelial growth factor
Ym1 chitinase-like 3

Author details

Yuanjun Lu, Hor Yue Tan, Ning Wang and Yibin Feng*
School of Chinese Medicine, The University of Hong Kong, Hong Kong SAR, PR China

*Address all correspondence to: yfeng@hku.hk

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Macrophage at the Crossroads of Innate and Adaptive Immunity

References


[16] Pena CG et al. LKB1 loss promotes endometrial cancer progression via CCL2-dependent macrophage recruitment. The Journal of Clinical Investigation. 2015;125(11):4063-4076. DOI: 10.1172/JCI82152
Polarization of Tumor-Associated Macrophages by Chinese Medicine Intervention: Mechanisms...
DOI: http://dx.doi.org/10.5772/intechopen.86484


[37] Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nature Immunology. 2010;11(10):889


[47] Polumuri SK, Toshchakov VY, Vogel SN. Role of phosphatidylinositol-3 kinase in transcriptional regulation of TLR-induced IL-12 and IL-10 by Fcγ receptor ligation in murine macrophages. The Journal of Immunology. 2007;179(1):236-246


[53] Qin H et al. SOCS3 deficiency promotes M1 macrophage polarization
and inflammation. The Journal of Immunology. 2012;189(7):3439-3448


[58] Porta C et al. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor κB. Proceedings of the National Academy of Sciences. 2009;106(35):14978-14983


[70] Zhang ZR et al. Osthole: A review on its bioactivities, pharmacological properties, and potential as alternative medicine. Evidence-Based
Complementary and Alternative Medicine. 2015;2015

[71] Lin ZK et al. Osthole inhibits the tumorigenesis of hepatocellular carcinoma cells. Oncology Reports. 2017;37(3):1611-1618


[79] Lee TM et al. Preconditioned adipose-derived stem cells ameliorate cardiac fibrosis by regulating macrophage polarization in infarcted rat hearts through the PI3K/STAT3 pathway. Laboratory Investigation. 2019:1


[85] Li YQ et al. Corilagin counteracts IL-13Ralpha1 signalling pathway in


Macrophage at the Crossroads of Innate and Adaptive Immunity


