We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,900
Open access books available

123,000
International authors and editors

140M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter

Sandfly-Borne Viruses of Demonstrated/Relevant Medical Importance

Nazli Ayhan and Remi N. Charrel

Abstract

Sandflies show distribution in a vast geographical area from Europe to Asia, Africa, Australia, and Central and South America where they can transmit a large number of viruses. Between these viruses, the most important are grouped into the Phlebovirus genus (family Phenuiviridae). Among them, several sandfly-borne phleboviruses cause self-limiting febrile disease (sandfly fever) or central and peripheral nervous system infections. Data concerning the geographic distribution of these phleboviruses has drastically increased during the last decade in both the new and the old worlds. The current situation depicts a high viral diversity with taxonomic groups containing human pathogenic and non-pathogenic viruses. This merits to provide insight to address the question of medical and veterinary public health impact of all these viruses, which are poorly studied. To do so, integrated and translational approaches must use ecological, epidemiological, serological and direct clinical evidence. Beside, other viruses transmitted by sandflies and belonging to Rhabdoviridae and Reoviridae families can also be of veterinary and public health importance. The chapter aims to provide a comprehensive view of the sandfly-borne viral pathogens of the public health impact on humans and other vertebrates in the old and new worlds.

Keywords: sandfly-borne phleboviruses, sandfly fever, phlebovirus, Toscana virus, Sandfly fever Naples virus, Sandfly fever Sicilian virus, Punta Toro virus, Vesiculovirus, Chandipura virus, Changuinola virus

1. Introduction

Sandflies are present in tropical and subtropical, arid and semi-arid areas and temperate zones including southern Europe, Asia, Africa, Australia, Central and South America. Phlebotomine sandflies are tiny diptera insects grouped in the family Psychodidae, subfamily Phlebotominae. To date, over 800 species are estimated to exist in different regions of the world [1]. Two genera (Phlebotomus and Sergentomyia) of Phlebotominae are mostly recorded in the old world (OW) and the other genus Lutzomyia exists in the new world (NW) [2]. Only females are hematophagous and require a blood meal to develop their eggs. Sandflies take blood from a wide range of animals such as cold-blooded vertebrates, mammals and birds; trophic preferences vary depending on the sandfly species.

Of the 800 sandfly species, at least 98 are proven or suspected vectors of microorganisms capable to cause parasitic, viral or bacterial diseases in vertebrates [1].
This chapter will focus essentially on sandfly-borne viruses, which have been proven agents of diseases in humans.

The arthropod-borne diseases including sandfly-borne viral diseases affect urban, peri-urban, and rural population but mostly the communities with poor living conditions. Economic, social and ecological conditions have a huge impact on sandfly-borne viral diseases [3, 4]. The factors that described as associated with arthropod-borne diseases emergence or invasion are (i) competent vector and vertebrate host population repeatedly in contact within an appropriate environment, (ii) vertebrate or vector host species composition changes, (iii) environmental or niche changes and (iv) genetic changes [5].

Although sandflies can transmit a number of arthropod-borne viruses within the families Phenuiviridae, Reoviridae and Rhabdoviridae, they remain neglected vectors of viral diseases in contrast with a high interest for parasitic diseases such as leishmaniasis. The three virus families contain human/animal pathogens. In the Rhabdoviridae family, attention will be given to Chandipura virus; in the Reoviridae family, we will focus on Changuinola virus [2, 6–8]. In the Phenuiviridae family, we will focus on Sandfly fever Sicilian virus, Sandfly fever Naples virus, Toscana virus, Adria virus and Punta Toro virus (PTV).

2. Sandfly-borne phleboviruses

Phleboviruses are enveloped viruses with single-stranded trisegmented RNA. They contain three genomics segments: L (Large) segment encodes the viral RNA polymerase (RdRp), M (medium) segment encodes envelope glycoproteins (Gn and Gc) and non-structural protein m (NSm) and S (small) segment encodes nucleocapsid protein (N) and non-structural protein s (NSs) [9].

Currently, 10 species within the genus Phlebovirus are recognized by the International Committee on Taxonomy of Viruses (ICTV): Sandfly fever Naples virus, Salehabad virus, Rift Valley fever virus, Uukuniemi virus, Bujaru virus, Candiru virus, Chilibre virus, Frijoles virus, Punta Toro virus, and Severe fever with thrombocytopenia syndrome virus. Of interest, almost 40 phleboviruses are still listed as tentative species for which the ICTV has not officially ruled; interestingly, Sandfly fever Sicilian virus still belongs to this pending group although discovered in 1943 [10].

Phleboviruses can be detected and isolated from blood-sucking female sandflies and from non-blood-sucking males in equal proportions [11–14]. This suggests that alternative transmission pathways (other than blood-borne from vertebrate reservoir) such as transovarial transmission (female to offsprings) and/or venereal transmission play an important role in the natural cycle [2]. Experimental results done with colonized P. papatasi sandflies proved venereal virus transmission and transovarial virus transmission [15]. Viral maintenance during the diapausing period of Phlebotomus perniciosus larvae was proved and was not affected by transstadial transmission in laboratory [15]. These routes of virus transmission suggest that phleboviruses can be sustainably transmitted from one generation of sandflies to the next generation. It also raises the question of whether a vertebrate host acting as reservoir is required or not for virus perpetuation. To date, these experiments have been performed primarily with high passage colonies and should be taken with caution because laboratory reared sandflies may behave differently from wild populations. In addition, they have been performed with few species of phlebovirus and with P. papatasi and P. perfiliewi only. Elucidation of phlebovirus maintenance and transmission is crucial to understand better the natural history of these viruses and to develop adapted method to combat those which are human pathogens [15–17]. Although several sandfly-borne phlebovirus species were isolated from humans, bats and sandflies [18–23], there is no
undisputable evidence that vertebrates play an important role in the natural history of sandfly-borne phleboviruses other than as dead-end hosts.

With recently discovered novel viruses, the geographic distribution of phleboviruses has drastically increased in both the new and the old worlds. The current situation depicts a high viral diversity with taxonomic groups containing pathogenic and non-pathogenic viruses. This merits to provide insight to address the question of medical and veterinary public health impact of all these viruses, which are poorly studied.

2.1 Sandfly-borne phleboviruses in the old world

In the old world (OW), the risk for the infection with sandfly-borne phleboviruses is high depending upon the presence and the density of vectors [24].

Historic and recent epidemics have been caused by sandfly-borne phleboviruses in the OW. In 1937, a massive outbreak occurred in Athens, Greece [25, 26]. During World War II (WWII), outbreaks were described among out-comer soldiers in the Mediterranean basin and Middle East (the Austrian Commission in Balkan countries, British and German troops in the Mediterranean area) [17, 26, 27].

After WWII, sandfly fever epidemics were reported in Belgrade, Serbia, where thousands were sick [28], with subsequent spread into other regions of the Balkans [29–32]. More recently, large epidemics were recorded in Cyprus, Iraq, Turkey and Ethiopia [33–36].

In addition, during the last two decades, an impressive number of novel phleboviruses was either isolated or detected by molecular techniques in France, Italy, Portugal, Greece, Albania, Croatia, Bosnia Herzegovina, Turkey, Iran, Tunisia, Algeria and Morocco [11–14, 23, 37–43]. Accordingly, the Mediterranean area witnesses a very high diversity of phleboviruses transmitted by sandflies [44]. This situation has raised the public health concerns in southern Europe, North Africa and in the Middle East [11, 13, 14, 39, 41, 45, 46].

OW sandfly-borne phleboviruses can be classified into three serological complexes, which are also regarded as taxonomic species, Salehabad species, Sandfly fever Naples species and Sandfly fever Sicilian tentative species.

Sandfly fever Sicilian and Sandfly fever Naples viruses cause fever, also known as “sandfly fever”, “Pappataci fever” or “three-day fever”. It is not possible to distinguish Sandfly fever Sicilian virus infection from Sandfly fever Naples virus infection based on clinical signs, which are virtually identical. They both cause abrupt illness with fever, headache, malaise, photophobia, myalgia and retro-orbital pain usually lasting 2–3 days after 3–5 day incubation [47].

Toscana virus, which belongs to the Sandfly fever Naples species, is so far the most pathogenic sandfly-borne phlebovirus due to its propensity to affect the central nervous system (CNS) and cause meningitis and meningoencephalitis [45]. Recently, Adria virus, identified in a case of meningitis, is the first virus belonging to the Salehabad species to display human pathogenesis [38].

2.1.1 Sandfly fever

Before WWII, the knowledge on sandfly fever was limited to clinical and epidemiological grounds. It was known that the fever caused by a filterable agent and transmitted by Phlebotomus papatasi sandflies [48, 49]. Early assumptions claimed that sandfly fever might be caused by distinct agents or viruses, despite it was impossible to distinguish them from the clinical symptoms [47, 50].

Between 1934 and 1939, human sera samples from sandfly fever virus-infected individuals (presumably containing the infectious agent) were inoculated into rhesus monkeys which presented with febrile illness [51]. Inoculation of infectious
human serum (i) into chick embryos showed lesions on the chorioallantoic mem-
brane, whereas (ii) no clinical sign were noticed after inoculation to guinea pigs,
rabbits or dogs [47]. Three out of four human volunteers without a previous sandfly
fever history developed the typical symptoms and fever after inoculation of 1 ml
of the pool of acute sandfly fever serum [47]. Subsequently, Phlebotomus papatasi,
Culex pipiens and Pulex irritans fed on sandfly fever acutely infected volunteers,
only P. papatasi was able to transmit the disease to naïve volunteers [47]. In 1937,
a massive outbreak occurred in Athens, Greece [26]. However, most of the outbreaks
occurred in non-native persons having entered the endemic area for the first time
recently such as soldiers [13]. During WWII, several outbreaks of sandfly fever
knocked down battalions of soldiers in both the Allied and Axis troops which were
stationed in the Middle East, the Mediterranean and North Africa [17, 52, 53]. The
suspected variety of causing agents was shown through isolation of two different
viruses names Naples and Sicilian virus from sick soldiers in southern Italy [47, 53].
The antigenic differences between Naples virus and Sicilian virus were confirmed
by human cross-immunity test, neutralization and complement fixation test [54].

2.1.2 Sandfly fever Naples virus

Sandfly fever Naples virus was first isolated from blood of a febrile soldier who
became ill when stationed in Naples, Italy in 1944 [47]. Afterward, Naples virus was
isolated again (i) from febrile patients in Egypt, Turkmenia, Pakistan, Italy, Cyprus,
and India [55–61] (ii) and from sandflies in Egypt (P. papatasi), in Italy (P. perniciosus)
and Serbia (P. perfiliewi) [19, 59, 62]. This was the first clue that Naples virus could
be transmitted by distinct vector species. A large and seminal neutralization-based
seroprevalence study, performed by Tesh et al. in 1976, showed that Naples virus was
likely to have a much wider distribution than initially believed from virus isolation
reports [24]; indeed, neutralizing antibodies were detected in human populations from
Bangladesh, Ethiopia, Greece, Iraq, Morocco, Saudi Arabia, Sudan, Djibouti, Turkey
and former Yugoslavia [24]. Highest rates (55–62%) were observed in Egypt, former
Yugoslavia (now Croatia), and Turkey. Another study reported neutralizing antibodies
in populations living in Turkmenia, Tajikistan, Uzbekistan, and Moldavia [63]. Clearly,
Naples virus circulation has drastically decreased after the 1980s, and the absence of
virus isolation or PCR detection, despite an increasing number of studies conducted in
previously endemic areas, question whether Naples virus has gone extinct or not [58].

2.1.2.1 Toscana virus

Toscana virus (TOSV) was first isolated from P. perniciosus in central Italy in
1971 [17]. It has taken 12 years to recognize that TOSV was capable to infect humans
and was able to cause not only sandfly fever, but also more severe infections char-
acterized by central nervous system (CNS) manifestations such as meningitis and
encephalitis. The first cases pointing out that Toscana virus causes CNS infections
came from two travelers returning from Italy and Portugal to the United States and
Sweden, respectively [64, 65]. This underlines the importance of travel-related
medicine in the surveillance of infectious diseases, particularly vector-borne infec-
tious diseases. Most of the Toscana virus case records are coming from important
or autochthonous human cases from the Mediterranean basin countries [45, 70].
Autochthonous cases in humans have been reported in Italy [71], Greece [72],
Cyprus [73], Croatia [74], Turkey [75, 76], Portugal [77] and France [78]. However,
these cases account for a minimal proportion of literature-described cases. In
most countries, where TOSV is endemic, it is not a notifiable disease; this together
with the absence of pathognomonic clinical sign, and the very limited number of
commercially available diagnostic assay may explain why autochthonous cases are drastically under detected, and that most of reported cases have affected travelers, the diagnosis of which is done when returning to their homeland. TOSV cases in travelers have been reported from Italy [66], France [67], Spain [68, 69] and Portugal [64], but also from the Mediterranean islands such as Cyprus [73], Elba [79, 80], Sicily [81] and Sardinia [82].

Seroepidemiological studies showed the presence of neutralizing antibodies against Toscana virus in several Mediterranean countries, however, the rates vary depending on the region Mediterranean basin considered as endemic region of Toscana virus [45, 71, 74, 78, 83–88].

Special attention must also be brought to the technique used for serology, since results can greatly vary due to different levels of cross-reactivity depending on the assay; for instance, the most stringent technique is based on neutralization assays whereas ELISA or immunofluorescence techniques are more prone to cross-reactivity between phleboviruses within the same antigenic group, but also between antigenically distinct phleboviruses [88–90].

The geographic distribution of sandfly-borne phleboviruses can also be measured by surveillance of non-human vertebrates such as domestic animals: such studies have demonstrated that TOSV was actively circulating in Portugal, Greece, Cyprus and Algeria [83–85] from the study of dog sera, and in Kosovo from studying cow and sheep sera [86]. TOSV was also isolated and/or detected in different phlebotomine species such as *P. perniciosus*, *P. perfiliewi*, *P. longicuspis*, *P. sergenti*, *P. neglectus* and Sergentomyia minuta [24] in Italy, France, Spain, Morocco, Tunisia, Algeria and Corsica [13, 18, 82, 87–91]. These results tend to suggest that TOSV can be transmitted by species other that *P. perniciosus* and *P. perfiliewi*. Such data are compatible with the fact that TOSV might be more widely dispersed than believed from the early studies. Of course, this merit to be further investigated through experimental studies addressing competence of these species for TOSV. TOSV belongs to the Sandfly fever Naples species.

To date, three genetic groups of TOSV have been recognized, and they are called lineages A, B and C. Although only one lineage has been identified in a given country, the co-circulation of two lineages has been shown in France, in Turkey, and in Croatia. It is possible that different lineages are transmitted by the same sandfly species and that sympathy may be frequent [91, 93, 97]. Recent Toscana virus antibody characterization assay performed with 41 patients diagnosed with Toscana virus meningitis of meningoencephalitis found that specific IgM titers were high during acute infection up to day 30, the presence of IgM antibodies lasts up to 6 months after acute infection in 71% of cases, however IgG antibodies against Toscana virus persisted at least 2 years in the patients, which gets in line with the fact that TOSV infection is associated with long-term, maybe lifelong immunity [88]. There is accumulating evidence that TOSV is one important cause of meningitis and encephalitis during the warm season and that it should be included in the panel of microorganisms to be systematically tested in clinical microbiology laboratory for patients presenting with febrile illness, CNS and peripheral nervous system manifestations.

2.1.3 Sandfly fever Sicilian virus

Sandfly fever Sicilian virus (SFSV) was first isolated, characterized and named Sicilian virus, from the serum of a US soldier, presenting with sandfly fever when he was stationed in Palerma (Sicily) after the landing of the Allied army forces in Italy, in 1943 during WWII [47]. Almost simultaneously, it was also described in sick US soldiers stationed in Egypt. Subsequent studies allowed isolation of SFSV in Egypt, India, Iran, Pakistan and Afghanistan [56, 98–100].
Accumulating direct (virus isolation or molecular detection) and indirect (sero-prevalence studies) data allowed to list the following countries as areas where SFSV was circulating: Bangladesh, Greece, Cyprus, Iraq, Morocco, Saudi Arabia, Somalia, Ethiopia, Sudan, Tunisia, Turkey, Turkmenia, Tajikistan, Uzbekistan, Azerbaijan, Moldavia, Croatia, Kosovo, France and Portugal [24, 33, 34, 61, 63, 83, 86, 101–103]. Beside the outbreaks described in the Allied and Axis forces during WWII, more recent epidemics were reported in Cyprus, in Turkey and in Ethiopia caused by genetic variants [29–36, 104]. Recent seroprevalence studies provided evidence that SFSV and its genetic variants were still actively circulating in Greece, Cyprus, Portugal and Kosovo [83, 84, 86]. Although Phlebotomus papatasi, Phlebotomus ariasi and P. major complex were indisputably identified as SFSV vectors, transmission might also be done by phlebotomies belonging to other species [20, 100].

2.1.4 Adria virus

Adria virus was first detected in 2005 from field-collected sandflies in Albania [39]. Genetic data consisting of partial sequence in the polymerase gene showed that Adria virus is much closely related with viruses belonging to the Salehabad species than with other phleboviruses belonging to the Sandfly fever Naples or to the Sandfly fever Sicilian species. In 2009, a 30-month-old patient was admitted to hospital in Greece for fever and seizure during summertime; his blood was tested positive for the presence of phlebovirus RNA, whose sequence was most closely related with Adria virus sequence [23]. Adria virus is the first, and so far the only member of the Salehabad species to be associated with human disease. Interestingly, the number of viruses identified in this species has drastically increased during the last decade. Thus efforts should now be deployed to investigate to what extent, Adria virus in particular but also other newly recognized Salehabad viruses have a medical impact.

2.1.5 Other phleboviruses

The last decade has been marked by discovery of an unprecedented number of sandfly-borne phleboviruses in old world phlebotomies. Although most of the remains to be classified or listed by the ICTV, they each belong to one of the three species aforementioned: Sandfly fever Naples, Sandfly fever Sicilian or Salehabad. Accordingly, they have drastically increased the genetic diversity within each of these species. Since several of these viruses were discovered in sandflies trapped in countries where phleboviruses had never been described before, the geographic range of circulation of the phleboviruses transmitted by sandflies has dramatically expanded. Sandfly fever Naples species shows an important genetic diversity which has motivated a proposed subdelineation into four groups [42]: subgroup I includes Tehran virus (Iran), Zerdali virus (Turkey) and Sandfly fever Naples virus strain YU 8–76 (Serbia); subgroup II contains the three genotypes of Toscana virus; subgroup III includes Sandfly fever Naples virus and subgroup IV comprises Massilia virus (France), Arrabiata virus (Portugal), Granada virus (Spain) and Punique virus (Tunisia) [11, 18, 37, 42, 46, 47, 105]. Whether viruses belonging to subgroup I and IV can infect humans and may cause disease is currently unknown.

Genetic and phylogenetic analyses show that viruses that can be grouped into the Sandfly fever Sicilian/Corfou virus group or tentative species can be subdivided into two clusters: (i) lineage I contains Sandfly fever Sicilian viruses together with the newly isolated Dashli virus [43] and (ii) lineage II includes Corfou virus together with Toros virus which were isolated from Greece and Turkey, respectively [42, 89]. During the last decade, the Salehabad virus species which contained initially only Salehabad and Arbia viruses has greatly increased by addition of newly discovered
viruses such as Adana virus, Alcube virus and Medjerda Valley virus, respectively, isolated from sandflies collected in Turkey, Portugal and Tunisia [37–40, 106]. Several other viruses were not isolated but discovered through sequencing a part of their genome such as Adria virus (Albania and Greece), Edirne virus (Turkey) and Olbia virus (France) [23, 39, 107, 108]. To date, Adria virus is the only virus belonging to the Salehabad species that was associated with a case of human disease.

Although a large number of these viruses have not been associated with cases of human or veterinarian diseases, it must be remembered that 12 years have passed between the discovery of Toscana virus and the first evidence that it was pathogenic for humans. It is, therefore, crucial to address the public health impacts of these newly described phleboviruses via seroprevalence studies and molecular virological investigations of clinical cases of fever of unknown origin and infections of the central nervous system during summer.

2.2 Sandfly-borne phleboviruses in the new world

2.2.1 Punta Toro virus

Medically speaking, it is the most important phlebovirus in the Americas. Punta Toro virus (PTV) was first identified in the blood of a febrile soldier who participated in military training in the jungle of the Panama Canal Zone, in 1966 [109]. PTV was isolated for the second time in the blood of an entomologist who was doing field collection of insects in the forested area of Darien Province in Panama [108]. Fever, headache, weakness, back, and retro-orbital pain were the common symptoms in both cases with 3–4 days duration. Several Punta Toro virus strains were isolated from sandflies and wild sentinel hamsters in Bayano district of Panama between 1975 and 1976 [109]. To date, PTV has been described only in Central America where several strains of the virus isolated from Lutzomyia (Nyssomyia) trapidoi and L. (Ny.) ylephiletor [16]. One strain was isolated from the blood of an apparently healthy wild-caught sloth in central Panama [110]. In 1974, a seroprevalence study showed that 5% of the children under the age of 20 and 27–40% of adults in Panama had specific antibodies [111]. In 2009, during the dengue surveillance programme in Panama, dengue virus-negative human samples were found to contain PTV RNA strains. Of the 201 tested sera from febrile patients, 27 (13.4%) were positive for PTV [112].

PTV has been used in several experimental studies [113–115]. Interestingly, when Syrian golden hamsters are inoculated with the Adames strain (PTV-A), they develop a fatal disease; in contrast, hamsters infected with the Baillet strain (PTV-B) do develop a disease but all survive the challenge [113].

2.2.2 Other phleboviruses

A large number of phleboviruses have been isolated from sandflies in Brazil, Panama and Peru [116, 117]. Several viruses have been classified into one the five following groups or species: Punta Toro, Candiru, Bujaru, Tapara and Frijoles species. However, those which were not classified were included in the tentative species category.

Cocle virus (Punta Toro species) was isolated from the serum of a febrile patient in Cocle province, Panama in 2009 [109]. Although it appears that Cocle virus belongs to a species which contains viruses transmitted by sandflies, the absence of entomological data does not allow to conclude about the vector involved in the natural cycle.

Oriximina, Turuna, and Ariquemes viruses (Candiru species) were isolated from Lutzomyia sp. sandflies in Brazil and Nique virus was isolated from Lutzomyia panamensis in Madre de Dios, Peru [116]. Although several viruses belonging to the Candiru virus species were identified from febrile patients, there is limited knowledge about the nature of the insect species that transmit these viruses.
3. Other pathogenic sandfly-borne viruses

3.1 Rhabdoviridae family

The Rhabdoviridae family includes 18 genera and 134 species with negative-sense, single-stranded RNA genomes [118]. In this family, members of the Vesiculovirus genus are able to infect at least 28 invertebrates and vertebrates including human [27, 119]. They cause vesicular stomatitis in human and domestic animals and they show a worldwide distribution both in the new and old worlds.

The disease manifests itself into two different forms in the United States; either as sporadic outbreaks with a 10-year intervals in the southwestern states (New Mexico, Arizona, Utah and Colorado) [120]. However, in some other states as Georgia, Alabama, North and South Carolina, the disease occurred yearly with clinical signs in cattle, pig and horses. Since 1970, viral activity has been focal and limited to isolated wildlife populations. [120]. In addition, the virus is considered as endemic in Colombia, Venezuela, Ecuador, Peru and Mexico, where outbreaks occur every year [121, 122].

In the old world, another vesiculovirus, Chandipura virus has recently emerged and caused severe encephalitis in human in different parts of India [6, 123]. The first isolation of Chandipura virus was from two patients with febrile illness in 1965 [6]. In 2003, the virus caused the first outbreak of acute encephalitis in children with high fatality rate (183 deaths out of 329 cases, 55.6%) in Andhra Pradesh, India [124]. The second outbreak has occurred in the eastern state of Gujarat with higher fatality rate in 2004 (>75%) [123]. Recently, an outbreak of acute encephalitis syndrome was recorded in Maharashtra, India with 43.6% fatality rate in children younger than 15-year-old [125].

Chandipura virus has been isolated from field-collected Phlebotomus spp. sandflies [7]. The virus was also detected in sandflies belonging to the genus Sergentomyia in India [126]. This virus has not only been detected in India but also in Senegal and Nigeria, respectively, from phlebotomine sandflies and hedgehog (Atelerix spiculus) [127]. This suggests that Chandipura virus is widely distributed and should be investigated in a more detailed manner.

3.2 Reoviridae family

Changuinola virus was first isolated from Lutzomyia sp. sandflies in 1960 in Panama [128]. Since then 12 isolates were described from phlebotomine flies [129]. Another, seven strains were isolated from 80 wild-trapped sloths (Bradypus variegatus and Choloepus hoffmanni) from Central Panamá [109]. Neutralizing antibody were detected in these two sloth species, despite they were virtually absent from other wild vertebrate species tested. Several strains were associated with prolonged or recrudescent viremias in slots [130]. Besides, one strain of Changuinola virus was identified from a febrile patient [8]. Changuinola virus can replicate in mosquito cell lines (C6/36 [Aedes albopictus cells], Culicoides sonorensis KC and African green monkey kidney Vero cells [131].

4. Conclusions

Sandfly-borne viral pathogens are widespread in both old and new worlds particularly in tropical/subtropical areas, and temperate zones including southern Europe, Asia, Africa, Australia and Central and South America [24]. Due to vector sandfly species activity, the sandfly-borne viral diseases peaks during summer which affect both urban, peri-urban and rural population, but mostly the communities with poor living conditions [3, 4] (Figure 1, Table 1).
Sandfly-Borne Viruses of Demonstrated/Relevant Medical Importance
DOI: http://dx.doi.org/10.5772/intechopen.81023

Figure 1.
Schematic overview of the sandfly-borne viruses, according to geographical regions.

<table>
<thead>
<tr>
<th>Group</th>
<th>Virus</th>
<th>Virus origin</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandfly-borne phleboviruses of demonstrated medical importance</td>
<td>Sandfly fever Naples virus Sabin</td>
<td>Blood sample</td>
<td>Italy</td>
</tr>
<tr>
<td></td>
<td>Sandfly fever Naples virus R-3</td>
<td>Human sera</td>
<td>Cyprus</td>
</tr>
<tr>
<td></td>
<td>Sandfly fever Naples virus Namru</td>
<td>Phlebotomus papatasi</td>
<td>Egypt</td>
</tr>
<tr>
<td></td>
<td>Sandfly fever Naples virus</td>
<td>Human</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td></td>
<td>Sandfly fever Naples virus</td>
<td>Human</td>
<td>Afghanistan</td>
</tr>
<tr>
<td></td>
<td>Sandfly fever Naples virus YU 8-76</td>
<td>Phlebotomus perfiliewi</td>
<td>Serbia</td>
</tr>
<tr>
<td></td>
<td>Toscana virus</td>
<td>Phlebotomus perniciosus</td>
<td>Italy</td>
</tr>
<tr>
<td></td>
<td>Toscana virus</td>
<td>Human CSF</td>
<td>Italy</td>
</tr>
<tr>
<td></td>
<td>Toscana virus</td>
<td>Pipistrellus kuhli brain</td>
<td>Italy</td>
</tr>
<tr>
<td></td>
<td>Toscana virus</td>
<td>Phlebotomus spp.</td>
<td>Italy</td>
</tr>
<tr>
<td></td>
<td>Toscana virus</td>
<td>Phlebotomus perniciosus</td>
<td>France</td>
</tr>
<tr>
<td></td>
<td>Toscana virus</td>
<td>Sergentomyia minuta</td>
<td>France</td>
</tr>
<tr>
<td></td>
<td>Toscana virus</td>
<td>human CSF</td>
<td>Croatia</td>
</tr>
<tr>
<td></td>
<td>Toscana virus</td>
<td>Phlebotomus neglectus</td>
<td>Croatia</td>
</tr>
<tr>
<td></td>
<td>Toscana virus</td>
<td>Phlebotomus spp.</td>
<td>Cyprus</td>
</tr>
<tr>
<td></td>
<td>Toscana virus</td>
<td>Human sera, urine</td>
<td>Turkey</td>
</tr>
<tr>
<td></td>
<td>Toscana virus</td>
<td>Phoenicopterus roseus,</td>
<td>Turkey</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pelecanus onocrotalus,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ciconia nigra</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toscana virus</td>
<td>Phlebotomus perniciosus</td>
<td>Morocco</td>
</tr>
<tr>
<td></td>
<td>Toscana virus</td>
<td>P. longicuspis, P. sergenti</td>
<td>Morocco</td>
</tr>
<tr>
<td>Group</td>
<td>Virus</td>
<td>Virus origin</td>
<td>Country</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>-------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Toscana virus</td>
<td>Phlebotomus spp.</td>
<td>Algeria</td>
<td></td>
</tr>
<tr>
<td>Toscana virus</td>
<td>Phlebotomus spp.</td>
<td>Tunisia</td>
<td></td>
</tr>
<tr>
<td>Toscana virus</td>
<td>Human CSF</td>
<td>Greece</td>
<td></td>
</tr>
<tr>
<td>Sandfly Fever</td>
<td>Sandfly fever Sicilian virus</td>
<td>Human sera</td>
<td>Italy</td>
</tr>
<tr>
<td>Sicilian Species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandfly fever Sicilian virus</td>
<td>Phlebotomus spp.</td>
<td>Iran</td>
<td></td>
</tr>
<tr>
<td>Sandfly fever Sicilian virus</td>
<td>Human sera</td>
<td>Cyprus</td>
<td></td>
</tr>
<tr>
<td>Sandfly fever Sicilian virus</td>
<td>Phlebotomus papatasi</td>
<td>Pakistan</td>
<td></td>
</tr>
<tr>
<td>Sandfly fever Sicilian virus</td>
<td>Phlebotomus ariasi</td>
<td>Algeria</td>
<td></td>
</tr>
<tr>
<td>Sandfly fever Sicilian virus</td>
<td>Phlebotomus papatasi</td>
<td>Algeria</td>
<td></td>
</tr>
<tr>
<td>Sandfly fever Sicilian virus</td>
<td>Human</td>
<td>Afghanistan</td>
<td></td>
</tr>
<tr>
<td>Sandfly fever Sicilian virus</td>
<td>Phlebotomus spp.</td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>Sandfly fever Sicilian virus</td>
<td>Human</td>
<td>Ethiopia</td>
<td></td>
</tr>
<tr>
<td>Sandfly fever Sicilian virus</td>
<td>Human sera</td>
<td>Cyprus</td>
<td></td>
</tr>
<tr>
<td>Sandfly fever Sicilian virus</td>
<td>Human sera</td>
<td>Turkey</td>
<td></td>
</tr>
<tr>
<td>Sandfly fever Sicilian virus</td>
<td>Phlebotomus major complex</td>
<td>Turkey</td>
<td></td>
</tr>
<tr>
<td>Dashli virus</td>
<td>Phlebotomus spp./</td>
<td>Iran</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sergentomyia spp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salehabad Species</td>
<td>Adria virus</td>
<td>Human blood</td>
<td>Greece</td>
</tr>
<tr>
<td></td>
<td>Adria virus</td>
<td>Phlebotomus spp.</td>
<td>Albania</td>
</tr>
<tr>
<td>New World Sandfly-borne phleboviruses of demonstrated medical importance</td>
<td>Punta Toro virus Adames</td>
<td>Human</td>
<td>Panama</td>
</tr>
<tr>
<td>Punta Toro virus Balliet</td>
<td>Human</td>
<td>Panama</td>
<td></td>
</tr>
<tr>
<td>Punta Toro virus</td>
<td>Human</td>
<td>Panama</td>
<td></td>
</tr>
<tr>
<td>Punta Toro virus</td>
<td>Human</td>
<td>Panama</td>
<td></td>
</tr>
<tr>
<td>Punta Toro virus</td>
<td>Sentinel hamster</td>
<td>Panama</td>
<td></td>
</tr>
<tr>
<td>Punta Toro virus</td>
<td>Sentinel hamster</td>
<td>Panama</td>
<td></td>
</tr>
<tr>
<td>Punta Toro virus</td>
<td>Lutzomyia spp.</td>
<td>Panama</td>
<td></td>
</tr>
<tr>
<td>Punta Toro virus</td>
<td>Human</td>
<td>Panama</td>
<td></td>
</tr>
<tr>
<td>Sandfly-borne Rhabdoviruses</td>
<td>Vesiculovirus</td>
<td>Horse</td>
<td>South Africa</td>
</tr>
<tr>
<td>Vesiculovirus Species</td>
<td>Bovine</td>
<td>Indiana, USA</td>
<td></td>
</tr>
<tr>
<td>Vesiculovirus</td>
<td>Bovine, equine</td>
<td>New Jersey</td>
<td></td>
</tr>
<tr>
<td>Vesiculovirus</td>
<td>Cattle, horse</td>
<td>Wisconsin, Minnesota, Dakota</td>
<td></td>
</tr>
<tr>
<td>Vesiculovirus</td>
<td>Cattle, horse</td>
<td>Argentine</td>
<td></td>
</tr>
<tr>
<td>Vesiculovirus</td>
<td>Cow, horse, pig</td>
<td>Venezuela</td>
<td></td>
</tr>
<tr>
<td>Vesiculovirus</td>
<td>Horse</td>
<td>Texas, Louisiana</td>
<td></td>
</tr>
<tr>
<td>Vesiculovirus</td>
<td>Horse</td>
<td>Kansas</td>
<td></td>
</tr>
<tr>
<td>Vesiculovirus</td>
<td>Horse</td>
<td>Colorado</td>
<td></td>
</tr>
<tr>
<td>Vesiculovirus</td>
<td>Swine</td>
<td>Colombia</td>
<td></td>
</tr>
</tbody>
</table>
Both molecular characterization and seroepidemiological studies demonstrated broad distribution of sandfly-borne phleboviruses in the old world in the Mediterranean region, in the African continent, in the Indian subcontinent, in the Middle East and in Central Asia. However, the pathogen sandfly-borne phleboviruses were recorded in the limited geographical area (Panama) in the new world with sporadic human cases. This must be due to (i) limited investigations in the new world; (ii) vector competence of phlebovirus in the new world; (iii) small-sized human population and (iv) lack of case report.

Table 1. Features of the medically important sandfly-borne viruses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Virus</th>
<th>Virus origin</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesiculovirus</td>
<td>Swine</td>
<td>Venezuela</td>
<td></td>
</tr>
<tr>
<td>Vesiculovirus</td>
<td>Swine</td>
<td>Missouri</td>
<td></td>
</tr>
<tr>
<td>Vesiculovirus</td>
<td>Swine</td>
<td>Colorado</td>
<td></td>
</tr>
<tr>
<td>Vesiculovirus</td>
<td>Cattle</td>
<td>California</td>
<td></td>
</tr>
<tr>
<td>Vesiculovirus</td>
<td>Horse</td>
<td>Arizona</td>
<td></td>
</tr>
<tr>
<td>Vesiculovirus</td>
<td>Cattle</td>
<td>Mexico</td>
<td></td>
</tr>
<tr>
<td>Vesiculovirus</td>
<td>Horse</td>
<td>Alabama</td>
<td></td>
</tr>
<tr>
<td>Vesiculovirus</td>
<td>Bovine, porcine</td>
<td>Guatemala</td>
<td></td>
</tr>
<tr>
<td>Vesiculovirus</td>
<td>Equine</td>
<td>Belize</td>
<td></td>
</tr>
<tr>
<td>Vesiculovirus</td>
<td>Bovine</td>
<td>Honduras</td>
<td></td>
</tr>
<tr>
<td>Vesiculovirus</td>
<td>Bovine</td>
<td>El Salvador</td>
<td></td>
</tr>
<tr>
<td>Vesiculovirus</td>
<td>Bovine, porcine</td>
<td>Nicaragua</td>
<td></td>
</tr>
<tr>
<td>Vesiculovirus</td>
<td>Bovine</td>
<td>Costa Rica</td>
<td></td>
</tr>
<tr>
<td>Vesiculovirus</td>
<td>Bovine</td>
<td>Peru</td>
<td></td>
</tr>
<tr>
<td>Chandipura virus</td>
<td>Human</td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>Chandipura virus</td>
<td>Sandfly</td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>Chandipura virus</td>
<td>Sandfly</td>
<td>Senegal</td>
<td></td>
</tr>
<tr>
<td>Chandipura virus</td>
<td>Sandfly</td>
<td>Nigeria</td>
<td></td>
</tr>
</tbody>
</table>

Sandfly-borne Reoviruses

<table>
<thead>
<tr>
<th>Species</th>
<th>Virus</th>
<th>Lutzomyia sp.</th>
<th>Panama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changuinola virus</td>
<td>Changuinola</td>
<td>Lutzomyia sp.</td>
<td>Panama</td>
</tr>
<tr>
<td>Changuinola virus</td>
<td>Rice rat, armadillo, sloth</td>
<td>Panama</td>
<td></td>
</tr>
<tr>
<td>Changuinola virus</td>
<td>Human</td>
<td>Panama</td>
<td></td>
</tr>
<tr>
<td>Changuinola virus</td>
<td>Lutzomyia sp.</td>
<td>Colombia</td>
<td></td>
</tr>
<tr>
<td>Changuinola virus</td>
<td>Bradypus variegatus, Choloepus hoffmanni</td>
<td>Panama</td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgements

This work was supported in part by the European Virus Archive goes Global (EVAg) project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 653316. Nazli Ayhan is a Post-Doctoral fellow supported by a IRD grant.
References

creation of one novel species within the Phlebovirus genus in the Bunyaviridae family. PLoS Neglected Tropical Diseases. 2017;11(12). DOI: 10.1371/journal.pntd.0005978

[56] Goverdhan MK, Dhanda V, Modi GB, Bhatt PN, Bhagwat RB, Dandawate CN, et al. Isolation of phlebotomus (sandfly) fever virus from sandflies and humans during the same season in Aurangabad District, Maharashtra state, India. The Indian Journal of Medical Research. 1976;64:57-63

[63] Gaidamovich SI, Obukhova VR, Sveshnikova NA, Cherednichenko IN, Kostiukov MA. Natural foci of viruses borne by Phlebotomus papatasi in the USSR according to a serologic study of the population. Voprosy Virusologii. 1978;556-560

[73] Eitrem R, Stylianou M, Niklasson B. High prevalence rates of antibody to three sandfly fever viruses (Sicilian, Naples and Toscana) among
Cypriots. Epidemiology and Infection. 1991;107:685-691. DOI: 10.1017/S0950268800049384

Clinical Virology. 2010;48:264-269. DOI: 10.1016/j.jcv.2010.05.011

[114] Perrone LA, Narayanan K, Worthy M, Peters CJ. The S segment of Punta Toro virus (Bunyaviridae, Phlebovirus)
is a major determinant of lethality in the Syrian hamster and codes for a type I interferon antagonist. Journal of Virology. 2007;81:884–892. DOI: 10.1128/JVI.01074-06

1994;50:570-574. DOI: 10.4269/ajtmh.1994.50.570

