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Abstract

Robust visual tracking for outdoor vehicle is still a challenging problem due to large object
appearance variations caused by illumination variation, occlusion, and fast motion. In this
chapter, k-sparse constraint is added to the encoder part of stacked auto-encoder network
to learn more invariant feature of object appearance, and a stacked k-sparse-auto-
encoder–based robust outdoor vehicle tracking method under particle filter inference is
further proposed to solve the problem of appearance variance during the tracking. Firstly,
a stacked denoising auto-encoder is pre-trained to learn the generic feature representation.
Then, a k-sparse constraint is added to the stacked denoising auto-encoder, and the
encoder of k-sparse stacked denoising auto-encoder is connected with a classification
layer to construct a classification neural network. Finally, confidence of each particle is
computed by the classification neural network and is used for online tracking under
particle filter framework. Comprehensive tracking experiments are conducted on a chal-
lenging single-object tracking benchmark. Experimental results show that our tracker
outperforms most state-of-the-art trackers.

Keywords: visual tracking, k-sparse stacked denoising auto-encoder, classification neural
network, robust visual tracking, particle filter

1. Introduction

The purpose of the visual tracking for outdoor vehicle is to estimate the state of outdoor
vehicle and provide current traffic state accurately and comprehensively. At present, it has
become an important part of intelligent transport system (ITS). However, robust tracking for
outdoor vehicle is still a challenging problem due to the complex and varying outdoor
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environment. Many researchers proposed solutions to the different challenging environment.
Rad [1] proposed a strategy that can solve the problem of occlusion during the tracking
process of moving vehicles on highway. But, the tracking accuracy of this method will be
greatly reduced when the lighting conditions change sharply. Zhang et al. [2] proposed a
multi-layer occlusion detection and processing framework that can be used to deal with the
problem of mutual occlusion between two vehicles. Faro et al. [3] further improved [2] by
introducing curvature scale space to segment occluded region accurately. Xin et al. [4] pro-
posed adaptive multiple cues integration for robust outdoor vehicle visual tracking in the
particle filter framework. This method has strong robustness against color interference and
partial or complete occlusion of vehicles. Although these existing methods have achieved
certain progress in outdoor vehicles visual tracking, these methods can only deal with the
occlusion problem between two vehicles or the occlusion of vehicles by other objects. How-
ever, in the actual traffic scene, the mutual occlusion between multiple vehicles often occurs
and faces the challenges of complex outdoor environments such as illumination variation (IV),
cluttered background (BC), and fast motion (FM). Therefore, the robust outdoor vehicles visual
tracking remains a thorny issue.

Existing visual object tracking algorithms are mainly divided into two major categories that
include generative model and discriminative model. The generative model learns the appear-
ance representation of the object and searches the candidate area that most closely matches the
object appearance template as the location of the object in the new frame. The discriminative
model treats the object tracking as a binary classification problem, using the learned character-
istics to distinguish the object and background information. Therefore, the extraction of robust
features is the key to the success of the object tracking technology. Traditional visual object
tracking methods rely on artificial features; the low-dimensional artificial features are not
robust to large appearance variation of object. Recently, deep learning shows promising per-
formance in automatic extracting feature that outperforms pre-defined handcraft feature
methods. Deep learning can map the original feature space to another feature space to learn
more abundant features. Recently, deep learning has been widely applied to image processing,
speech recognition, natural language processing, health care, robotics, and other fields for its
powerful feature learning capability. It has been proved that feature representation when
learnt in a deep learning way encourages sparsity. And k-sparse constraint can guarantee that
each input for a certain sparsity. At the same time, some scholars have applied it to video object
tracking technology. Due to the powerful feature representation ability of deep learning, the
robustness of visual object tracking technology has been greatly improved. Wang et al. [5]
proposed a fully convolutional networks tracker (FCNT) that uses convolutional neural net-
works to learn the characteristics of objects from large-scale classification datasets and further
analyses performance of the extracted features in the object tracking aspect. High-level features
are good at distinguishing different kinds of objects and are very robust to the appearance
variation of the object. Low-level features more focus on the local details of the object and can
be used to distinguish similar distractors in the background. FCNT can effectively prevent
object tracking drift based on the effective use of different layers of convolutional neural
network (CNN) features. Nam et al. [6] subsequently proposed the Multi-Domain Convolutional
Neural Networks (MDNet). Unlike [5], MDNet directly uses the tracking video data sets t rain,
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the deep learning model to obtain the universal feature representation of the object, and then
fine-tunes the network parameters for each particular video sequence in online tracking to
achieve more robust tracking. However, the tracking speed of MDNet is slow and cannot meet
the requirements of real-time performance. Existing research has demonstrated that sparseness
is encouraged when deep learning learns feature representations. Because sparse representa-
tion can reduce the complexity of the representation, which is crucial to improve the speed of
the object tracking algorithm, sparse constraints can be used to further optimize the deep
network [7, 8] and can make the original signal express more meaningful, which has been
verified by independent principal component analysis and sparse coding algorithm [9]. In
general, there are two ways to add sparse constraints into the deep network for sparse
representation: sparseness of the hidden layer response and weight sparseness between the
hidden layer and the input layer. In this chapter, we adopt the first method for sparse repre-
sentation. At the same time, we perform k-sparse constraint in neural network to keep only k
highest activities in hidden layers, which can maintain the sparse representation of each input
[10]. In other words, we add the k sparse constraint to the original stacked denoising auto-
encoder (SDAE) hidden layer unit and form kSSDAE, which is used as a feature extractor in
the target tracking to better learn the invariant feature of the object appearance. Therefore, the
application of kSSDAE in object tracking can overcome poor robustness problem and further
improve the robustness of visual tracking. The main contributions of this chapter are as
follows.

• We propose a new auto-encoder–based tracking method, namely kSSDAE tracker, to
solve the robust tracking for outdoor vehicles in complex environments, such as occlusion,
clutter background, illumination variation, and so on.

• We add the k-sparse constraint into the encoder part of stacked auto-encoder network to
learn more invariant feature of object appearance during the tracking.

• We evaluate our method on a challenging single-object tracking benchmark with 51 video
sequences and 11 attributes.

2. Related works

Deep learning has exhibited powerful automatic feature extraction capability in computer
vision tasks such as image classification, object detection, and so on. Visual object tracking is
one of the important research contents in the field of computer vision. The performance of the
tracker can be greatly improved due to the applications of the deep learning. Currently, two
kinds of deep learning models including convolution neural network and deep auto-encoder
are mainly used in the visual object tracking to perform automatic feature extraction.

2.1. Convolutional neural network for object tracking

Convolutional neural network (CNN) is a multi-layered supervised learning feedforward
neural network. A typical CNN structure includes convolutional layer, pooling layer, and full
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connection layer. Specially, the automatic feature extraction function of the CNN is mainly
realized through the convolution layer and pooling layer. The structure of the CNN deter-
mines that it has natural advantages for image processing, and it also shows a competitive
performance in visual tracking. In order to solve the problem of object drift caused by similar
or clutter background in visual tracking, Fan [11] et al. use CNN to learn spatial and temporal
invariance features between adjacent frames. Jin [12] combine a CNN with two convolutional
layers and two pooling layers and radial basis function (RBF) to perform feature extraction so
that it can better learn the invariable features of the object appearance in visual tracking. Hong
[13] use an offline-trained CNN to extract the distinctive feature map of the object in visual
tracking. Wang [14] train a two-level CNN by offline way and use it for online object tracking.
The network pays more attention to the learning of motion invariant features. Unlike most
CNN used for object tracking, the network designed by Wang [15] et al. is not a binarized
output classification result but instead generates a probability map to represent the potential
area of the object. The use of CNN greatly improves the accuracy of visual tracking, but high
computational complexity is still a limitation. In order to improve the real-time performance of
the tracking algorithm, Doulamis et al. [16] proposed a fast adaptive supervised algorithm for
object tracking and classification. In addition, although the pooling operation in CNN can
obtain invariant features to drop the recognition effect caused by the change of the object
appearance, however, it reduces the resolution of the image and leads to spatial information
loss. The loss of information of pooling operations is crucial for tracking [17]. Zhang et al. [18]
combined convolutional neural networks with spatial-temporal saliency-guided sampling for
object tracking in a correlated filter framework. The algorithm establishes an optimization
function to locate object positions based on significant region detection and significant motion
estimation. Different from other object tracking algorithms whose location estimation is based
on the last layer of the convolutional neural network, this algorithm combines intra-frame
appearance correlation information and inter-frames motion saliency information to ensure
accurate target location. All in all, the object tracking algorithm based on the convolutional
neural network can effectively track object, but the network structure is relatively complex,
consumes a lot of training time, and requires a large number of labeled training samples, and it
is difficult to achieve a balance between tracking accuracy and tracking speed.

2.2. Deep auto-encoder for object tracking

The basic idea of the deep auto-encoder (DAE) is to encode the input signal and then use the
decoder to reconstruct the original signal. The goal of the one is to minimize the reconstruction
error between the reconstructed signal and original signal. Compared with the method of
visual tracking using CNN, a DAE compresses the original signal by coding, removes redun-
dancy, and can reflect the more primitive nature of the original signal in a more concise
manner. Therefore, visual tracking using DAE has a lower calculation cost and is more suitable
for some occasions with high real-time requirements. In 2013, Wang et al. [19] proposed a
novel deep learning tracker (DLT), which for the first time uses a DAE for tracking. DLT
considers the object tracking task as a two-category problem. Firstly, using Tiny Images data
set to offline train a stacked denoising auto-encoder (SDAE) in an unsupervised manner to
obtain a universal image feature representation for object and then use it for online tracking.
The classification neural network is constructed and is fine-tuned in the tracking process to
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distinguish the target from the background. Soon after, many improved versions of the DLT
methods have been proposed. For example, Zhou [20] combined online AdaBoost feature
selection framework with SDAE for object tracking to effectively solve complex and dramatic
changes of the object appearance. Cheng et al. [21] used the SDAE network to implement
adaptive target tracking in an incremental deep learning approach under the dual particle f ilter
framework. Cheng et al. [22] implemented an object tracking algorithm based on enhanced
group tracker and SDAE in the framework of the popular tracking-learning-detection (TLD)
algorithm in order to solve the object drift of the tracking method based on the appearance
model. Due to the Haar-like features in the multi-instance learning (MIL) tracking algorithm
are difficult to reflect the shortcomings of the object itself and the external changes, Cheng et al.
[23] introduced SDAE to extract the effective features of the example image to achieve higher
precision tracking. In order to further improve the application performance of the stacked
denoising auto-encoder in video object tracking, some scholars have proposed many improved
tracking algorithms based on a stacked denoising auto-encoder. Dai et al. [24] proposed a local
patch tracking algorithm based on a stacked denoising auto-encoder. The algorithm partitions
the input image; then a feature extractor combining multiple stacked denoising auto-encoder is
used to describe the feature information of local patch and fuse their local features to achieve
object tracking. The local feature extraction greatly reduces the computation complexity com-
pared with the global feature representation. In the tracking process, the weight of each patch
of the object candidate region can be adaptively adjusted according to the confidence of the
corresponding network. Hua et al. [25] proposed a new visual tracking algorithm based on the
multi-level feature learning capability of the stack denoising auto-encoder under the particle
filter framework.

The training of the stacked auto-encoder network includes two stages of hierarchical pre-training
and online tracking. In the hierarchical pre-training stage, a description of multi-level image
features is obtained. In the online tracking stage, the network parameters are back-propagated
through the genetic algorithm to fine-tuning. The use of genetic algorithm in network parameter
adjustment effectively avoids the deficiency of traditional BP algorithm and further enhances the
robust performance of the network. These trackers can use SDAE for unsupervised feature
learning on data that lacks tagging, improving the problem of insufficient training data for deep
neural networks (DNNs). However, in some challenging and complex environments, these
trackers will fail to track the object. Therefore, we can further enhance the feature expression
capabilities of deep neural networks (DNNs) for more robust tracking.

In this chapter, we add the K-sparse constraint into the coding part of the SDAE to learn more
invariant feature of object appearance and propose a staked k-sparse-auto-encoder–based
robust tracking algorithm for outdoor vehicle under particle filter framework to solve the
problem of large appearance variations during the tracking.

3. The kSSDAE-based tracker

Overall structure of the proposed kSSDAE-based robust tracking algorithm for outdoor vehi-
cle is shown in Figure 1. The tracking system mainly includes three parts as follows: offline
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training of SDAE, construction of classification neural network, and estimation of object state.
The basic idea of the algorithm is: firstly, we adopt the pre-trained SDAE model proposed in
DLT [15] to learn the generic feature representation. Training data of the model are obtained
through sampling randomly 1 million images from Tiny Images data set [26]. Tiny Images
data set contains many kinds of the scene image. Before offline training, we need to pre-
process the input data with 32 � 32. Offline training way of the SDAE is unsupervised.
Secondly, we propose a kSSDAE model to learning more invariant feature of object appearance
during tracking and train a classification neural network to compute the confidence of each
particle. This is the key step to achieve robust tracking. Without the kSSDAE, the input cannot
be guaranteed to have a sparse representation to extract more effective features to adapt the
object appearance change. Finally, we estimate the object state under the particle filter frame-
work, that is, the object state of the current frame can be represented by the particle with
maximum confidence, which is calculated by classification neural network.

The specific implementation of the two main parts of the proposed tracking method will be
stated in detail in the next section.

3.1. Construction of classification neural network

The main function of this module is to compute the confidence of each particle during the
online tracking. Here, confidence is used for evaluating every particle’s reliability. In this
chapter, the classification neural network can be constructed by connecting the encoder of the
well-trained kSSDAE with a classification layer as shown in Figure 2.

In feedforward phase, the hidden activities function z can be computed as

z ¼ WTx þ b (1)

Figure 1. Overall structure of the proposed kSSDAE-based robust tracking algorithm for outdoor vehicle.
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where, x is the input vector, W is weight, and b is bias. We keep the k as largest hidden units
and set others to zero.

Reconstruction error can be computed using the sparsifiedz as follows:

E ¼ x � Wz þ b
0

� ��
�
�

�
�
�

2

2
(2)

In back propagate phase, weights can adjusted by the k highest activities back propagating the
reconstruction. The confidence computed by classification neural network reflects the credibil-
ity of decision in feature vector space of classifier. Ref. [27] has proved that when we use mean
square error or cross-entropy as the cost function, the output expectation of multi-layer neural
network is posterior probability of each class.

Let oi be the output of the neural network corresponding to the ki class, the output expectation
can be computed by the posterior probability

E oið Þ ¼P ki jxð Þ (3)

Generally, the class with maximum probability is taken as a decision. So, the confidence can be
obtained from the maximum output of the classification neural network.

c xð Þ ¼E maxoið Þ (4)

At the beginning of the visual tracking, we select the object to be tracked and fine-tune the
classification neural network using positive and negative samples. In the process of online
tracking, in order to adapt specific object appearance changes, we need to fine-tune the
classification neural network again when the confidence, which is calculated by the classifica-
tion neural network, is lower than the predefined threshold.

Figure 2. Architecture of classification neural network (1024-2560-1024-512-256-1).
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3.2. Estimation of the object state

Object state can be estimated by the object tracking algorithm, which can be viewed as a

problem to estimate the posterior distribution p si
t jy1:t

� �
of state st at time t according to

dynamic system p si
t jst� 1

� �
of the object state. In this chapter, object statest is represented by

six affine transformation parameters corresponding to horizontal translation, vertical transla-

tion, scale angle, aspect ratio, and skewness, and the state transition distributionp si
t js

i
t� 1

� �
of

each dimension can be modeled as a zero-mean normal distribution. The purpose of visual
object tracking is to estimate the object statest (location, scale, etc.) from image sequences
given all observations by any appropriate loss function, for example, maximum a posteriori
(MAP) estimation or minimum mean square error (MMSE) estimation. The main online track-
ing steps under the particle filter framework are as follows.

3.2.1. Computing observation probability

Each particle represents a possible instantiation of the state of the object being tracked. Most

likely, particle represents the object state at time t. Confidence ci
t of each particle can be

calculated by the classification neural network. When the maximum confidence is lower than

the predefined threshold � , that is, if max ci
t

� �
� � , we will fine-tune classification neural net-

work by reselecting positive and negative training samples. If max ci
t

� �
> � , we calculate the

observation probability by normalizing confidence

p yt js
i
t

� �
� ci

t , i ¼ 1, 2, …, n (5)

3.2.2. Updating weight

The weights for each particle can be updated according to the observation probability

wi
t ¼ wi

t� 1 �
p yt js

i
t

� �
p si

t js
i
t� 1

� �

q st jst� 1; y1:t

� � (6)

where, q st jst� 1; y1:t

� �
is importance distribution and is often assumed to follow a first-order

Markov process in which the state transition is independent of the observation. So the weights

are updated aswi
t ¼ wi

t� 1 � p yt js
i
t

� �
.

Finally, object state can be estimated by taking the particle with the largest weight at each time
step.

The implementation process of the proposed kSSDAE-based tracker is given as follows:

Algorithm Outdoor Vehicle Tracking

Input : Training samples; Video frame t.

Training SDAE offline;

Constructing classification neural network;
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Connecting the encoder part of kSSDAE and a classification layer as shown inFigure 2;

Adding k sparse constraint into classification neural network;

For t ¼ 1, 2,…, N frame number do

Sampling particles St ¼ si
t

� � n
i¼1;

Calculate confidence for each particle by (4);

If t = 1

Sampling positive and negative samples;

Fine-tuning classification neural network;

end

If max ci
t

� �
� �

Sampling positive and negative samples;

Fine-tuning classification neural network.

Else

Calculating observation probability by (5);

Updating weights by (6);

t ¼ t þ 1.

end

end

Output : Object state

4. Experiments

In this section, we conducted a quantitative experiment to evaluate the proposed tracker
(kSSDAE-T) on a popular single-object online tracking benchmark [28]. The benchmark data
set provides 51 fully annotated video sequences that have the 11 challenging attributes. Most
of these attributes exist in the real scene of outdoor vehicles. In order to better demonstrate the
performance of our tracker, we compare our tracker with other three popular trackers, includ-
ing deep learning tracker (DLT) [15], multi-task tracker (MTT) [29], and Circulant Structure of
Tracking-by-Detection with Kernels (CSK) [30].

The main related parameters in our experiment are set as follows.

• Learning rate is set to 0.2; sparsity k is set to 40.
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• Standard deviation of the conservation likelihood � is set to 0.001.

• The number of particles is 1000, and the particle’s confidence threshold� is set to 0.8.

• We use momentum gradient method to optimize the network parameters, and the
momentum parameter is set to 0.5.

4.1. Quantitative evaluation

In this chapter, we adopt two quantitative evaluation indicators: one-pass evaluation (OPE) of
tracking precision and success rate [28]. The precision takes the position error as the bench-
mark, and the precision plot shows the percentage of frames whose estimation position error is
less than the given threshold, and the horizontal axis of the precision plot is scaled to the range
[0,50]. The success rate is based on the overlap rate, and the success plot counts the number of
successful frames whose overlap is greater than the given threshold, and the horizontal axis of
the success rate is scaled to the range [0,1]. We use the score for the threshold = 20 pixels of each
precision plot and the area under curve (AUC) of each success plot to rank trackers and one-
pass evaluation (OPE) for robustness evaluation. The scores and rankings of precision and
success rate for four trackers on the overall performance and the 11 attributes performance are
shown in Table 1, and the best tracking results corresponding to the overall performance and
the 11 attributes are marked in bold, and the ranking score is shown after “ \. ” In Table 1, SV:
scale variation, OV: out-of-view, OPR: out-of-plane rotation, OCC: occlusion, LR: low resolu-
tion, IPR: in -plane rotation, IV: illumination variation, DEF: deformation, MB: motion blur,
BC: background clutters, FM: fast motion. The precision plot and success rate plot of four
trackers on overall performance is shown in Figure 3. The precision plots and success plots of

kSSDAE-T (Ours) DLT CSK MTT

Precision Success rate Precision Success rate Precision Success rate Precision Success rate

Overall 0.585\ 1 0.522\ 1 0.550\2 0.499\2 0.545\3 0.443\4 0.475\4 0.445\3

SV 0.597\2 0.535\2 0.602\1 0.547\1 0.503\3 0.352\4 0.461\4 0.398\3

OV 0.571\ 1 0.537\2 0.526\2 0.552\1 0.379\3 0.410\3 0.374\4 0.392\4

OPR 0.576\ 1 0.492\ 1 0.527\3 0.464\2 0.540\2 0.439\3 0.473\4 0.423\4

OCC 0.545\ 1 0.504\ 1 0.532\2 0.502\2 0.500\3 0.404\4 0.426\4 0.422\3

LR 0.383\3 0.358\3 0.309\4 0.297\4 0.411\2 0.397\2 0.510\ 1 0.506\ 1

IPR 0.551\ 1 0.479\ 1 0.502\4 0.439\4 0.547\2 0.457\3 0.522\3 0.463\2

IV 0.543\ 1 0.480\ 1 0.514\2 0.472\2 0.481\3 0.388\3 0.351\4 0.337\4

DEF 0.500\ 1 0.422\ 1 0.433\3 0.389\2 0.476\2 0.370\3 0.332\4 0.334\4

MB 0.359\1 0.309\3 0.328\3 0.321\2 0.342\2 0.336\ 1 0.308\4 0.288\4

BC 0.528\2 0.440\2 0.455\3 0.398\4 0.585\ 1 0.491\ 1 0.424\4 0.411\3

FM 0.460\ 1 0.421\ 1 0.417\2 0.418\2 0.381\4 0.380\4 0.401\3 0.385\3

Table 1. Tracking performance on four trackers.
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four trackers on 11 attributes performance are shown in Figure 4. In order to analyze the
performance of the tracker in every challenging attribute, [28] has marked the characteristics
of each sequence and constructed subsets of the sequences with different saliency characteris-
tics. For example, the OCC subset includes 29 sequences; it can be used for analyzing the
ability of the tracker to handle occlusion problem. In Figure 4, the number that appears in the
legend of each graph represents the ordinal number of sequence subset.

In overall performance of precision and success rate, our tracker is significant higher than the
other three trackers. The performance of our tracker ranks first in 8 out of 11 attributes on
precision as shown in Table 1. At the same time, the performance of our tracker ranks first in 6
out of 11 attributes on success rate. For the other attributes, except for LR attribute, our tracker
has the success rate very close to the best on SV and BC attributes. The success rate of our
tracker ranks 3 on MB attribute, but it is only lower than the best (CSK), 2.7%. Therefore, it can
be concluded that the proposed kSSDAE-T tracker is the best compared with DLT, CSK, and
MTT.

According to the precision plot and success rate plot of the four properties based on OCC, IV,
MB, and FM attributes, we can see that our tracker can handle the appearance changes caused
by most of outdoor environmental factors.

All in all, the proposed tracker can learn the invariable features of the object appearance and
deal with the problem of object appearance changing caused by most of the outdoor complex
environments. It can achieve better tracking results under most outdoor challenging conditions.

4.2. Qualitative evaluation

In order to further verify the effectiveness of the proposed tracking method in real scenarios,
we compared the four trackers (proposed kSSDAE-based tracker, DLT, CSK, and MTT) on four
outdoor vehicle sequences in real scenarios (Car4, CarDark, CarScale, and Suv). The attributes

Figure 3. The overall performance of precision plot and success rate plot on four trackers.
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Figure 4. The precision plots and success plots of four trackers on 11 attributes performance (SV, OV, OPR, OCC, LR, IPR,
IV, DEF, MB, BC, and FM).

Sequence Attribute

Car4 IV, SV

CarDark IV, BC

CarScale SV, OCC, FM, IPR, OPR

Suv OCC, IPR, OV

Table 2. Attributes of four sequences.
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of four sequences are listed inTable 2. The partial tracking results of the four video sequences
are shown in Figure 5.

In the video sequence Car4, when emerging IV and OCC near the #186, #233, and #318 frames, it
can be seen from the tracking results that the CSK and the MTT tracker have different degrees of
object drift. But, our tracker and DLT have achieved better tracking results. In addition, our
tracker can also accurately track the target vehicle when SV emerges in #321, #612, and #635
frames. In the video sequence CarDark, our tracker can still perform effective tracking when the
IV and BC emerging in #62, #152, #278, #301, #387, and #392 frames, while the MTT and CSK
trackers have track drift at #301 frame, and at #387 frame, they completely lost the target vehicle.
In the video sequence CarScale, our tracker can still show great performance when OCC was
occurred in #165 and #175 frames, but CSK tracker failed. In the video sequence Suv, despite the
OCC and similar background interference, our tracker can still accurately track the target vehicle.

To summarize, the proposed kSSDAE-based tracker can perform well in most complex out-
door environment.

5. Conclusion

In this chapter, we propose an improved auto-encoder–based approach for robust outdoor
vehicle visual tracking. Our tracker can adapt the change of the object appearance during the
tracking. The quantitative analysis on a standard evaluation platform shows that our tracker
has a better tracking performance compared with the other three state-of-the-art trackers and
has higher tracking precision in most of the outdoor vehicle tracking challenges. The

Figure 5. The sampled tracking results. Frame numbers are shown in the top left of each figure.
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qualitative analysis on four outdoor vehicle sequences in real scenarios shows that our tracker
can work well in most complex outdoor environment.

The unsupervised training of kSSDAE requires that bottom image cannot be too large, other-
wise it will consume a lot of training time. The training data are obtained by down-sampling
directly from a full-sized image leading to information loss. In order to avoid loss of input
image information, we can further improve the performance of outdoor vehicle tracking
algorithms by using stacked convolutional auto-encoder (SCAE) [31] to take the outdoor
vehicle tracking algorithm into application of life and industry.

Note: this chapter is an extended version of [32].
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