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1.1 Introduction

More and more parallel and distributed systems (cluster, grid and global computing) are both
becoming available all over the world, and opening new perspectives for developers of a large
range of applications including data mining, multimedia, and bio-co mputing. However, this
very large potential of computing power remains largely unexploited this being, mainly due to
the lack of adequate ard efficient software tools for managing this resource.
Scheduling theory is concerned with the optimal allocation of scarce resces to activities over time.
Of obvious practical importance, it has been the subject of extensive research since the early
1950's and an impressive amount of literature now exists. Thetheorydealing with the design of
algorithms dedicated to scheduling is much younger, but still has a significant history.
An application which will be scheduled on a parallel architecture may be represented by an
acyclic graph G = (V, E) (or precedence graph) where V designates the set of tasks, which
will be executed on a set of m processors, and where E represents the set of precedence
constraints. A processing time is allotted to each taski € V.
From the very beginning of the study about scheduling problems, models kept up with
changing and improving technology. Indeed,
€ In the PRAM' s model, in which communication is considered instantaneous, the
critical path (the longest path from a source to a sink) gives the length of the schedule.
So the aim, in this model, is to find a partial order on the tasks, in order to minimize an
objective function.
€ Inthe homogeneous scheduling delay model , each arc {,j) € E represents the potential
data transfer between task i and task j provided that i and j are processed on two
different processors. So the aim, in this model, is to find a compromise between a
sequential execution and a parallel execution.
These two models have been extensively studied over the last few years from both the
complexity and the (non)-approximability points of view (see (Graham et al., 1979) and
(Chen et al., 1998)).
With the increasing importance of parallel computing, the question of how to schedule a set
of tasks on a given architecture becomes critical, and has received much attention. More
precisely, scheduling problems involving precedence constraints are among the most
difficult problems in the area of machine scheduling and they are part of the most studied
problems in the domain. In this chapter, we adopt the hierarchical communication model
o (Bampis et al.,, 2003) in which we assume that the communication delays are not
homogeneous anymore; the processors are connected intaclustersand the communications
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inside a same cluster are much faster than those between processors belonging to different
ones.
This model incorporates the hierarchical nature of the communications using today's
parallel computers, as shown by many PCs or workstations networks (NOWSs) (Pfister, 1995;
Anderson et al., 1995). The use of networks (clusters) of workstations as a parallel computer
(Pfister, 1995; Anderson et al., 1995) has not only renewed the user's interest in the domain
of parallelism, but it has also brought forth many new challenging problems related to the
exploitation of the potential power of computation offered by such a system.
Several approaches meant to try and model these systems were proposed taking into
account this technological development:
€ One approach concerning the form of programming system, we can quote work
(Rosenberg, 1999; Rosenberg, 2000; Blumafe and Park, 1994; Bhatt et al., 1997).
€ In abstract model approach, we can quote work (Turek et al., 1992; Ludwig, 1995;
Mounié, 2000; Decker and Krandick, 1999; Blayo et al., 1999; Mounié et al., 1999; Dutot
and Trystram, 2001) on malleable tasks introduced by (Blayo et al., 1999; Decker and
Krandick, 1999). A malleable task is a task which can be computed on several
processors and of which the execution time depends on the number of processors used
for its execution.
As stated above, the model we adopt here is the hierarchical communication modelhich
addresses one of the major problems that arises in the efficient use of such architectures: the
task scheduling problerthe proposed model includes one of the basic architectural features
of NOWs: the hierarchical communication assumption i.e., a level-based hierarchy of
communication delays with successively high er latencies. In a formal context where both a
set of clusters of identical processors, and a precedence graphG = (V, E) are given, we
consider that if two communicating tasks are executed on the same processor (resp. on
different processors of the same cluster) then the corresponding communication delay is
negligible (resp. is equal to what we call inter-processor communication dela@n the contrary,
if these tasks are executed on different clusters, then the communication delay is more
significant and is called inter-cluster communication delay.
We are given m multiprocessor machines (or clusters denoted by IT¢) that are used to process
n precedence-constrained tasks. Each machinell’ (cluster) comprises several identical
parallel processors (denoted by 7L). A couple (¢ij, €i) of communication delays is associated
to each arc {, j) between two tasks in the precedence graph. In what follows, G; (resp. € ) is
called inter-cluster (resp. inter-processor) communication, and we consider that ¢; = ¢ . If
tasksi and j are allotted on different machines I1% and I17, then j must be processed at least;
time units after the completion of i. Similarly, if i and j are processed on the same machine

IT¢ but on different processors 7}, and 7} (with k # ke) then j can only start ¢; units of time
after the completion of i. However, if i and j are executed on the same processor, therj can
start immediately after the end of i. The communication overhead (inter-cluster or inter-
processor delay) does not interfere with the availability of processors and any processor
may execute any task. Our goal is to find a feasble schedule of tasks minimizing the
makespan,e., the time needed to process all tasks subject to the precedence graph.
Formally, in the hierarchical scheduling delay model a hierarchical couple of values
(cij, €i5) will be associated with (cij, €ij) < ¢ - V(i, j) € E such that:

€ if [I'=11and if 7, =7, then t; +p <,
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€ elseif [l =T/ and if 7}, 7 T, with k7 k' then t; +pi+e; <t

€ II'# [lJ.ti +pi+Gj < t

where t; denotes the starting time of the task i and p; its duration. The objective is to find a
schedule, i.e., an allocation of each task to a time interval on one processor, such that
communication delays are taken into account and that completion time (makespan) is
minimized (the makespan is denoted by Cmax and it corresponds to max;cy {t; + p;}). In
what follows, we consider the simplest case Vi €V, pi=1, gy =c=> 2,¢; = > 1 with ¢ ¢
Note that the hierarchical model that we consider here is a generalization of classical
scheduling model with communication delays ((Chen et al.,, 1998), (Chrétienne and
Picouleau, 1995)). Consider, for instance, that for every arc i j) of the precedence graph we
have ¢; = €. In such a case, the hierarchical mdel is exactly the classical scheduling
communication delays model.

Note that the values ¢ and | are considered as constant in the following. The chapter is
organized as follow: In the next section, some results for UET-UCT model will be presented.
In the section 1.3, a lower and upper bound for large communication delays scheduling
problem will presented. In the section 1.4, the principal results in hierarchical
communication delay model will be presented. In the section 1.5, an influence of an
introduction of the duplication on the comp lexity of scheduling problem is presented. In the
section 1.6, some results non-approximability results are given for the total sum of
completion time minimization. In the section 1.7, we will conclude on the complexity and
approximation scheduling problem in presence of communication delays. In Appendix
section, some classical\P, complete problems are listed which are used in this chapter
for the polynomial-time transformations.

1.2 Some results for the UET-UCT model

In the homogeneous scheduling delay model , each arc {;j) € E represents the potential data
transfer between task i and task j provided that i and j are processed on two different
processors. So the aim, in this model, is to find a compromise between a sequential
execution and a parallel execution. These two models have been extensively studied over
the last few years from both the complexity and the (non)-approximability points of view
(see (Graham et al., 1979) and (Chen et al., 1998)).

1. atany time, a processor executes at most one task;

2. ¥(i,j) €E,if ;= mjthent; = t + p, otherwise tj = ti+p; + G;.

The makesparwf schedule o is: C5, .. = max;ev (t; + p;)

In the UET-UCT model, we have ¥i,p;=1andV (i, j) €EE, g; = 1.

1.2.1 Unbounded number of processors

In the case of there is no communication delays, the problem becomes polynomial (even if
we consider that i, pi 7 1). In fact, the Bellmanalgorithm can be used.

Theorem 1.2.1 The problem of decidinghether an instance (P|prec,p = 1, 6 = 1|Cras
problem has a schedule of lengik polynomial, see (Veltman, 1993).

Proof

The proof is based on the notion of total unimodularity matrix, see (Veltman, 1993) and see
(Schrijver, 1998). _

Theorem 1.2.2 The problem of deciding vther an instance P|prec, p =1, g = 1|/Cruaz problem
has a schedule of length ¢\"P,complete see (Veltman, 1993).
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Proof
The proof is based on the following reduction 3SAT o Plprec, p=1, G = 1|Craz = 6.

T .
.+ variable =

- - <TG
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27
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Figure 1.1. The variables-tasks and the clauses-tasks

It is clear that the problem is in N'P. )

Let be 7 an instance of SSAT problem, we construct an instance 7 of the problem FP|prec, p

=1, G = 1|/Cirax in the following way:

€ For each variable x, six tasks are introduced: X1, X, X3, X, & and X, the precedence
constraints are given by Figure 1.1.

€ For each clausec = (x, Yo Z), Where the literals x;, y.and zcare occurrences of negated
or unnegated, 3 variables are introduced:
Tey Yoo Zes Tes Tos Yoy Yoo Zes Zes Teles YeZes TeZe and ¢ precedence constraints
between these tasks are also given by Figure 1.1.

€ If the occurrence of variable x in the clause c is unnegated then we add
r. — rand . — T.

€ If the occurrence of variable x in the clause c is negated, then we add . — & and
Te — T

Clearly, x. represents the occurrence of variable x in the clause c, it precedes the

corresponding variable tasks. This is a polynomial-time transformation illustrated by Figure

1.1.

It can be proved that, there exists a schedule of length at most six if only if there is a truth

assignment/ : V — {0,1} such that each clause irC has at least one true literal.

Corollary 1.2.1 There is no polynomial-time algorithm for the prob P|p-rr:(r, p=1 g

= 1|Cinaz with performance bound smaller than 7/6 untPs# NP, see (Veltman, 1993).

Proof

The proof of Corollary 1.2.1 is an immediate consequence of the Impossibility Theorem, (see

(Chrétienne and Picouleau, 1995), (Garey and Johnson, 1979)).

1.2.2 Approximate solutions wi  th guaranteed performance
Good approximation algorithms seem to be be very difficult t o design, since the
compromise between parallelism and communication delays is not easy to handle. In this
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section, we will present a approximation algorithm with a performance ratio bounded by
4/3 for the problem P|p-rr:(r, p =1, G = 1|Chuaz. This algorithm is based on a formulation on
a integer linear program. A feasible schedule is obtained by a relaxation and rounding
procedure. Notice that it exists a trivial 2-approximation algorithm: the tasks without
predecessors are executed at = 0, the tasks admitting predecessors scheduled att = 0 are
executed att = 2 and so on.
Given a precedence graphG = (V, E) a predecessdresp. successonf a taski is a taskj such
that (j, i) (resp. (i, j)) is an arc of G. For every taski € V, I'(i)
(resp.I"~(i)) denotes the set of immediate successors (resp. predecessors) ofWe denote the
tasks without predecessor (resp. successor) by Z (resp. U). We call sourceevery task
belonging to Z.
The integer linear program  The aim of this section is to model the problem P|p-rr:(r, p=1,
Gj = 1|/Ciaz by an integer linear program (ILP) denoted, in what follows, by TI.
We model the scheduling problem by a set of equations defined on the starting times vector
(tl,...,tn):
For every arc (, j) € E, we introduce a variable x; € {0, 1} which indicates the presence or not
of an communication delay, and the following constraints: Y(i, j) € E, t+p; + Xj < t;.
In every feasible schedule, every taski €V, U has at most one successor, w.l.0.g. call them
j € I''(i), that can be performed by the same processor ad at time t; = ti+p;. The other
successors ofi, if any, satisfy: Yk € I''(i),{ j}, t« > t+p + |. Consequently, we add the
~ +(;
constraints: Z z 2 7@ =1
JETT ()
Similarly, every task i of V,, Z has at most one predecessor, w.l.0.g. call thenj € "' (i), that
can be performed by the same processor a$ at times t; satisfying ti , (t ; +p) < 1. So, we add
the following constraints: Z zji 2 |7 (@) -1
JET (@)
If we denote by Cnax the makespan of the schedule, Vi €V, ti+pi < Cnax Thus, in what
follows,the following ILP  will be considered:

min Craz
V(i,7) € E, =z €{0,1}
VieV, t; >0

V(i,j) €EE, ti+pi+mzy <t
(1) VieV-U > x;>[H(@) -1

JETH(3)

VieV-2, Y x>l -1
Jer=(i)

Wi € 1/._ ?L-j + Pi S (quHu:

Let IIinf denote the linear program corresponding to II in which we relax the integrity

constraints x; € {0, 1} by setting x; € [0, 1]. Given that the number of variables and the
number of constraints are polynomially bounded, this linear program can be solved in

polynomial time. The solution of IIinf will assign to every arc (i, j) € E a value x; = g with 0 <
g < 1 and will determine a lower bound of the value of Cnaxthat we denote by o,

Lemma 1.2.10"/ is a lower bound on the value of an optimal solutionP|pree, p = 1, G
. llc'rma;a‘-
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Proof This is true since any optimal feasible solution of the scheduling problem must satisfy
all the constraints of the integer linear program TI.

Algorithm 1 Rounding Algorithm and construction of the schedule
Step 1[Rounding ]

Let be g the value of an arc , j) € E given by PL""/
if €ij < 0.5 = Tij = 0
if(,j' >05 = Tij =
Step JComputation of starting time ]
if i €Z then
ti=0
else
ti=max {t; + 1 +x;} with j€ T~ (i) and (j, i) € Aj,
end if
Step 2

[Construction of the schedule ]

LetbeG' = (V; E') where E' = E\{(i,j) € E|z;; = 1}{G' is generated by the 0, arcs}
Allotted each connected component of G' on a different processor. Each task is executed at it
starting time.

In the following, we call an arc (i,j) €EaO...ar¢resp. 1...ardf x; = 0 (resp.x; = 1).

Lemma 1.2.2Every job i€ V has at most one succes@@sp. predecessors) such that €.5 (resp.
g < 0.5).

Proof We consider a taski € V and his successorgy,..., jx such that €; j, < €;j, < ... < €; j,.
We know that Z?_l €i 3 > k- 1, then 2(-"!'-.}'2 > € 5o T €i.i; >k —1-— Z?:; €i g, Since that
eij, €[0,1], ZL:; €ij, < k—2. Then, 2¢;j, = 1. Therefore V | € {2,...,k} we have g >
0.5.We use the same arguments for the predecessors.

Lemma 1.2.3The scheduling algorithm described above provides a feasible schedule.

Proof It is clear that each taski admits at most one incoming (resp. outcoming) O-arcs.
Theorem 1.2.3 The relative performancg of our heuristic is bounded above %)yMunier and
Kénig, 1997).

Proof Let be a pathaxy — 9 — ... — x4 constituted by (k + 1) tasks such thatx (resp. (k
» X)) arcs values, given by linear programming , between two tasks are less (resp. least) than
1/2. So the length of this path is less than k+I+/2( k,x ) =3/2k, /2 x + 1. Moreover, by the
rounding procedure, the length of this path at most 2k , x + 1. Thus, we obtain
% < 4/3, Vx. Thus, for a given path, of value p* (resp. p) before (resp. after) the
rounding, admitting x arcs values less than 1/2, we have ﬁ’— < % < 4/3. A
critical path before the rounding phase is denoted by s*. It is true for the critical path after
the rounding procedure p = sthen, & < & = & < 4/3,

In fact, the bound is tight (see (Munier and Konig, 1997)).

1.2.3 Bounded number of processors
In this section, a lower and upper bound will be presented,
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Theorem 1.2.4 The problem of decidinghether an instance (Plprec, p = 1, G = 1|Char
problem has a schedule of length 3 is polynomial, see (Picouleau, 1995).
Theorem 1.2.5 The problem of decidinghether an instance (Plprec, p = 1, G = 1|Chaa

problem has a schedule of length N"P-complete, see (Veltman, 1993).
Proof
The proof is based on the ATP-complete problem Clique.

o 2 b 3 c 5
m =12 The dots lines
c between the two sets A and B

33 signify a complete graph
° - between the two sets

0 1 2 3 4
h TZ I\,Z Lb L(; Uy ... ug wy ... W7
. TE;. R’.;:, Lr L, '
Ty Ky Ly
ul Ty Ky yo ; i
uy Ty Ks 3 Ty ... I7 Y1 ...Y10
g w1 Ty Ya T Ty, Ty Ty Ts
Uy u"2 Lo _{,"5 | (| { f |
us wsy T3 Y6
UG W4 T4 Y7 K, 'Ky 'Kz ' Ky K5
w7 Wy Ty Ys
ug we T Yo Lo "Ly L ‘Lcﬁ Le

N 3 3

=] @ W o Wbk = O

999,333 9
=

—
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Figure 1.2. Example of polynomial-time reduction clique oc P|preec,p=1, g = 1|Crnaz

Let be | = L)_” the number of edges of a cligue of size k. Let be m' =

max{|V'|+l—k, |E|—l}, the number of processors of an instance ism = 2(m'+l). It is clear
that the problem is in \NP. The proof is based on the polynomial-time reduction clique
olPlprec, p=1, g = 1{Cinaz. Let be 7 a instance of the clique problem. An instance 7 of
Plpree,p=1,¢q = Y Cinan problem is constructed in the following way:
€ VVvEV the tasksTy, Ky are introduced,
€ VecEataskLeis created.

€ We add the following precedence constraints: T, — Ky, YV €V and Ty — Leif vis an

endpoint of e.

€ Four sets of tasks are introduced:

€ Xe={z=1...,.a=m—1—|V|+k},

e Yy={y=1,...,y=m—|E|+1},

€ Uy={u=1,..., u=m—k},

€ Wy={w=1,..., w=m—|V|}L

the precedence constraints are addedU, — Xy, Uy — Yy, Ww — Y,
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Figure 1.3. Example of construction in order to illustrate the proof of theorem 1.2.5
It easy to see that the graphG admits a clique of size kif only if it exists a schedule of length 4.

1.2.4 Approximation algorithm

In this section, we will present a simple algorithm which gives a schedule &™ on m
machines from a schedules> on unbounded number of processors for the P|prec, p =1, g

= 1|Ciaz. The validity of this algorithm is based on the fact there is at most a matching
between the tasks executed at; and the tasks processed at; + 1.

Theorem 1.2.6 From all polynomial-time algorithm h* with performance guaraipiéar the problem
15|'p-:-r:(:, p=10¢q = 1|{Cinaz, we may obtain a polynomial-time algorithm with performance
guarantee 1 + p) for the probler P|prec p = 1,6 = 1|/Cinaa.

L

Proof
ce  —1 o= 1 ce -1
. 1 Trar |X| mar |X| Traix |X| .
Craz < 2 [E51< 30 (155 +D) < (1=="1) + O
i=0 ) i=0 ) i=0 )
(‘?:-e’l.i'_l

) | Xl .
00 ~opl,m -0, h opt,m voplt, 1
( ) + C < ( + ( é CHH]'.’J" + pC max

“rnar — raxr eax
- T
i=0

For example, the 4/3-approximation algorithm gives a 7/3-approximation algorithm.
Munier et al. (Munier and Hanen, 1996) propose a (7/3 ,, 4/3 m)-approximation algorithm
for the same problem.

Algorithm 2 Scheduling on m machines from a schedule ¢°° on unbounded number of

processors
fori=0aCyS,, .1 do
Let be X; the set of tasks executed at ij in™° using a heuristic h*.

| X

T

The X; tasks are executed in[ = | units of time.

end for

1.3 Large communications delays

Scheduling in presence of large communication delays, is one most difficult problem in
scheduling theory, since the starting time of tasks and the communication delay are not be
synchronized.

If we consider the problem of scheduling a precedence graph with large communication
delays and unit execution time (UET-LCT), on a restricted number of processors, Bampis et
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al. in (Bampis et al., 1996) proved that the decision problem denoted by P|prec, ;= c> 2, p

= 1|Chnaq; for Cmax = ¢ + 3 is anN'P-complete problem, and for Cnax = ¢ + 2 (for the special
casec =2), they develop a polynomial-time algorithm. This algorithm can not be extended

for ¢ > 3. Their proof is based on a reduction from the NP-complete problem Balanced
Bipartite Complete Graph, BBC(&arey and Johnson, 1979; Saad, 1995). Thus, Bampis et al.
(Bampis et al., 1996) proved that the

Plpree,g=c>2,p = 1/Cn42 problem does not possess a polyiomial-time approximation
algorithm with ratio guarantee better than (1 + Hr#j) unlessP = NP.
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Figure 1.4. A partial precedence graph for the NT1 -completeness of the scheduling problem
P|p7'(.’(.’, G = c= 3 pi = ]-|C'rnm.-r

Theorem 1.3.1T/ze problem of deciding whetter instance o P|prec, 6, = ¢ ; p = 1|Ciar has a
schedule of length equal or less tf@t) is NP -complete with > 3 (see (Giroudeau et al., 2005)).
Proof

It is easy to see that P|prec, g =c; p= 1|Crnas=c+ 4 NP,

The proof is based on a reduction from TI;. Given an instance 7 of 1I;, we construct an
instance 7 of the problem P|p‘!'(‘.(,‘, G=c;p= ].|Cr”m_.r: c + 4, in the following way (Figure
1.4 helps understanding of the reduction):

n denotes the number of variables of 7* .

1. Foralll € V, we introduce (c + 6) variable-tasks: ¢, T 3i with j€{1,2,...c+
2}. We add the precedence constraints:ayy — I, oy — I, 3 — U, B} — 1, g — !,
with j€{1,2,...c+1}.

2. For all clauses of length three denoted by C; = (¥ VV 2 V ), we introduce 2 x (2 + c)
clguse-ta}sks ("v; and 43] €{1, 2, ...c + 2}, with precedence constraints:C}j — C}H and
4; — z"l’hL b €1{1,2,... c+ 1}. We add the constraints Ci — (with [ € {3/, 2',t'} and
1 — Al ,with 1 € {¢/,2,{'}.

3. For all clauses of length two denoted by Ci = (z Vv y), we introduce (c + 3) clause-tasks
D% je{q, 2, ... ¢+ 3} with precedence constraints: 1} — D} with j€{1, 2, ... ¢ +2} and
I = Di, 4 with I € {z.7}.
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The above construction is illustrated in Figure 1.4. This transformation can be clearly
computed in polynomial time.

Remark: [’ is in the clause C' of length two associated with the path D" —
Dy —...Dgo— Dyys.

It easy to see that there is a schedule of length equal or less thand + 4) if only if there is a
truth assignment I : V — {0, 1} such that each clause inC has exactly one true literal (i.e.
one literal equal to 1), see (Giroudeau et al., 2005).

For the special casec =, by using another polynomial-time trnasformation, we state:

Theorem 1.3.2 The problem of deciding vther an instance cP|prec, G = 2; p = 1{Cinaz has a
schedule of length equal or less than sN'P -complete (see (Giroudeau et al., 2005)).
Corollary 1.3.1 There is no polynomial-time algorithm for the probP|prec, g > 2; p = 1|Crax
with performance bound smaller thl + ‘_:_—1 unlessP # NP (see (Giroudeau et al, 2005)).

The limit between the NP-completeness and the polynomial-time algorithm by the
following Theorem.

Theorem 1.3.3 The problem of deciding whether an instancP|prec, G = ¢; p = 1/Cinaa with c€
{2, 3}has a schedule of length at m@st 2) is solvable in polynomial time (see (Giroudeau et al., 2005)).

1.3.1 Approximation by expansion

In this section, a new polynomial-tim e approximation algorithm with performance

guarantee non-trivial for the problem P|prec, G > 2; p = 1|Cinaz will be proposed.

Notation: We denote by o°°, the UET-UCT schedule, and by . the UET-LCT schedule.

Moreover, we denote by t; (resp. tf) the starting time of the task i in the schedule o (resp.

in the schedule o7).

Principle: We keep an assignment for the tasks given by a "good" feasible schedule on an

unrestricted number of processors . We proceed to an expansion of

the makespan, while preserving communication delays (¢ = &7 + 1+ ¢) for two tasks, i

and j with (i, j) € E, processing on two different processors. Consider a precedence graphG =

(V, E), we determine a feasible schedules°°, for the model UET-UCT, using a (4/3),

approximation algorithm proposed by Munier and Konig (Munier and Konig, 1997). This

algorithm gives a couple Y¥i €V, (t;, ) on the schedule c° corresponding to: t; the starting

time of the task i for the schedule ¢ and = the processor on which the taski is processed at

ti. Now, we determine a couple Vi €V, (£, ') on schedule o;° in the following way: The
_ {et1)

starting time tf = d x t; = 5—t; and, 7 = 7r'. The justification of the expansion coefficient

is given below. An illustration of the expansion is given in Figure 1.5.

Lemma 1.3.1The coefficient of an expansiord = <1,

Proof Consider two tasks i and j such that (, j) E-E, which are processed on two different
processors in the feasible schedulec™. Let be d a coefficient d such that t{ = d x t; and
r‘j =d X t;. After an expansion, in order to respect the precedence constraints and the
communication delays we must have tj = t; + 1 + ¢, and so

) c+1 c+1 . . &
dxti—dxtj>ct+l,d= 37, d> 5 tis sufficient to choose d = 1) d

Lemma 1.3.2An expansion algorithm gives a feasible schedule for the problem den P|prec,
G=C=2p= 1|Craz.

Proof It is sufficient to check that the solution given by an expansion algorithm produces a
feasible schedule for the model UET-LCT. Consider two tasksi and j such that (i,j) € E. We
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denote by m;, (resp. ;) the processor on which the taski (resp. the task;) is executed in the

schedule °°. Moreover, we denote by 7! (resp. ?Tj,-) the processor on which the taski (resp.

the task ) is executed in the schedules:®. Thus,

€ If m =mthen 7w = ?Tj,-. Since the solution given by Munier and Koénig (Munier and
Kénig, 1997) gives a feasible schedule on the model UET-UCT, then we havei +1 < {;,
2oe+1< G+ 1<es+ G <6

€ Ifm#mthen 7} # T We have t; + 1+ 1 < tj, 2516 +2 < 251515 +(c+ 1) < 1§

kK k+1k+2k+3
e T T T

B =
m2 -z

Model UET-UCT
communication delay

(e+Dk  (c+Dk (c+1)(k+1) (ct1)(k+1)
3 3 1 2 2 +1
™ T [ - T Yy
=
mo | $ =
L N . t — = (c+1)(k+2) 1
Model UET-LCT (et l)(h2) z T

communication delay

Figure 1.5. lllustarion of notion of an expansion

Theorem 1.3.4 An expansion algorithm gives 2{“:”
1_)|p'!':”.(.', G=Cc=2,p= 1|'Cnm.-a‘.
Proof

We denote by C"_ (resp. Cir,) the makespan of the schedule computed by the Munier
and Konig (resp. the optimal value of a schedule ). In the same way we denote by C'"**

“max
~opl .

(resp. Cpthid) the makespan of the schedule computed by our algorithm (resp. the optimal
value of a scheduleo?®).
We know that C,. < 4C.. Thus, we obtain

‘max =
Bt (c+1) ~h {e+1) ~¢ (e41) 4 ~opt ;
C iih‘}.?' — 2 C mar 2 ("r:um' < 23 (-"ma T < 2(c+1 }
opl,e T opt,c —_ vopt - W pt —_ - .
(:mlu.r ("r:'rru x C rJ{u x C rr{u.a' 3

This expansion method can be used for other scheduling problems.

~approximation algorithm for the problem

1.4 Complexity and approximation  of hierarchical scheduling model

On negative side, Bampis et al. in (Bampis et al., 2002) studied the impact of the hierarchical
communications on the complexity of the associated problem. They considered the simplest
case, i.e., the problem P(P2)|prec; (cij,€i;) = (1,0);p; =1|Cypas» @nd they showed that
this problem did not possess a polynomial-tim e approximation algorithm with a ratio
guarantee better than 5/4 (unless P = N'P).
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Lower bound
(35, €5) Crnaz References
(1,0) p>5/4 see (Bampis et al., 2002)
(2,1) p=>6/5 see (Giroudeau, 2005)
(e,d) | p=>1+ H]L—,‘ see (Giroudeau and Konig, 2004)

Table 1.1: Previous complexity results for unbounded number of machines for hierarchical
communication delay model

Recently, (Giroudeau, 2005) Giroudeau proved that there is no hope to find a p-
approximation with p < 6/5 for the couple of communication delays ( ¢j, €j) = (2,1). If
duplication is allowed, Bampis et al. (Bampis et al., 2000a) extended the result of (Chrétienne
and Colin, 1991) in the case of hierarchical communications, providing an optimal algorithm

for P(PQ)lp-rmt:_ (cij. €i5) = (1,0)p = 1; dup|Cipnaq. These complexity results are given in
Table 1.1.

On positive side, the authors presented in (Bampis et al., 2000b) a 8/5-approximation
algorithm for the problem P(P2)|prec; (cij,€i;) = (1,0);p = 1|Cyuae which is based on an
integer linear programming formulation. They relax the integrity constraints and they

produce a feasible schedule by rounding. This result is extended to the problem

P(P2)|prec; (cij, €i5) = (1,0);p = 1|/Cyaz leading to a AL __approximation algorithm (see

2+ 1
below).
The challenge is to determinate a threshold for the approximation algorithm concerning the
two more general problems: P(Pl = 4)|prec;(cij,€i;) = (¢,1);pi = 1|Chae and

P(PlL > 4)|prec; (cij, €ij) = (e, )ipi = 1|Crmaz With ' <c.

Recently, in (Giroudeau et al., 2005), the authors proved that there is no possibility of
finding a p-approximation with p <1 + I/( ¢+ 4) (unlessP = N"P) for the case where all tasks
of the precedence graph have unit execution times, where the multiprocessor is composed of
an unrestricted number of machines, and where c denotes the communication delay
between two tasks i and j both submitted to a precedence constraint and which have to be
processed by two different machines (this problem is denoted in the following UET-LCT
(Unit Execution Time Large Communic ation Time) homogeneous scheduling
communication delays problem). The problem becomes polynomial whenever the
makespan is at most € + 1). The case of ¢ + 2) is still partially opened. In the same way as
for the hierarchical communication delay model , for the couple of communication delay
values (1,0), the authors proved in (Bampis et al., 2002) that there is no possibility of finding
a p-approximation with p < 5/4 (this problem is detailed in following the UET-UCT
hierarchical scheduling communication delay problem).

Theorem 1.4.1 The problem of decidingwhether an instance ofP(Pl > 4)|prec;
(ciiv€ii) = (c.c)ipi = 1|Cmaz having a schedule of length at m@st 3) is N'P-complete, see
(Giroudeau and Kénig, 2004).

Corollary 1.4.1 There is no polynomial-timealgorithm for the problemP (P! = 4)|prec;
(cij €ii) = (c,€):pi = 1|Cpuqe With ¢ > d performance bound smaller than h% unlessP #
NP, see (Giroudeau and Koénig, 2004).

The problem of deciding whether an instance of P(Pl)[prec:(cij.€;5) = (¢ >
0,¢');p; = 1|Cirae having a schedule of length at most (c + 1) is solvable in polynomial
time since | and c are constant.
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Inthe same way as the section 2.2, the aimis to model the problem

P(P2)|prec: (¢ij.€;5) = (1,0);p; = 1|Ciaax by an integer linear program (ILP) denoted, in
what follows, by TI.

In this section, we will precise only the difference between the ILP given for the problem
F_I|p?‘e(:: Cij = Lip; = 1 Cinae @nd IJ(‘PQNF”.(“:: ((:U 1 F“"J.) = (1 ’ (]) pi 21 |C.mu.1;'

In every feasible schedule, every taski € V , U has at most two successors, w.l.o.g. call
them ji and j, € I'*(i), that can be performed by the same cluster as at time tj; =tz = t; + p.
The other successors of i, if any, satisfy: Yk € TV(i)—{j1,jo}, th = ti +pi + L
Consequently, the constraints: 2_jer+(;) Lij 2| (i)| — 2 are added.

Similarly, every task i of V, Z has at most two predecessors, w.l.o.g. call themj; and j, €
"~ (i), that can be performed by the same cluster asi at times tj1 , tj> satisfying ti, ( tj1 +pj) <
1andti, ( t2+p2) < 1. So, the following constraints: > jer- (i) Zji = [T (9)| — 2 are added.
The above constraints are necessary but not sufficient conditions in order to get a feasible
schedule for the problem. For instance, a solution minimizing ( Cnax for the graph of case (a)
in Figure 1.6 will assign to every arc the value 0. However, since every cluster has two
processors, and so at most two tasks can be procesed on the same cluster simultaneously,
the obtained solution is clearly not feasible. Thus, the relaxation of the integer constraints,
by considering 0 < x; < 1, and the resolution of the resulting linear program with objective
function the minimization of Cnax gives just a lower bound of the value of Crax

In order to improve this lower bound, we consider every sub-graph of G that is isomorphic
to the graphs given in Figure 1.6 -cases (a) and (b). It is easy to see that in any feasible
schedule of G, at least one of the variables associated to the arcs of each one of these graphs
must be set to one. So, the following constraints are added:

€ For the case (a):

Yi,j, k1, meV, such that (, i), (, k), (, K), (, m) € E, Xj + Xjx + X+ Xim = 1.

€ For the case (b):

Vi, j,k I,meV, such that (, j), &, j), &, I), (M, ) € E, Xjj + X + X+ Xmi > 1.

Thus, in what follows, the fo llowing ILP will be considered:

min Cias

V(i,j) € E, zi; € {0,1}

VieV, t: >0

Y(i,j) € E, ti+pit+xy <t

YieV -U, > x> |0 -2
(IT) jer+(i)

YieV - Z, > mi > T(@E)| -2

Jer— (i)
Vi, j. k. L,m e VI\(4,1), (7, k), (I, k), (I,m) € E, Tji + Tk + i + T > 1
Vi, gk, lomo€ VI(i, 1), (k. 4), (K, D), (m, 1) € E, xi + Tgj+ Th + T = 1
Viel, Li+pi < C‘m(u'

Once again the integer linear program given above does not always imply a feasible solution
for the scheduling problem. For instance, if the precedence graph given in Figure 1.7 is
considered, the optimal solution of the integer linear program will set all the arcs to O.
Clearly, this is not a feasible solution for our scheduling problem. However, the goal in this
step is to get a good lower bound of the makespan and a solution -eventually not feasible-
that we will transform to a feasible one.
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Figure 1.6. Special sub-gaphs considered in the ILP
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Figure 1.7 An optimal solution of the ILP TI does not always imply a feasible solution

Let IIinf denote the linear program corresponding to II in which we relax the integrability
constraints x; € {0,1} by settingx; € [0,1]. Given that the number of variables and the number
of constraints are polynomially bounded, this linear program can be solved in polynomial
time. The solution of IIinf will assign to every arc (i, j) € E a value x;j = g with 0 = g =1 and
will determine a lower bound of the value of Cnaxthat we denote by ©/.
Lemma 1.41 ©™ is a lower bound on the value of an optimal solution for
P(P2)|prec; (cijs €i5) = (1,0);p; = 1|Crnga.
Proof
See the proof of Theorem 1.2.1.
We use the algorithm 1 for the rounding algorithm by changing the value rounded: g; <0.25
instead g < 0.5 The solution given by Step lis not necessarily a feasible solution (take for
instance the precedence graph of Figure 1.7), so we must transform it to a feasible one.
Notice that the cases given in Figure 1.6 are eliminated by the linear program. In the next
step we need the following definition.
Definition 1.4.1 A critical path with terminal vertex € V is the longest path from an arbitrary
source of G to task i. The lengiha path is defined as the suntle# processing times of the tasks
belonging to this path and of the valugdor every arc in the path.
1. Step 2[Feasible Rounding]: We change the integer solution as follows:
a) |Ifiis a source then we keep unchanged the values of; obtained in Step 1.
b) Leti be a task such that all predecessors are already examined. Lef; be the subset
of incoming arcs of i belonging to a critical path with terminal vertex the task i.
i) If the set A, contains a0-arc,then all the outcoming arcs x; take the value 1.
i) If the set A, does not contain any 0-arc(all the critical incoming arcs are valued to
1), then the value of all the outcoming arcs x; remains the same as inStep 1,and all
the incoming 0-arcsare transformed to I-arcs.
In Step | b) iichanging the value of an incoming O-arcto 1 does not increase the length of any
critical path having as terminal vertex i, because it exists at least one critical path with
terminal vertex i such that an arc (, i) € E is valued by the linear program to at least 0.25 (g;
= 0.25), and sox; is already equal to 1.
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Lemma 1.4.2 Every job i€ V has at most two success@resp. predecessors) such thake).25
(resp. £< 0.25 and The scheduling algorithm described above mswdeasible schedule.
Theorem 1.4.2 The relative performangt of our heuristic is bounded above_,faynd the bound is
tight, see (Bampis et al, 2003).

Proof

See the proof of the Theorem 1.2.3.

1.5 Duplication

The duplication of the tasks has been introduced first by Papadimitriou and Yannakakis
(Papadimitriou and Yannakakis, 1990) in order to reduce an influence of the communication
delays on the schedule. In (Papadimitriou and Yannakakis, 1990), the authors develop a 2-
approximation algorithm for the problem Plprecicij = ¢ > 2:p; = 1;dup|Chras. The
problem P|prec; SCT|Ciae (the problem Plpree;c;; = 1:p; = 1|Ciuae is a subproblem of
P|prec; SCT|Cinae) becomes easy. In the following, we will describe the procedure. We
may assume w.l.0.g. that all the copies of any taski € V start their execution at the same
time, call it t;.

1.5.1 Colin-Chrétienne Algorithm see (Chrétienne and Colin, 1991)

The algorithm uses two steps: the first step computes the release times, and the second step
use a critical determined from the first step in order to produces a optimal schedule in
which all the tasks and their copies are executed at their release times.

, 0
4 3 ¢2 1 3¢ a

ae (ro._ i __-o_f . b |0

. TS ' 2 c |4

N i g 3 ;.I‘ d |4

AL R

2 N a6

b3 1 e 1 n3 h |6
) i |11

Figure 1.8.Pg problem

The Py problem given by Figure 1.8 will be il lustrated the algorithm. The algorithm which
computes the releasetimes is given next:

Algorithm 3 Release date algorithm and Earliest schedule
fori:=1tondo
if PRED() = @ then
b:=0
else
C:=maXbctpc+ 6i | K € PRED(i)}
Let bessuch that :bs + ps + ¢ = C;
b :=maxbs + ps: ma{btpc+ i | k € PRED(i) - {s}}}.
end if
end for
Each connected componentG, = (V; E¢) on different processor;
Each copy is executed at his release time.
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Without lost of generality, all copies of the task i admit the same starting , denoted by t;, as

the the taski. A arc (i, j) € Eis a critical arc if b+p; +¢; > bj. From this definition, it is clear that

if (i, j) is a critical arc, then in all as soon as possible schedule, each copy of a tagkmust be
preceded by a copy of a taski on the same processor. In order to construct a earliest
schedule, each critical path is allotted on a processor, and each copy is executed at his
release date.

Theorem 1.5.1 Let be pthe starting time computed by the pealure. For all feasible schedule for a
graph G, the release date ofaak i cannot be less than Bl sub-graph is spanning forest. The
procedure gives a feasible schedule and the overall complexity)is O(n

al(eij, €i5) Lower bound References
P|(1,1), dup p=>5/4d see (Bampis et al., 2000b)
P|(1,1), dup poly see (Chrétienne and Colin, 1991)
P|(c,c), dup p>1+ (+; see (Bampis et al., 1996)
Pl(e,¢), dup NP-complete | see (Papadimitriou and Yannakakis, 1990)
P(P2)|(1,0), dup p=>4/3 see (Angel et al., 2002)
P(P2)|(1,0), dup poly see (Bampis et al., 2000a)
P(P2)|(¢,e),dup | p>1+ % see (Giroudeau and Konig, 2004)
P(P2)|(e, ¢), dup

Table 1.2: Complexity results in presence of duplication

G
2. d
. . .
g
b® e ‘.h

Figure 1.9 The critical sub-graph

An earliest schedule of the precedence graphPyis given by Figure 1.10.

a c g
b e

f ;
0123456789 101112

Figure 1.10: An earliest schedule ofPg

The study of duplication in presence of unbounded number of processors is theoretical.
Indeed, the results on unbounded processors do not improved the results on limited
number of processors. So, concerning the hierarchical model, since the number of processors
per cluster is limited, the authors in (Bampis et al., 2000a) are investigate only on the
theoretical aspect of associated scheduling problem.
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