
��������������������������������������
�������������
�����

���	��������������������������������
��
�

����������������������������������
�
�������

	�����������������
���	�
�

���������������������•������������������������������������•�

•��������������������•�����••••����������•���

•������������������•�������

��������� �� � ��•���� ��� ����������������������• ����•��������

������������ ��� ������ �� �� �� ������

•���������� �� �� ��� ��­��� �

���������������������

€�•������

���#�����0�#���
�,�2�#�!�&���.�#�,�A
�2�&�#���5�-�0�*�"�a�1���*�#���"�'�,�%���.�3� �*�'�1�&�#�0���-�$

���.�#�,�����!�!�#�1�1��� �-�-�)�1
���3�'�*�2��� �7���1�!�'�#�,�2�'�1�2�1�A���$�-�0���1�!�'�#�,�2�'�1�2�1

12.2%

133,000 165M

TOP 1%154

5,400

4

Scheduling with Communication Delays

R. Giroudeau and J.C. König
LIRMM
 France

1.1 Introduction

More and more parallel and distributed systems (cluster, grid and global computing) are both
becoming available all over the world, and opening new perspectives for developers of a large
range of applications including data mining, multimedia, and bio-co mputing. However, this
very large potential of computing power remains largely unexploited this being, mainly due to
the lack of adequate and efficient software tools for managing this resource.
Scheduling theory is concerned with the optimal allocation of scarce resources to activities over time.
Of obvious practical importance, it has been the subject of extensive research since the early
1950's and an impressive amount of literature now exists. The theory dealing with the design of
algorithms dedicated to scheduling is much younger, but still has a significant history.
An application which will be scheduled on a parallel architecture may be represented by an
acyclic graph G = (V, E) (or precedence graph) where V designates the set of tasks, which
will be executed on a set of m processors, and where E represents the set of precedence
constraints. A processing time is allotted to each task i V.
From the very beginning of the study about schedu ling problems, models kept up with
changing and improving technology. Indeed,
€ In the PRAM' s model , in which communication is considered instantaneous, the

critical path (the longest path from a source to a sink) gives the length of the schedule.
So the aim, in this model, is to find a partial order on the tasks, in order to minimize an
objective function.

€ In the homogeneous scheduling delay model , each arc (i,j) E represents the potential
data transfer between task i and task j provided that i and j are processed on two
different processors. So the aim, in this model, is to find a compromise between a
sequential execution and a parallel execution.

These two models have been extensively studied over the last few years from both the
complexity and the (non)-approximability points of view (see (Graham et al., 1979) and
(Chen et al., 1998)).
With the increasing importance of parallel computing, the question of how to schedule a set
of tasks on a given architecture becomes critical, and has received much attention. More
precisely, scheduling problems involving precedence constraints are among the most
difficult problems in the area of machine scheduling and they are part of the most studied
problems in the domain. In this chapter, we adopt the hierarchical communication model
(Bampis et al., 2003) in which we assume that the communication delays are not
homogeneous anymore; the processors are connected into clustersand the communications O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.i-
te

ch
on

lin
e.

co
m

Source: Multiprocessor Scheduling: Theory and Applications, Book edited by Eugene Levner,
ISBN 978-3-902613-02-8, pp.436, December 2007, Itech Education and Publishing, Vienna, Austria

Multiprocessor Scheduling: Theory and Applications 64

inside a same cluster are much faster than those between processors belonging to different
ones.
This model incorporates the hierarchical nature of the communications using today's
parallel computers, as shown by many PCs or workstations networks (NOWs) (Pfister, 1995;
Anderson et al., 1995). The use of networks (clusters) of workstations as a parallel computer
(Pfister, 1995; Anderson et al., 1995) has not only renewed the user's interest in the domain
of parallelism, but it has also brought forth many new challenging problems related to the
exploitation of the potential power of computation offered by such a system.
Several approaches meant to try and model these systems were proposed taking into
account this technological development:
€ One approach concerning the form of programming system, we can quote work

(Rosenberg, 1999; Rosenberg, 2000; Blumafe and Park, 1994; Bhatt et al., 1997).
€ In abstract model approach, we can quote work (Turek et al., 1992; Ludwig, 1995;

Mounié, 2000; Decker and Krandick, 1999; Blayo et al., 1999; Mounié et al., 1999; Dutot
and Trystram, 2001) on malleable tasks introduced by (Blayo et al., 1999; Decker and
Krandick, 1999). A malleable task is a task which can be computed on several
processors and of which the execution time depends on the number of processors used
for its execution.

As stated above, the model we adopt here is the hierarchical communication model which
addresses one of the major problems that arises in the efficient use of such architectures: the
task scheduling problem. The proposed model includes one of the basic architectural features
of NOWs: the hierarchical communication assumption i.e ., a level-based hierarchy of
communication delays with successively high er latencies. In a formal context where both a
set of clusters of identical processors, and a precedence graph G = (V, E) are given, we
consider that if two communicating tasks are executed on the same processor (resp. on
different processors of the same cluster) then the corresponding communication delay is
negligible (resp. is equal to what we call inter-processor communication delay). On the contrary,
if these tasks are executed on different clusters, then the communication delay is more
significant and is called inter-cluster communication delay.
We are given m multiprocessor machines (or clusters denoted by) that are used to process
n precedence-constrained tasks. Each machine (cluster) comprises several identical
parallel processors (denoted by). A couple of communication delays is associated
to each arc (i, j) between two tasks in the precedence graph. In what follows, cij (resp. ij) is
called inter-cluster (resp. inter-processor) communication, and we consider that cij ij . If
tasks i and j are allotted on different machines and , then j must be processed at least cij

time units after the completion of i. Similarly, if i and j are processed on the same machine

 but on different processors , and (with k k•) then j can only start ij units of time
after the completion of i. However, if i and j are executed on the same processor, then j can
start immediately after the end of i. The communication overhead (inter-cluster or inter-
processor delay) does not interfere with the availability of processors and any processor
may execute any task. Our goal is to find a feasible schedule of tasks minimizing the
makespan, i.e., the time needed to process all tasks subject to the precedence graph.
Formally, in the hierarchical scheduling delay model a hierarchical couple of values

 will be associated with cij - (i, j) E such that:

€ if = and if = then t i +pi t j

Scheduling with Communication Delays 65

€ else if = and if , with k k' then ti +pi+ ij t j

€ t i +pi+cij t j

where t i denotes the starting time of the task i and pi its duration. The objective is to find a
schedule, i.e., an allocation of each task to a time interval on one processor, such that
communication delays are taken into account and that completion time (makespan) is
minimized (the makespan is denoted by Cmax and it corresponds to). In
what follows, we consider the simplest case i V, pi = 1, cij = c 2, ij = c• 1 with c c'.
Note that the hierarchical model that we consider here is a generalization of classical
scheduling model with communication delays ((Chen et al., 1998), (Chrétienne and
Picouleau, 1995)). Consider, for instance, that for every arc (i, j) of the precedence graph we
have cij = ij. In such a case, the hierarchical model is exactly the classical scheduling
communication delays model.
Note that the values c and l are considered as constant in the following. The chapter is
organized as follow: In the next section, some results for UET-UCT model will be presented.
In the section 1.3, a lower and upper bound for large communication delays scheduling
problem will presented. In the section 1.4, the principal results in hierarchical
communication delay model will be presented. In the section 1.5, an influence of an
introduction of the duplication on the comp lexity of scheduling problem is presented. In the
section 1.6, some results non-approximability results are given for the total sum of
completion time minimization. In the section 1.7, we will conclude on the complexity and
approximation scheduling problem in presence of communication delays. In Appendix
section, some classical „ complete problems are listed which are used in this chapter
for the polynomial-time transformations.

1.2 Some results for the UET-UCT model
In the homogeneous scheduling delay model , each arc (i,j) E represents the potential data
transfer between task i and task j provided that i and j are processed on two different
processors. So the aim, in this model, is to find a compromise between a sequential
execution and a parallel execution. These two models have been extensively studied over
the last few years from both the complexity and the (non)-approximability points of view
(see (Graham et al., 1979) and (Chen et al., 1998)).
1. at any time, a processor executes at most one task;
2. (i, j) E, if = then t j ti + pi, otherwise t j t i+pi + cij.
The makespan of schedule is:
In the UET-UCT model, we have i, pi = 1 and (i, j) E, c{j = 1.

1.2.1 Unbounded number of processors
In the case of there is no communication delays, the problem becomes polynomial (even if
we consider that i, pi 1). In fact, the Bellman algorithm can be used.
Theorem 1.2.1 The problem of deciding whether an instance of ,pi = 1, cij =
problem has a schedule of length 5 is polynomial, see (Veltman, 1993).
Proof
The proof is based on the notion of total unimodularity matrix, see (Veltman, 1993) and see
(Schrijver, 1998).
Theorem 1.2.2 The problem of deciding whether an instance of , pi = 1, cij = problem
has a schedule of length 6 is „complete see (Veltman, 1993).

Multiprocessor Scheduling: Theory and Applications 66

Proof
The proof is based on the following reduction 3SAT , pi = 1, cij = = 6.

Figure 1.1. The variables-tasks and the clauses-tasks

It is clear that the problem is in .
Let be * an instance of 3SAT problem, we construct an instance of the problem , pi

= 1, cij = in the following way:
€ For each variable x, six tasks are introduced: x1, x2, x3, x, and x6; the precedence

constraints are given by Figure 1.1.
€ For each clause c = (xc, yc, zc), where the literals xc, yc and zc are occurrences of negated

or unnegated, 3 variables are introduced:
and c: precedence constraints

between these tasks are also given by Figure 1.1.
€ If the occurrence of variable x in the clause c is unnegated then we add

.
€ If the occurrence of variable x in the clause c is negated, then we add and

.
Clearly, xc represents the occurrence of variable x in the clause c; it precedes the
corresponding variable tasks. This is a polynomial-time transformation illustrated by Figure
1.1.
It can be proved that, there exists a schedule of length at most six if only if there is a truth
assignment {0,1} such that each clause in has at least one true literal.
Corollary 1.2.1 There is no polynomial-time algorithm for the problem , pi = 1, cij
= with performance bound smaller than 7/6 unless , see (Veltman, 1993).
Proof
The proof of Corollary 1.2.1 is an immediate consequence of the Impossibility Theorem, (see
(Chrétienne and Picouleau, 1995), (Garey and Johnson, 1979)).

1.2.2 Approximate solutions wi th guaranteed performance
Good approximation algorithms seem to be be very difficult t o design, since the
compromise between parallelism and communication delays is not easy to handle. In this

Scheduling with Communication Delays 67

section, we will present a approximation algorithm with a performance ratio bounded by
4/3 for the problem , pi = 1, cij = . This algorithm is based on a formulation on
a integer linear program. A feasible schedule is obtained by a relaxation and rounding
procedure. Notice that it exists a trivial 2-approximation algorithm: the tasks without
predecessors are executed at t = 0, the tasks admitting predecessors scheduled at t = 0 are
executed at t = 2 and so on.
Given a precedence graph G = (V, E) a predecessor (resp. successor) of a task i is a task j such
that (j, i) (resp. (i, j)) is an arc of G. For every task i V, (i)
(resp. (i)) denotes the set of immediate successors (resp. predecessors) of i. We denote the
tasks without predecessor (resp. successor) by Z (resp. U). We call source every task
belonging to Z.
The integer linear program The aim of this section is to model the problem , pi = 1,
cij = by an integer linear program (ILP) denoted, in what follows, by .
We model the scheduling problem by a set of equations defined on the starting times vector
(t1,..., tn):
For every arc (i, j) E, we introduce a variable xij {0, 1} which indicates the presence or not
of an communication delay, and the following constraints: (i, j) E, ti+pi + xij tj.
In every feasible schedule, every task i V „ U has at most one successor, w.l.o.g. call them
j (i), that can be performed by the same processor as i at time t j = ti+pi. The other
successors of i, if any, satisfy: k (i)„{ j}, tk ti+pi + l. Consequently, we add the

constraints: .

Similarly, every task i of V „ Z has at most one predecessor, w.l.o.g. call them j (i), that
can be performed by the same processor as i at times t j satisfying t i „ (t j +pj) 1. So, we add

the following constraints: .

If we denote by Cmax the makespan of the schedule, i V, t i+pi < Cmax. Thus, in what
follows,the following ILP will be considered:

Let inf denote the linear program corresponding to in which we relax the integrity
constraints xij {0, 1} by setting xij [0, 1]. Given that the number of variables and the
number of constraints are polynomially bounded, this linear program can be solved in
polynomial time. The solution of inf will assign to every arc (i, j) E a value xij = eij with 0
eij 1 and will determine a lower bound of the value of Cmax that we denote by .
Lemma 1.2.1 is a lower bound on the value of an optimal solution for , pi = 1, cij
= .

Multiprocessor Scheduling: Theory and Applications 68

Proof This is true since any optimal feasible solution of the scheduling problem must satisfy
all the constraints of the integer linear program .

Algorithm 1 Rounding Algorithm and construction of the schedule
 Step 1[Rounding]
Let be eij the value of an arc (i, j) E given by

Step 1 [Computation of starting time]
 if i Z then

t i = 0
else

t i = max {t j + 1 + xji} with j (i) and (j, i) A i,
end if
Step 2
[Construction of the schedule]
Let be G' = (V; E') where {G' is generated by the 0„ arcs.}
Allotted each connected component of G' on a different processor. Each task is executed at it
starting time.
In the following, we call an arc (i,j) E a 0…arc(resp. 1…arc) if xij = 0 (resp. xij = 1).
Lemma 1.2.2 Every job i V has at most one successor (resp. predecessors) such that eij < 0.5 (resp.
eji < 0.5).
Proof We consider a task i V and his successors j1,..., jk such that .

We know that , then . Since that

. Then, . Therefore l {2,..., k} we have eij

0.5.We use the same arguments for the predecessors.
Lemma 1.2.3 The scheduling algorithm described above provides a feasible schedule.

Proof It is clear that each task i admits at most one incoming (resp. outcoming) 0-arcs.
Theorem 1.2.3 The relative performance h of our heuristic is bounded above by (Munier and
König, 1997).
Proof Let be a path constituted by (k + 1) tasks such that x (resp. (k
„ x)) arcs values, given by linear programming , between two tasks are less (resp. least) than
1/2. So the length of this path is less than k+l+l/2(k„x) = 3/2 k „ l/2 x + 1. Moreover, by the
rounding procedure, the length of this path at most 2 k „ x + 1. Thus, we obtain

, x. Thus, for a given path, of value p* (resp. p) before (resp. after) the

rounding, admitting x arcs values less than 1/2, we have . A

critical path before the rounding phase is denoted by s*. It is true for the critical path after
the rounding procedure p = s then, .
In fact, the bound is tight (see (Munier and König, 1997)).

1.2.3 Bounded number of processors
In this section, a lower and upper bound will be presented,

Scheduling with Communication Delays 69

Theorem 1.2.4 The problem of deciding whether an instance of , pi = 1, cij =
problem has a schedule of length 3 is polynomial, see (Picouleau, 1995).
Theorem 1.2.5 The problem of deciding whether an instance of , pi = 1, cij =
problem has a schedule of length 4 is -complete, see (Veltman, 1993).
Proof
The proof is based on the ATP-complete problem Clique.

Figure 1.2. Example of polynomial-time reduction clique , pi = 1, cij =

Let be ' the number of edges of a clique of size k. Let be m' =

, the number of processors of an instance is m = 2(m'+l). It is clear
that the problem is in . The proof is based on the polynomial-time reduction clique

, pi = 1, cij = . Let be * a instance of the clique problem. An instance of
, pi = 1, cij = problem is constructed in the following way:

€ v V the tasks Tv, Kv are introduced,
€ e E a task Le is created.

€ We add the following precedence constraints: Tv Kv, v V and Tv Le if v is an
endpoint of e.

€ Four sets of tasks are introduced:
€
€
€
€

the precedence constraints are added: Uu Xx, Uu Yy, Ww Yy.

Multiprocessor Scheduling: Theory and Applications 70

Figure 1.3. Example of construction in order to illustrate the proof of theorem 1.2.5

It easy to see that the graph G admits a clique of size k if only if it exists a schedule of length 4.

1.2.4 Approximation algorithm
In this section, we will present a simple algorithm which gives a schedule on m
machines from a schedule on unbounded number of processors for the , pi = 1, cij

= . The validity of this algorithm is based on the fact there is at most a matching
between the tasks executed at t i and the tasks processed at t i + 1.
Theorem 1.2.6 From all polynomial-time algorithm h* with performance guarantee for the problem

, pi = 1, cij = , we may obtain a polynomial-time algorithm with performance
guarantee (1 + p) for the problem pi = 1, cij = .
Proof

For example, the 4/3-approximation algorithm gives a 7/3-approximation algorithm.
Munier et al. (Munier and Hanen, 1996) propose a (7/3 „ 4/3 m)-approximation algorithm
for the same problem.

Algorithm 2 Scheduling on m machines from a schedule on unbounded number of
processors
for i = 0 „ 1 do

Let be X i the set of tasks executed at ij in using a heuristic h*.

The X i tasks are executed in units of time.
end for

1.3 Large communications delays
Scheduling in presence of large communication delays, is one most difficult problem in
scheduling theory, since the starting time of tasks and the communication delay are not be
synchronized.
If we consider the problem of scheduling a precedence graph with large communication
delays and unit execution time (UET-LCT), on a restricted number of processors, Bampis et

Scheduling with Communication Delays 71

al. in (Bampis et al., 1996) proved that the decision problem denoted by , cij = c 2, pi

= ; for Cmax = c + 3 is an -complete problem, and for Cmax = c + 2 (for the special
casec = 2), they develop a polynomial-time algorithm. This algorithm can not be extended
for c 3. Their proof is based on a reduction from the -complete problem Balanced
Bipartite Complete Graph, BBCG (Garey and Johnson, 1979; Saad, 1995). Thus, Bampis et al.
(Bampis et al., 1996) proved that the

, cij = c 2, pi = problem does not possess a polynomial-time approximation
algorithm with ratio guarantee better than , unless = .

Figure 1.4. A partial precedence graph for the NT1 -completeness of the scheduling problem
, cij = c 3, pi =

Theorem 1.3.1 T/ze problem of deciding whether an instance of , cij = c ; pi = has a
schedule of length equal or less than (c+4) is -complete with c 3 (see (Giroudeau et al., 2005)).
Proof
It is easy to see that , cij = c ; pi = = c + 4 .
The proof is based on a reduction from 1. Given an instance * of 1, we construct an
instance of the problem , cij = c ; pi = = c + 4, in the following way (Figure
1.4 helps understanding of the reduction):
n denotes the number of variables of * .

1. For all , we introduce (c + 6) variable-tasks: with j {1, 2, ... , c +
2}. We add the precedence constraints:

with j {1, 2, . . . , c + 1}.
2. For all clauses of length three denoted by Ci = , we introduce 2 x (2 + c)

clause-tasks and , j {1, 2, ... c + 2}, with precedence constraints: and
, j {1, 2, . . . , c + 1}. We add the constraints with and

 with .
3. For all clauses of length two denoted by Ci = , we introduce (c + 3) clause-tasks

, j {1, 2, ... , c + 3} with precedence constraints: with j {1, 2, ... , c + 2} and
 with .

Multiprocessor Scheduling: Theory and Applications 72

The above construction is illustrated in Figure 1.4. This transformation can be clearly
computed in polynomial time.
Remark: is in the clause C' of length two associated with the path

.
It easy to see that there is a schedule of length equal or less than (c + 4) if only if there is a
truth assignment such that each clause in has exactly one true literal (i.e.
one literal equal to 1), see (Giroudeau et al., 2005).
For the special case c = , by using another polynomial-time trnasformation, we state:
Theorem 1.3.2 The problem of deciding whether an instance of , cij = 2; pi = has a
schedule of length equal or less than six is -complete (see (Giroudeau et al., 2005)).
Corollary 1.3.1 There is no polynomial-time algorithm for the problem , cij 2; pi =
with performance bound smaller than unless (see (Giroudeau et al, 2005)).
The limit between the -completeness and the polynomial-time algorithm by the
following Theorem.
Theorem 1.3.3 The problem of deciding whether an instance of , cij = c; pi = with c
{2, 3} has a schedule of length at most (c+ 2) is solvable in polynomial time (see (Giroudeau et al., 2005)).

1.3.1 Approximation by expansion
In this section, a new polynomial-tim e approximation algorithm with performance
guarantee non-trivial for the problem , cij 2; pi = will be proposed.
Notation: We denote by , the UET-UCT schedule, and by the UET-LCT schedule.
Moreover, we denote by t i (resp.) the starting time of the task i in the schedule (resp.
in the schedule).
Principle: We keep an assignment for the tasks given by a "good" feasible schedule on an
unrestricted number of processors . We proceed to an expansion of
the makespan, while preserving communication delays for two tasks, i
and j with (i, j) E, processing on two different processors. Consider a precedence graph G =
(V, E), we determine a feasible schedule , for the model UET-UCT, using a (4/3)„
approximation algorithm proposed by Munier and König (Munier and König, 1997). This
algorithm gives a couple i V, (t i,) on the schedule corresponding to: t i the starting
time of the task i for the schedule and the processor on which the task i is processed at
t i. Now, we determine a couple i V, (, ') on schedule in the following way: The

starting time and, = '. The justification of the expansion coefficient
is given below. An illustration of the expansion is given in Figure 1.5.
Lemma 1.3.1 The coefficient of an expansion is .
Proof Consider two tasks i and j such that (i, j) E, which are processed on two different
processors in the feasible schedule . Let be d a coefficient d such that and

. After an expansion, in order to respect the precedence constraints and the
communication delays we must have , and so

 . It is sufficient to choose .d
Lemma 1.3.2 An expansion algorithm gives a feasible schedule for the problem denoted by ,
cij = c 2; pi = .
Proof It is sufficient to check that the solution given by an expansion algorithm produces a
feasible schedule for the model UET-LCT. Consider two tasks i and j such that (i,j) E. We

Scheduling with Communication Delays 73

denote by i, (resp. j) the processor on which the task i (resp. the task j) is executed in the
schedule . Moreover, we denote by (resp.) the processor on which the task i (resp.
the task j) is executed in the schedule . Thus,
€ If i = j then = . Since the solution given by Munier and König (Munier and

König, 1997) gives a feasible schedule on the model UET-UCT, then we have ,

€ If i j then . We have

Figure 1.5. Illustarion of notion of an expansion

Theorem 1.3.4 An expansion algorithm gives a „approximation algorithm for the problem
, cij = c 2; pi = .

Proof
We denote by (resp.) the makespan of the schedule computed by the Munier
and König (resp. the optimal value of a schedule). In the same way we denote by
(resp.) the makespan of the schedule computed by our algorithm (resp. the optimal
value of a schedule).
We know that . Thus, we obtain

.

This expansion method can be used for other scheduling problems.

1.4 Complexity and approximation of hierarchical scheduling model
On negative side, Bampis et al. in (Bampis et al., 2002) studied the impact of the hierarchical
communications on the complexity of the associated problem. They considered the simplest
case, i.e., the problem , and they showed that
this problem did not possess a polynomial-tim e approximation algorithm with a ratio
guarantee better than 5/4 (unless =).

Multiprocessor Scheduling: Theory and Applications 74

Table 1.1: Previous complexity results for unbounded number of machines for hierarchical
communication delay model

Recently, (Giroudeau, 2005) Giroudeau proved that there is no hope to find a -
approximation with < 6/5 for the couple of communication delays (cij, ij) = (2,1). If
duplication is allowed, Bampis et al. (Bampis et al., 2000a) extended the result of (Chrétienne
and Colin, 1991) in the case of hierarchical communications, providing an optimal algorithm
for ;pi = 1; . These complexity results are given in
Table 1.1.
On positive side, the authors presented in (Bampis et al., 2000b) a 8/5-approximation
algorithm for the problem ;pi = 1 which is based on an
integer linear programming formulation. They relax the integrity constraints and they
produce a feasible schedule by rounding. This result is extended to the problem

;pi = 1 leading to a -approximation algorithm (see
below).
The challenge is to determinate a threshold for the approximation algorithm concerning the
two more general problems: l and

 l with c' < c.
Recently, in (Giroudeau et al., 2005), the authors proved that there is no possibility of
finding a p-approximation with p < 1 + l/(c + 4) (unless =) for the case where all tasks
of the precedence graph have unit execution times, where the multiprocessor is composed of
an unrestricted number of machines, and where c denotes the communication delay
between two tasks i and j both submitted to a precedence constraint and which have to be
processed by two different machines (this problem is denoted in the following UET-LCT
(Unit Execution Time Large Communic ation Time) homogeneous scheduling
communication delays problem). The probl em becomes polynomial whenever the
makespan is at most (c + 1). The case of (c + 2) is still partially opened. In the same way as
for the hierarchical communication delay model , for the couple of communication delay
values (1,0), the authors proved in (Bampis et al., 2002) that there is no possibility of finding
a -approximation with < 5/4 (this problem is detailed in following the UET-UCT
hierarchical scheduling communication delay problem).
Theorem 1.4.1 The problem of deciding whether an instance of

 having a schedule of length at most (c + 3) is -complete, see
(Giroudeau and König, 2004).
Corollary 1.4.1 There is no polynomial-time algorithm for the problem

 with c > d performance bound smaller than 1 + unless
, see (Giroudeau and König, 2004).

The problem of deciding whether an instance of
having a schedule of length at most (c + 1) is solvable in polynomial

time since l and c are constant.

Scheduling with Communication Delays 75

In the same way as the section 1.2.2, the aim is to model the problem
by an integer linear program (ILP) denoted, in

what follows, by .
In this section, we will precise only the difference between the ILP given for the problem

and .
In every feasible schedule, every task i V „ U has at most two successors, w.l.o.g. call
them ji and j2 (i), that can be performed by the same cluster as i at time t j1 = tj2 = ti + pi.
The other successors of i, if any, satisfy: k .
Consequently, the constraints: are added.
Similarly, every task i of V „ Z has at most two predecessors, w.l.o.g. call them j1 and j2

(i), that can be performed by the same cluster as i at times t j1 , t j2 satisfying t i„ (t j1 +pj1) <
1 and t i„ (t j2 +pj2) < 1. So, the following constraints: are added.
The above constraints are necessary but not sufficient conditions in order to get a feasible
schedule for the problem. For instance, a solution minimizing (Cmax for the graph of case (a)
in Figure 1.6 will assign to every arc the value 0. However, since every cluster has two
processors, and so at most two tasks can be processed on the same cluster simultaneously,
the obtained solution is clearly not feasible. Thus, the relaxation of the integer constraints,
by considering 0 xij 1, and the resolution of the resulting linear program with objective
function the minimization of Cmax, gives just a lower bound of the value of Cmax.
In order to improve this lower bound, we consider every sub-graph of G that is isomorphic
to the graphs given in Figure 1.6 -cases (a) and (b). It is easy to see that in any feasible
schedule of G, at least one of the variables associated to the arcs of each one of these graphs
must be set to one. So, the following constraints are added:
€ For the case (a):

i, j, k, l, m V, such that (j, i), (j, k), (l, k), (l, m) E, xji + xjk + xlk + xlm 1.
€ For the case (b):

i, j, k, l, m V, such that (i, j), (k, j), (k, l), (m, l) E, xij + xkj + xkl + xml 1.
Thus, in what follows, the fo llowing ILP will be considered:

Once again the integer linear program given above does not always imply a feasible solution
for the scheduling problem. For instance, if the precedence graph given in Figure 1.7 is
considered, the optimal solution of the integer linear program will set all the arcs to 0.
Clearly, this is not a feasible solution for our scheduling problem. However, the goal in this
step is to get a good lower bound of the makespan and a solution -eventually not feasible-
that we will transform to a feasible one.

Multiprocessor Scheduling: Theory and Applications 76

 case (a) case (b)
Figure 1.6. Special sub-graphs considered in the ILP

Figure 1.7 An optimal solution of the ILP does not always imply a feasible solution

Let inf denote the linear program corresponding to in which we relax the integrability
constraints xij {0,1} by setting xij [0,1]. Given that the number of variables and the number
of constraints are polynomially bounded, this linear program can be solved in polynomial
time. The solution of inf will assign to every arc (i, j) E a value xij = eij with 0 eij 1 and
will determine a lower bound of the value of Cmax that we denote by .
Lemma 1.4.1 is a lower bound on the value of an optimal solution for

.
Proof
See the proof of Theorem 1.2.1.
We use the algorithm 1 for the rounding algorithm by changing the value rounded: eij < 0.25
instead eij < 0.5 The solution given by Step 1 is not necessarily a feasible solution (take for
instance the precedence graph of Figure 1.7), so we must transform it to a feasible one.
Notice that the cases given in Figure 1.6 are eliminated by the linear program. In the next
step we need the following definition.
Definition 1.4.1 A critical path with terminal vertex i V is the longest path from an arbitrary
source of G to task i. The length of a path is defined as the sum of the processing times of the tasks
belonging to this path and of the values xij for every arc in the path.
1. Step 2 [Feasible Rounding]: We change the integer solution as follows:

a) If i is a source then we keep unchanged the values of xij obtained in Step 1.
b) Let i be a task such that all predecessors are already examined. Let A i be the subset

of incoming arcs of i belonging to a critical path with terminal vertex the task i.
i) If the set A i, contains a 0-arc, then all the outcoming arcs xij take the value 1.
ii) If the set A i, does not contain any 0-arc(all the critical incoming arcs are valued to

1), then the value of all the outcoming arcs xij remains the same as in Step 1, and all
the incoming 0-arcs are transformed to I-arcs.

In Step l b) ii changing the value of an incoming 0-arcto 1 does not increase the length of any
critical path having as terminal vertex i, because it exists at least one critical path with
terminal vertex i such that an arc (j, i) E is valued by the linear program to at least 0.25 (eji

 0.25), and so xji is already equal to 1.

Scheduling with Communication Delays 77

Lemma 1.4.2 Every job i V has at most two successors (resp. predecessors) such that eij < 0.25
(resp. eji < 0.25) and The scheduling algorithm described above provides a feasible schedule.
Theorem 1.4.2 The relative performance h of our heuristic is bounded above by and the bound is

tight, see (Bampis et al, 2003).
Proof
See the proof of the Theorem 1.2.3.

1.5 Duplication
The duplication of the tasks has been introduced first by Papadimitriou and Yannakakis
(Papadimitriou and Yannakakis, 1990) in order to reduce an influence of the communication
delays on the schedule. In (Papadimitriou and Yannakakis, 1990), the authors develop a 2-
approximation algorithm for the problem . The
problem (the problem is a subproblem of

) becomes easy. In the following, we will describe the procedure. We
may assume w.l.o.g. that all the copies of any task i V start their execution at the same
time, call it t i.

1.5.1 Colin-Chrétienne Algorithm see (Chrétienne and Colin, 1991)
The algorithm uses two steps: the first step computes the release times, and the second step
use a critical determined from the first step in order to produces a optimal schedule in
which all the tasks and their copies are executed at their release times.

a 0
b 0
c 4
d 4
e 3
f 7
g 6
h 6
i 11

Figure 1.8. P0 problem

The P0 problem given by Figure 1.8 will be il lustrated the algorithm. The algorithm which
computes the release times is given next:

Algorithm 3 Release date algorithm and Earliest schedule
for i := 1 to n do

if PRED(i) = then
bi := 0

else
C := max{bk+pk + cki };
Let be s such that : bs + ps + csi = C;
bi := max{bs + ps : max{bk+pk + cki - {s}}}.

end if
end for
Each connected component Gc = (V; Ec) on different processor;
Each copy is executed at his release time.

Multiprocessor Scheduling: Theory and Applications 78

Without lost of generality, all copies of the task i admit the same starting , denoted by t i, as
the the task i. A arc (i, j) E is a critical arc if bi+pi +cij > bj. From this definition, it is clear that
if (i, j) is a critical arc, then in all as soon as possible schedule, each copy of a task j must be
preceded by a copy of a task i on the same processor. In order to construct a earliest
schedule, each critical path is allotted on a processor, and each copy is executed at his
release date.
Theorem 1.5.1 Let be bi the starting time computed by the procedure. For all feasible schedule for a
graph G, the release date of a task i cannot be less than bi. All sub-graph is spanning forest. The
procedure gives a feasible schedule and the overall complexity is O(n2).

Table 1.2: Complexity results in presence of duplication

Figure 1.9 The critical sub-graph

An earliest schedule of the precedence graph P0 is given by Figure 1.10.

Figure 1.10: An earliest schedule of P0

The study of duplication in presence of unbounded number of processors is theoretical.
Indeed, the results on unbounded processors do not improved the results on limited
number of processors. So, concerning the hierarchical model, since the number of processors
per cluster is limited, the authors in (Bampis et al., 2000a) are investigate only on the
theoretical aspect of associated scheduling problem.

