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Scheduling with Communication Delays 

R. Giroudeau and J.C. König 
LIRMM
 France 

1.1 Introduction 

More and more parallel and distributed systems (cluster, grid and global computing) are both 
becoming available all over the world, and opening new perspectives for developers of a large 
range of applications including data mining, multimedia, and bio-co mputing. However, this 
very large potential of computing power remains largely unexploited this being, mainly due to 
the lack of adequate and efficient software tools for managing this resource. 
Scheduling theory is concerned with the optimal allocation of scarce resources to activities over time. 
Of obvious practical importance, it has been the subject of extensive research since the early 
1950's and an impressive amount of literature now exists. The theory dealing with the design of 
algorithms dedicated to scheduling is much younger, but still has a significant history. 
An application which will be scheduled on a parallel architecture may be represented by an 
acyclic graph G = (V, E) (or precedence graph) where V designates the set of tasks, which 
will be executed on a set of m processors, and where E represents the set of precedence 
constraints. A processing time is allotted to each task i V.
From the very beginning of the study about schedu ling problems, models kept up with 
changing and improving technology. Indeed, 
€ In the PRAM' s model , in which communication is considered instantaneous, the 

critical path (the longest path from a source to a sink) gives the length of the schedule. 
So the aim, in this model, is to find a partial order on the tasks, in order to minimize an 
objective function. 

€ In the homogeneous  scheduling delay model , each arc (i,j) E represents the potential 
data transfer between task i and task j provided that i and j are processed on two 
different processors.  So the aim, in this model, is to find a compromise between a 
sequential execution and a parallel execution. 

These two models have been extensively studied over the last few years from both the 
complexity and the (non)-approximability points of view (see (Graham et al., 1979) and 
(Chen et al., 1998)). 
With the increasing importance of parallel computing, the question of how to schedule a set 
of tasks on a given architecture becomes critical, and has received much attention. More 
precisely, scheduling problems involving precedence constraints are among the most 
difficult problems in the area of machine scheduling and they are part of the most studied 
problems in the domain. In this chapter, we adopt the hierarchical communication model 
(Bampis et al., 2003) in which we assume that the communication delays are not 
homogeneous anymore; the processors are connected into clustersand the communications O
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inside a same cluster are much faster than those between processors belonging to different 
ones.
This model incorporates the hierarchical nature of the communications using today's 
parallel computers, as shown by many PCs or workstations networks (NOWs) (Pfister, 1995; 
Anderson et al., 1995). The use of networks (clusters) of workstations as a parallel computer 
(Pfister, 1995; Anderson et al., 1995) has not only renewed the user's interest in the domain 
of parallelism, but it has also brought forth many new challenging problems related to the 
exploitation of the potential power of computation offered by such a system. 
Several approaches meant to try and model these systems were proposed taking into 
account this technological development: 
€ One approach concerning the form of programming system, we can quote work 

(Rosenberg, 1999; Rosenberg, 2000; Blumafe and Park, 1994; Bhatt et al., 1997). 
€ In abstract model approach, we can quote work (Turek et al., 1992; Ludwig, 1995; 

Mounié, 2000; Decker and Krandick, 1999; Blayo et al., 1999; Mounié et al., 1999; Dutot 
and Trystram, 2001) on malleable tasks introduced by (Blayo et al., 1999; Decker and 
Krandick, 1999).  A malleable task is a task which can be computed on several 
processors and of which the execution time depends on the number of processors used 
for its execution. 

As stated above, the model we adopt here is the hierarchical communication model which
addresses one of the major problems that arises in the efficient use of such architectures: the 
task scheduling problem. The proposed model includes one of the basic architectural features 
of NOWs: the hierarchical communication assumption i.e ., a level-based hierarchy of 
communication delays with successively high er latencies. In a formal context where both a 
set of clusters of identical processors, and a precedence graph G = (V, E) are given, we 
consider that if two communicating tasks are executed on the same processor (resp. on 
different processors of the same cluster) then the corresponding communication delay is 
negligible (resp. is equal to what we call inter-processor communication delay). On the contrary, 
if these tasks are executed on different clusters, then the communication delay is more 
significant and is called inter-cluster communication delay. 
We are given m multiprocessor machines (or clusters denoted by ) that are used to process 
n precedence-constrained tasks. Each machine  (cluster) comprises several identical 
parallel processors (denoted by ). A couple  of communication delays is associated 
to each arc (i, j) between two tasks in the precedence graph. In what follows, cij (resp. ij ) is 
called inter-cluster (resp. inter-processor) communication, and we consider that cij ij . If 
tasks i and j are allotted on different machines  and , then j must be processed at least cij

time units after the completion of i. Similarly, if i and j are processed on the same machine 

 but on different processors , and  (with k  k•) then j can only start ij units of time 
after the completion of i. However, if i and j are executed on the same processor, then j can 
start immediately after the end of i. The communication overhead (inter-cluster or inter-
processor delay) does not interfere with the availability of processors and any processor 
may execute any task. Our goal is to find a feasible schedule of tasks minimizing the 
makespan, i.e., the time needed to process all tasks subject to the precedence graph. 
Formally, in the hierarchical scheduling delay model  a hierarchical couple of values 

 will be associated with cij - (i, j) E such that: 

€ if  =  and if  = then t i +pi t j
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€ else if  =  and if , with k  k' then  ti +pi+ ij t j

€ t i +pi+cij t j

where t i denotes the starting time of the task i and pi its duration. The objective is to find a 
schedule, i.e., an allocation of each task to a time interval on one processor, such that 
communication delays are taken into account and that completion time (makespan) is 
minimized (the makespan is denoted by Cmax and it corresponds to ). In
what follows, we consider the simplest case i V, pi = 1, cij = c 2, ij = c• 1 with c  c'.
Note that the hierarchical model that we consider here is a generalization of classical 
scheduling model with communication delays ((Chen et al., 1998), (Chrétienne and 
Picouleau, 1995)). Consider, for instance, that for every arc (i, j) of the precedence graph we 
have cij = ij. In such a case, the hierarchical model is exactly the classical scheduling 
communication delays model.  
Note that the values c and l are considered as constant in the following. The chapter is 
organized as follow: In the next section, some results for UET-UCT model will be presented. 
In the section 1.3, a lower and upper bound for large communication delays scheduling 
problem will presented. In the section 1.4, the principal results in hierarchical 
communication delay model will be presented. In the section 1.5, an influence of an 
introduction of the duplication on the comp lexity of scheduling problem is presented. In the 
section 1.6, some results non-approximability results are given for the total sum of 
completion time minimization. In the section 1.7,  we will conclude on the complexity and 
approximation scheduling problem in presence of communication delays. In Appendix 
section, some classical „ complete problems are listed which are used in this chapter 
for the polynomial-time transformations. 

1.2 Some results for the UET-UCT model 
In the homogeneous scheduling delay model , each arc (i,j) E represents the potential data 
transfer between task i and task j provided that i and j are processed on two different 
processors. So the aim, in this model, is to find a compromise between a sequential 
execution and a parallel execution. These two models have been extensively studied over 
the last few years from both the complexity and the (non)-approximability points of view 
(see (Graham et al., 1979) and (Chen et al., 1998)). 
1. at any time, a processor executes at most one task; 
2. (i, j) E, if  =  then t j  ti + pi, otherwise t j t i+pi + cij.
The makespan of schedule is: 
In the UET-UCT model, we have i, pi = 1 and  (i, j) E, c{j = 1. 

1.2.1 Unbounded number of processors 
In the case of there is no communication delays, the problem becomes polynomial (even if 
we consider that i, pi  1). In fact, the Bellman algorithm can be used. 
Theorem 1.2.1 The problem of deciding whether an instance of ,pi = 1, cij = 
problem has a schedule of length 5 is polynomial, see (Veltman, 1993).
Proof 
The proof is based on the notion of total unimodularity matrix, see (Veltman, 1993) and see 
(Schrijver, 1998). 
Theorem 1.2.2 The problem of deciding whether an instance of , pi = 1, cij =  problem 
has a schedule of length 6 is „complete see (Veltman, 1993).
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Proof 
The proof is based on the following reduction 3SAT , pi = 1, cij =  = 6. 

Figure 1.1. The variables-tasks and the clauses-tasks 

It is clear that the problem is in .
Let be * an instance of 3SAT problem, we construct an instance of the problem , pi

= 1, cij = in the following way: 
€ For each variable x, six tasks are introduced: x1, x2, x3, x, and x6; the precedence 

constraints are given by Figure 1.1. 
€ For each clause c  = (xc, yc, zc),  where the literals xc,  yc and zc are occurrences of negated 

or unnegated,  3 variables are introduced: 
and c: precedence constraints 

between these tasks are also given by Figure 1.1. 
€ If the occurrence of variable x in the clause c is unnegated then we add 

.
€ If the occurrence of variable x in the clause c is negated, then we add and

.
Clearly, xc represents the occurrence of variable x in the clause c; it precedes the 
corresponding variable tasks. This is a polynomial-time transformation illustrated by Figure 
1.1.
It can be proved that, there exists a schedule of length at most six if only if there is a truth 
assignment {0,1} such that each clause in has at least one true literal. 
Corollary 1.2.1 There is  no  polynomial-time  algorithm  for the  problem , pi = 1, cij
=  with performance bound smaller than 7/6 unless , see (Veltman, 1993).
Proof 
The proof of Corollary 1.2.1 is an immediate consequence of the Impossibility Theorem, (see 
(Chrétienne and Picouleau, 1995), (Garey and Johnson, 1979)). 

1.2.2 Approximate solutions wi th guaranteed performance 
Good approximation algorithms seem to be be very difficult t o design, since the 
compromise between parallelism and communication delays is not easy to handle. In this 
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section, we will present a approximation algorithm with a performance ratio bounded by 
4/3 for the problem , pi = 1, cij = . This algorithm is based on a formulation on 
a integer linear program. A feasible schedule is obtained by a relaxation and rounding 
procedure. Notice that it exists a trivial 2-approximation algorithm: the tasks without 
predecessors are executed at t = 0, the tasks admitting predecessors scheduled at t = 0 are 
executed at t = 2 and so on. 
Given a precedence graph G = (V, E) a predecessor (resp. successor) of a task i is a task j such 
that (j, i) (resp. (i, j)) is an arc of G. For every task i V, (i)
(resp. (i)) denotes the set of immediate successors (resp. predecessors) of i. We denote the 
tasks without predecessor (resp. successor) by Z (resp. U). We call source every task 
belonging to Z.
The integer linear program    The aim of this section is to model the problem , pi = 1, 
cij = by an integer linear program (ILP) denoted, in what follows, by .
We model the scheduling problem by a set of equations defined on the starting times vector 
(t1,..., tn):
For every arc (i, j) E, we introduce a variable xij  {0, 1} which indicates the presence or not 
of an communication delay, and the following constraints: (i, j) E, ti+pi + xij  tj.
In every feasible schedule, every task i  V „ U has at most one successor, w.l.o.g. call them 
j (i), that can be performed by the same processor as i at time t j = ti+pi. The other 
successors of i, if any, satisfy: k (i)„{ j}, tk  ti+pi + l. Consequently, we add the 

constraints: .

Similarly, every task i of V „ Z has at most one predecessor, w.l.o.g. call them j (i), that 
can be performed by the same processor as i at times t j satisfying t i „ (t j +pj) 1. So, we add 

the following constraints: .

If we denote by Cmax the makespan of the schedule, i V, t i+pi < Cmax. Thus, in what 
follows,the following ILP will be considered: 

Let inf denote the linear program corresponding to  in which we relax the integrity 
constraints xij  {0, 1} by setting xij  [0, 1]. Given that the number of variables and the 
number of constraints are polynomially bounded, this linear program can be solved in 
polynomial time. The solution of inf will assign to every arc (i, j) E a value xij = eij with 0 
eij  1 and will determine a lower bound of the value of Cmax that we denote by .
Lemma 1.2.1  is a lower bound on the value of an optimal solution for , pi = 1, cij
= .
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Proof This is true since any optimal feasible solution of the scheduling problem must satisfy 
all the constraints of the integer linear program .

Algorithm 1 Rounding Algorithm and construction of the schedule 
 Step 1[Rounding ]
Let be eij the value of an arc (i, j) E given by 

Step 1 [Computation of starting time ]
 if i Z then

t i = 0 
else

t i = max {t j + 1 + xji} with j (i) and (j, i) A i,
end if
Step 2 
[Construction of the schedule ]
Let be G' = (V; E') where  {G' is generated by the 0„ arcs.}
Allotted each connected component of G' on a different processor. Each task is executed at it 
starting time. 
In the following, we call an arc ( i,j) E a 0…arc(resp. 1…arc) if xij = 0 (resp. xij = 1). 
Lemma 1.2.2 Every job i  V has at most one successor (resp. predecessors) such that eij < 0.5 (resp. 
eji < 0.5).
Proof  We consider a task i V and his successors j1,..., jk such that .

We know that , then . Since that 

. Then, . Therefore l  {2,..., k} we have eij

0.5.We use the same arguments for the predecessors.  
Lemma 1.2.3 The scheduling algorithm described above provides a feasible schedule. 

Proof It is clear that each task i admits at most one incoming (resp. outcoming) 0-arcs. 
Theorem 1.2.3 The relative performance h of our heuristic is bounded above by  (Munier and 
König, 1997). 
Proof Let be a path constituted by (k + 1) tasks such that x (resp. (k
„ x )) arcs values, given by linear programming , between two tasks are less (resp. least) than 
1/2. So the length of this path is less than k+l+l/2( k„x ) = 3/2 k „ l/2 x + 1. Moreover, by the 
rounding procedure, the length of this path at most 2 k „  x + 1. Thus, we obtain 

, x. Thus, for a given path, of value p* (resp. p) before (resp. after) the 

rounding, admitting x arcs values less than 1/2, we have . A 

critical path before the rounding phase is denoted by s*. It is true for the critical path after 
the rounding procedure p = s then, .
In fact, the bound is tight (see (Munier and König, 1997)). 

1.2.3 Bounded number of processors 
In this section, a lower and upper bound will be presented, 
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Theorem 1.2.4 The problem of deciding whether an instance of , pi = 1, cij =
problem has a schedule of length 3 is polynomial, see (Picouleau, 1995). 
Theorem 1.2.5 The problem of deciding whether an instance of , pi = 1, cij =
problem has a schedule of length 4 is -complete, see (Veltman, 1993). 
Proof 
The proof is based on the ATP-complete problem Clique.

Figure 1.2. Example of polynomial-time reduction clique , pi = 1, cij =

Let be ' the number of edges of a clique of size k. Let be m' = 

, the number of processors of an instance is m = 2(m'+l). It is clear 
that the problem is in . The proof is based on the polynomial-time reduction clique 

, pi = 1, cij = . Let be * a instance of the clique problem. An instance  of 
, pi = 1, cij =  problem is constructed in the following way: 

€ v V the tasks Tv, Kv are introduced, 
€ e E a task Le is created. 

€ We add the following precedence constraints: Tv Kv, v V and Tv Le if v is an 
endpoint of e.

€ Four sets of tasks are introduced: 
€
€
€
€

the precedence constraints are added: Uu Xx, Uu Yy, Ww  Yy.
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Figure 1.3. Example of construction in order to illustrate the proof of theorem 1.2.5 

It easy to see that the graph G admits a clique of size k if only if it exists a schedule of length 4. 

1.2.4 Approximation algorithm 
In this section, we will present a simple algorithm which gives a schedule on m
machines from a schedule  on unbounded number of processors for the , pi = 1, cij

= . The validity of this algorithm is based on the fact there is at most a matching 
between the tasks executed at t i and the tasks processed at t i + 1. 
Theorem 1.2.6 From all polynomial-time algorithm h* with performance guarantee  for the problem 

, pi = 1, cij = , we may obtain a polynomial-time algorithm with performance 
guarantee (1 + p) for the problem  pi = 1, cij = .
Proof 

For example, the 4/3-approximation algorithm gives a 7/3-approximation algorithm. 
Munier et al. (Munier and Hanen, 1996) propose a (7/3 „ 4/3 m)-approximation algorithm 
for the same problem. 

Algorithm 2  Scheduling on m machines from a schedule on unbounded number of 
processors
for i = 0 „ 1 do

Let be X i the set of tasks executed at ij in using a heuristic h*.

The X i tasks are executed in units of time. 
end for

1.3 Large communications delays 
Scheduling in presence of large communication delays, is one most difficult problem in 
scheduling theory, since the starting time of tasks and the communication delay are not be 
synchronized.
If we consider the problem of scheduling a precedence graph with large communication 
delays and unit execution time (UET-LCT), on a restricted number of processors, Bampis et 
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al. in (Bampis et al., 1996) proved that the decision problem denoted by , cij = c  2, pi

= ; for Cmax = c + 3 is an -complete problem, and for Cmax = c + 2 (for the special 
casec = 2), they develop a polynomial-time algorithm. This algorithm can not be extended 
for c  3. Their proof is based on a reduction from the -complete problem Balanced 
Bipartite Complete Graph, BBCG (Garey and Johnson, 1979; Saad, 1995). Thus, Bampis et al. 
(Bampis et al., 1996) proved that the 

, cij = c  2, pi = problem does not possess a polynomial-time approximation 
algorithm with ratio guarantee better than , unless  = .

Figure 1.4. A partial precedence graph for the NT1 -completeness of the scheduling problem 
, cij = c  3, pi =

Theorem 1.3.1 T/ze problem of deciding whether an instance of , cij = c ; pi =  has a 
schedule of length equal or less than (c+4) is  -complete with c 3 (see (Giroudeau et al., 2005)).
Proof
It is easy to see that , cij = c ; pi = = c + 4 .
The proof is based on a reduction from 1. Given an instance * of 1, we construct an 
instance  of the problem , cij = c ; pi = = c + 4, in the following way (Figure 
1.4 helps understanding of the reduction): 
n denotes the number of variables of * . 

1. For all , we introduce (c + 6) variable-tasks:  with j  {1, 2, ... , c + 
2}. We add the precedence constraints: 

with j  {1, 2, . . . , c + 1}. 
2. For all clauses of length three denoted by Ci = , we introduce 2 x (2 + c) 

clause-tasks  and , j  {1, 2, ... c + 2}, with precedence constraints:  and 
, j  {1, 2, . . . , c + 1}. We add the constraints  with  and 

 with .
3. For all clauses of length two denoted by Ci = , we introduce ( c + 3) clause-tasks 

, j  {1, 2, ... , c + 3} with precedence constraints:  with j  {1, 2, ... , c + 2} and 
 with .
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The above construction is illustrated in Figure 1.4.  This transformation can be clearly 
computed in polynomial time. 
Remark: is in the clause C' of length two associated with the path 

.
It easy to see that there is a schedule of length equal or less than (c + 4) if only if there is a 
truth assignment  such that each clause in has exactly one true literal (i.e. 
one literal equal to 1), see (Giroudeau et al., 2005). 
For the special case c = , by using another polynomial-time trnasformation, we state: 
Theorem 1.3.2 The problem of deciding whether an instance of , cij = 2; pi =  has a 
schedule of length equal or less than six is  -complete (see (Giroudeau et al., 2005)). 
Corollary 1.3.1 There is no polynomial-time algorithm for the  problem , cij 2; pi =
with performance bound smaller than  unless  (see (Giroudeau et al, 2005)). 
The limit between the -completeness and the polynomial-time algorithm by the 
following Theorem. 
Theorem 1.3.3 The problem of deciding whether an instance of , cij = c; pi =  with c 
{2, 3} has a schedule of length at most (c+ 2) is solvable in polynomial time (see (Giroudeau et al., 2005)). 

1.3.1 Approximation by expansion 
In this section, a new polynomial-tim e approximation algorithm with performance 
guarantee non-trivial for the problem , cij 2; pi =  will be proposed. 
Notation: We denote by , the UET-UCT schedule, and by the UET-LCT schedule. 
Moreover, we denote by t i (resp. ) the starting time of the task i in the schedule  (resp. 
in the schedule ).
Principle: We keep an assignment for the tasks given by a "good" feasible schedule on an 
unrestricted number of processors . We proceed to an expansion of 
the makespan, while preserving communication delays  for two tasks, i
and j with ( i, j)  E, processing on two different processors. Consider a precedence graph G = 
(V, E), we determine a feasible schedule , for the model UET-UCT, using a (4/3)„
approximation algorithm proposed by Munier and König (Munier and König, 1997). This 
algorithm gives a couple i V, (t i, ) on the schedule  corresponding to: t i the starting 
time of the task i for the schedule  and  the processor on which the task i is processed at 
t i. Now, we determine a couple i V, ( , ') on schedule  in the following way: The 

starting time  and,  = '. The justification of the expansion coefficient 
is given below. An illustration of the expansion is given in Figure 1.5. 
Lemma 1.3.1 The coefficient of an expansion is .
Proof Consider two tasks i and j such that (i, j) E, which are processed on two different 
processors in the feasible schedule . Let be d a coefficient d such that  and 

. After an expansion, in order to respect the precedence constraints and the 
communication delays we must have , and so 

 . It is sufficient to choose .d
Lemma 1.3.2 An expansion algorithm gives a feasible schedule for the problem denoted by ,
cij = c 2; pi = .
Proof It is sufficient to check that the solution given by an expansion algorithm produces a 
feasible schedule for the model UET-LCT. Consider two tasks i and j such that (i,j) E. We
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denote by i, (resp. j) the processor on which the task i (resp. the task j) is executed in the 
schedule . Moreover, we denote by  (resp. ) the processor on which the task i (resp.
the task j) is executed in the schedule . Thus, 
€ If i = j then  = . Since the solution given by Munier and König (Munier and 

König, 1997) gives a feasible schedule on the model UET-UCT, then we have ,

€ If i j then . We have 

Figure 1.5. Illustarion of notion of an expansion 

Theorem 1.3.4 An expansion algorithm gives a „approximation algorithm for the problem 
, cij = c 2; pi = .

Proof 
We denote by (resp. ) the makespan of the schedule computed by the Munier 
and König (resp. the optimal value of a schedule ). In the same way we denote by 
(resp. ) the makespan of the schedule computed by our algorithm (resp. the optimal 
value of a schedule ).
We know that . Thus, we obtain  

.

This expansion method can be used for other scheduling problems. 

1.4 Complexity and approximation of hierarchical scheduling model 
On negative side, Bampis et al. in (Bampis et al., 2002) studied the impact of the hierarchical 
communications on the complexity of the associated problem. They considered the simplest 
case, i.e., the problem , and they showed that 
this problem did not possess a polynomial-tim e approximation algorithm with a ratio 
guarantee better than 5/4 (unless  = ).



Multiprocessor Scheduling: Theory and Applications 74

Table 1.1:  Previous complexity results for unbounded number of machines for hierarchical 
communication delay model 

Recently, (Giroudeau, 2005) Giroudeau proved that there is no hope to find a -
approximation with  < 6/5 for the couple of communication delays ( cij, ij) = (2,1). If 
duplication is allowed, Bampis et al. (Bampis et al., 2000a) extended the result of (Chrétienne 
and Colin, 1991) in the case of hierarchical communications, providing an optimal algorithm 
for ;pi = 1; . These complexity results are given in 
Table 1.1.  
On positive side, the authors presented in (Bampis et al., 2000b) a 8/5-approximation 
algorithm for the problem ;pi = 1 which is based on an 
integer linear programming formulation. They relax the integrity constraints and they 
produce a feasible schedule by rounding. This result is extended to the problem 

;pi = 1 leading to a -approximation algorithm (see 
below).
The challenge is to determinate a threshold for the approximation algorithm concerning the 
two more general problems: l  and 

 l with c' < c.  
Recently, in (Giroudeau et al., 2005), the authors proved that there is no possibility of 
finding a p-approximation with p < 1 + l/( c + 4) (unless  = ) for the case where all tasks 
of the precedence graph have unit execution times, where the multiprocessor is composed of 
an unrestricted number of machines, and where c denotes the communication delay 
between two tasks i and j both submitted to a precedence constraint and which have to be 
processed by two different machines (this problem is denoted in the following UET-LCT 
(Unit Execution Time Large Communic ation Time) homogeneous scheduling 
communication delays problem). The probl em becomes polynomial whenever the 
makespan is at most (c + 1). The case of (c + 2) is still partially opened. In the same way as 
for the hierarchical communication delay model , for the couple of communication delay 
values (1,0), the authors proved in (Bampis et al., 2002) that there is no possibility of finding 
a -approximation with < 5/4 (this problem is detailed in following the UET-UCT 
hierarchical scheduling communication delay problem). 
Theorem 1.4.1 The problem of deciding whether an instance of 

 having a schedule of length at most (c + 3) is -complete, see 
(Giroudeau and König, 2004). 
Corollary 1.4.1 There is no polynomial-time algorithm for the problem 

 with c > d performance bound smaller than 1 +  unless 
, see (Giroudeau and König, 2004). 

The problem of deciding whether an instance of 
having a schedule of length at most (c + 1) is solvable in polynomial 

time since l and c are constant. 
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In the  same  way  as  the  section  1.2.2,   the  aim is  to model  the problem 
by an integer linear program (ILP) denoted, in 

what follows, by .
In this section, we will precise only the difference between the ILP given for the problem 

and .
In every feasible schedule, every task i V „ U has at most two successors, w.l.o.g. call 
them ji and j2 (i), that can be performed by the same cluster as i at time t j1 = tj2 = ti + pi.
The other successors of i, if any, satisfy: k .
Consequently, the constraints:  are added. 
Similarly, every task i of V „  Z has at most two predecessors, w.l.o.g. call them j1 and j2

(i), that can be performed by the same cluster as i at times t j1 , t j2 satisfying t i„ ( t j1 +pj1) <
1 and t i„ ( t j2 +pj2) < 1. So, the following constraints:  are added. 
The above constraints are necessary but not sufficient conditions in order to get a feasible 
schedule for the problem. For instance, a solution minimizing ( Cmax for the graph of case (a) 
in Figure 1.6 will assign to every arc the value 0. However, since every cluster has two 
processors, and so at most two tasks can be processed on the same cluster simultaneously, 
the obtained solution is clearly not feasible. Thus, the relaxation of the integer constraints, 
by considering 0 xij 1, and the resolution of the resulting linear program with objective 
function the minimization of Cmax, gives just a lower bound of the value of Cmax.
In order to improve this lower bound, we consider every sub-graph of G that is isomorphic 
to the graphs given in Figure 1.6 -cases (a) and (b). It is easy to see that in any feasible 
schedule of G, at least one of the variables associated to the arcs of each one of these graphs 
must be set to one. So, the following constraints are added: 
€ For the case (a): 

i, j, k, l, m V, such that (j, i), (j, k), (l, k), (l, m)  E, xji + xjk + xlk + xlm  1. 
€ For the case (b): 

i, j, k, l, m V, such that (i, j), (k, j), (k, l), (m, l)  E, xij + xkj + xkl + xml  1. 
Thus, in what follows, the fo llowing ILP will be considered: 

Once again the integer linear program given above does not always imply a feasible solution 
for the scheduling problem. For instance, if the precedence graph given in Figure 1.7 is 
considered, the optimal solution of the integer linear program will set all the arcs to 0. 
Clearly, this is not a feasible solution for our scheduling problem. However, the goal in this 
step is to get a good lower bound of the makespan and a solution -eventually not feasible- 
that we will transform to a feasible one. 
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 case (a) case (b) 
Figure 1.6. Special sub-graphs considered in the ILP 

Figure 1.7 An optimal solution of the ILP  does not always imply a feasible solution 

Let inf denote the linear program corresponding to  in which we relax the integrability 
constraints xij  {0,1} by setting xij  [0,1]. Given that the number of variables and the number 
of constraints are polynomially bounded, this linear program can be solved in polynomial 
time. The solution of inf will assign to every arc (i, j) E a value xij = eij with 0 eij 1 and 
will determine a lower bound of the value of Cmax that we denote by .
Lemma 1.4.1  is a lower bound on the value of an optimal solution for 

.
Proof 
See the proof of Theorem 1.2.1. 
We use the algorithm 1 for the rounding algorithm by changing the value rounded: eij < 0.25 
instead eij < 0.5 The solution given by Step 1 is not necessarily a feasible solution (take for 
instance the precedence graph of Figure 1.7), so we must transform it to a feasible one. 
Notice that the cases given in Figure 1.6 are eliminated by the linear program. In the next 
step we need the following definition. 
Definition 1.4.1 A critical path with terminal vertex i  V is the longest path from an arbitrary 
source of G to task i. The length of a path is defined as the sum of the processing times of the tasks 
belonging to this path and of the values xij for every arc in the path. 
1. Step 2 [Feasible Rounding]: We change the integer solution as follows: 

a) If i is a source then we keep unchanged the values of xij obtained in Step 1.
b) Let i be a task such that all predecessors are already examined. Let A i be the subset 

of incoming arcs of i belonging to a critical path with terminal vertex the task i.
i) If the set A i, contains a 0-arc, then all the outcoming arcs xij take the value 1.  
ii) If the set A i, does not contain any 0-arc(all the critical incoming arcs are valued to 

1), then the value of all the outcoming arcs xij remains the same as in Step 1, and all 
the incoming 0-arcs are transformed to I-arcs.

In Step l b) ii changing the value of an incoming 0-arcto 1 does not increase the length of any 
critical path having as terminal vertex i, because it exists at least one critical path with 
terminal vertex i such that an arc (j, i) E is valued by the linear program to at least 0.25 (eji

 0.25), and so xji is already equal to 1. 
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Lemma 1.4.2 Every job i  V has at most two successors (resp. predecessors) such that eij < 0.25
(resp. eji < 0.25) and The scheduling algorithm described above provides a feasible schedule. 
Theorem 1.4.2 The relative performance h of our heuristic is bounded above by  and the bound is 

tight, see (Bampis et al, 2003). 
Proof 
See the proof of the Theorem 1.2.3. 

1.5 Duplication 
The duplication of the tasks has been introduced first by Papadimitriou and Yannakakis 
(Papadimitriou and Yannakakis, 1990) in order to reduce an influence of the communication 
delays on the schedule. In (Papadimitriou and Yannakakis, 1990), the authors develop a 2-
approximation algorithm for the problem . The 
problem (the problem is a subproblem of 

) becomes easy. In the following, we will describe the procedure. We 
may assume w.l.o.g. that all the copies of any task i  V start their execution at the same 
time, call it t i.

1.5.1 Colin-Chrétienne Algorithm see (Chrétienne and Colin, 1991) 
The algorithm uses two steps: the first step computes the release times, and the second step 
use a critical determined from the first step in order to produces a optimal schedule in 
which all the tasks and their copies are executed at their release times. 

a 0
b 0
c 4
d 4
e 3
f 7
g 6
h 6
i 11

Figure 1.8. P0 problem 

The P0 problem given by Figure 1.8 will be il lustrated the algorithm. The algorithm which 
computes the release times is given next: 

Algorithm 3 Release date algorithm and Earliest schedule  
for i := 1 to n do

if  PRED(i) =  then 
bi := 0 

else
C := max{bk+pk + cki };
Let be s such that : bs + ps + csi = C;
bi := max{bs + ps : max{bk+pk + cki - {s}}}.

end if 
end for
Each connected component Gc = (V; Ec) on different processor;  
Each copy is executed at his release time. 
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Without lost of generality, all copies of the task i admit the same starting , denoted by t i, as 
the the task i. A arc (i, j) E is a critical arc if bi+pi +cij > bj. From this definition, it is clear that 
if (i, j) is a critical arc, then in all as soon as possible schedule, each copy of a task j must be 
preceded by a copy of a task i on the same processor. In order to construct a earliest 
schedule, each critical path is allotted on a processor, and each copy is executed at his 
release date. 
Theorem 1.5.1 Let be bi the starting time computed by the procedure. For all feasible schedule for a 
graph G, the release date of a task i cannot be less than bi. All sub-graph is spanning forest. The 
procedure gives a feasible schedule and the overall complexity is O(n2).

Table 1.2: Complexity results in presence of duplication 

Figure 1.9 The critical sub-graph 

An earliest schedule of the precedence graph P0 is given by Figure 1.10. 

Figure 1.10: An earliest schedule of P0

The study of duplication in presence of unbounded number of processors is theoretical. 
Indeed, the results on unbounded processors do not improved the results on limited 
number of processors. So, concerning the hierarchical model, since the number of processors 
per cluster is limited, the authors in (Bampis et al., 2000a) are investigate only on the 
theoretical aspect of associated scheduling problem. 


















