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Abstract

This chapter presents techniques to solve problems of propagation along the straight
rectangular and circular waveguides with inhomogeneous dielectric materials in the cross
section. These techniques are very important to improve the methods that are based on
Laplace and Fourier transforms and their inverse transforms also for the discontinuous
rectangular and circular profiles in the cross section (and not only for the continuous
profiles). The main objective of this chapter is to develop the techniques that enable us to
solve problems with inhomogeneous dielectric materials in the cross section of the straight
rectangular and circular waveguides. The second objective is to understand the influence
of the inhomogeneous dielectric materials on the output fields. The method in this chapter
is based on the Laplace and Fourier transforms and their inverse transforms. The pro-
posed techniques together with the methods that are based on Laplace and Fourier trans-
forms and their inverse transforms are important to improve the methods also for the
discontinuous rectangular and circular profiles in the cross section. The applications are
useful for straight waveguides in the microwave and the millimeter-wave regimes, for the
straight hollow waveguide and for infrared field, also in the cases of inhomogeneous
dielectric materials in the cross section.

Keywords: wave propagation, inhomogeneous dielectric materials, rectangular and
circular waveguides, dielectric profiles

1. Introduction

The methods of straight waveguides have been proposed in the literature. Review of numerical
and approximate methods for the modal analysis of general optical dielectric waveguides with

[ 7KH $XWKRU V  /LFHQVHH ,QWHFK2SHQ 7KLV FKDSWHU LV GLVWULEXWHG
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GLVWULEXWLRQ DQG UHSURGXFWLRQ LQ DQ\ PHGLXP {9l KH RULILQD
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emphasis on recent developments has been published [1]. Examples of important method
have been proposed such as finite-difference method, the integral-equation method, anc
methods based on series expansion. Full-vectorial matched interface and boundary methot
for modal analysis of dielectric waveguides has been proposed [2]. The method distinguishes
itself with other existing interface methods by avoiding the use of the Taylor series expansion
and by introducing the concept of the iterative use of low-order jump conditions.

A review of the hollow waveguide and the applications has been presented [3, 4]. A review of
hollow waveguides, infrared transmitting, and fibers has been presented [5]. Hollow wave-

guides with metallic and dielectric layers have been proposed to reduce the transmissior
losses. A hollow waveguide can be made from any flexible or rigid tube, such as glass, plastic
or glass, and the inner hollow surface is covered by a metallic layer and a dielectric overlayer.
The structure of the layer enables to transmit both the TE and TM polarization with low

attenuation [6, 7].

Selective suppression of electromagnetic modes in rectangular waveguides has been presentt
[8] by using distributed wall losses. Analytical model for the corrugated rectangular wave-
guide has been extended to compute the dispersion and interaction impedance [9].

A Fourier operator method has been used to derive for the first time an exact closed-form
eigenvalue equation for the scalar mode propagation constants of a buried rectangular dielec
tric waveguide [10]. Wave propagation in an inhomogeneous transversely magnetized rectan-
gular waveguide has been studied with the aid of a modified Sturm-Liouville differential
equation [11]. A fundamental and accurate technigue to compute the propagation constant of
waves in a lossy rectangular waveguide has been proposed [12]. This method is based o
matching the electric and magnetic fields at the boundary and allowing the wavenumbers to
take complex values.

A method that relates to the propagation constant for the bound modes in the dielectric
rectangular waveguides has been proposed [13]. An analysis of rectangular folded-waveguide
slow-wave structure has been developed using conformal mapping by using Schwarz
Christoffel transformation [14]. A simple closed form expression to compute the time-domain
reflection coefficient for a transient TE;o mode wave incident on a dielectric step discontinuity
in a rectangular waveguide has been presented [15]. In this paper, an exponential serie
approximation was provided for efficient computation of the reflected and transmitted field
waveforms.

The electromagnetic fields in rectangular conducting waveguides filled with uniaxial aniso-

tropic media have been characterized [16]. In this paper, the electric type dyadic Greens
function due to an electric source was derived by using eigenfunctions expansion and the
Ohm-Rayleigh method. An improved generalized admittance matrix technique based on
mode matching method has been proposed [17]. The generalized scattering matrix of wave
guide structure and its discontinuity problems is obtained with relationship equations and

reflection coefficients.

A full-vectorial boundary integral equation method for computing guided modes of optical
waveguides has been proposed [18]. Method for the propagation constants of fiber waveguides
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of arbitrary cross section shape has been proposed [19]. In this paper, the proposed technique
used to solve problems of scattering by irregularly shaped dielectric bodies, and in the static
limit, for solving the problem of an irregular dielectric or permeable body in an external field.

The rectangular dielectric waveguide technique for the determination of complex permittivity
of a wide class of dielectric materials of various thicknesses and cross sections has bel
described [20]. In this paper, the technique has been presented to determine the dielectri
constant of materials. The fields and propagation constants of dielectric waveguides have beel
determined within the scalar regime [21] by using two-dimensional Fourier series expansions.
Propagation of modes in some rectangular waveguides using the finite-difference time-domain
method has been proposed [22]. Analysis of rectangular waveguide using finite element
method has been proposed [23].

Wave propagation and dielectric permittivity reconstruction in the case of a rectangular wave-
guide have been studied [24]. According to this paper, we study the electromagnetic wave
propagation in a rectangular waveguide filled with an inhomogeneous dielectric material in the
longitudinal direction. Light propagation in a cylindrical waveguide with a complex, metallic
and dielectric function has been proposed [25]. Advancement of algebraic function approxima-
tion in eigenvalue problems of lossless metallic waveguides to infinite dimensions has beer
investigated [26]. The method of algebraic function approximation in eigenvalue problems of
lossless metallic waveguides such as a closed uniform cylindrical waveguides has been propose
[27]. Analysis of longitudinally inhomogeneous waveguides using Taylor ’s series expansion ha
been proposed [28]. Analysis of longitudinally inhomogeneous waveguides using the Fourier
series expansion has been proposed [29]. The method of external excitation for analysis
arbitrarily-shaped hollow conducting waveguides has been proposed [30].

A circular metallic hollow waveguide with inner dielectric multilayers has been designed by
Miyagi and Kawakami [31] with the emphasis on low-loss transmission of the HE;; mode for
the infrared. According to this paper, the transmission losses of the dielectric-coated meta
waveguides are drastically reduced when a multiple dielectric layer is formed instead of a
single dielectric layer. The simplest and most efficient multilayer structure is a three-dielectric-
layer stack deposited on a metal layer.

A transfer matrix function for the analysis of electromagnetic wave propagation along the

straight dielectric waveguide with arbitrary profiles has been proposed [32]. According to this

paper, the method is based on the Laplace and Fourier transforms, and the inverse Laplace an
Fourier transforms. A rigorous approach for the propagation of electromagnetic fields along a
straight hollow waveguide with a circular cross section has been proposed [33]. The cros:
section is made of a metallic layer, and only one dielectric layer upon it. The separation of
variables is obtained by using the orthogonal-relations. The longitudinal components of the
fields are developed into the Fourier-Bessel series. The transverse components of the fields a
expressed as functions of the longitudinal components in the Laplace plane and are obtainec
by using the inverse Laplace transform by the residue method.

In order to solve more complex problems of coatings in the cross section of the dielectric
waveguides, such as rectangular and circular profiles, then it is important to develop in each
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modal an improved technique to calculate the dielectric profile, the elements of the matrix and
its derivatives of the dielectric profile.

The main objective of this chapter is to develop the techniques that enable us to solve problem:
with inhomogeneous dielectric materials in the cross section of the straight rectangular and
circular waveguides. The second objective is to understand the influence of the inhomoge
neous dielectric materials on the output fields. Thus, we need to develop the technique and &
particular application to calculate the profiles in the cross section. Namely, we need to calculate
the dielectric profile, the elements of the matrix and its derivatives of the dielectric profile in

the cases of the straight rectangular and circular waveguides. The proposed techniques ar
important to improve the methods that are based on Laplace and Fourier transforms and their
inverse Laplace and Fourier transforms also for the discontinuous rectangular and circular
profiles in the cross section (and not only for the continuous profiles).

2. Formulation of the problem

In this chapter, we present techniques for solving discontinuous problems of dielectric mate-
rials in the cross section of the straight waveguide for applications in the microwave and
millimeter-wave regimes and in the cases of infrared regime. The proposed techniques art
very effective in relation to the conventional methods because they allow the development of
expressions in the cross section only according to the specific discontinuous problem. In this
way, the mode model method becomes an improved method to solve discontinuous problems
in the cross section.

Three examples of inhomogeneous dielectric materials in the cross section of the straigt
waveguides are shown in Figure 1(a)—c). Figure 1(a) shows an example of rectangular profile
in the cross section of the straight rectangular waveguide. Figure 1(b) shows an example of

substrate

metal layer
dielectric layer 3
dielectric layer 2
dielectric layer 1
air layer

b/2

a/2

\ 4

A A

A
A4

A 4

(a) (b) (c)

Figure 1. Three examples of inhomogeneous dielectric materials in the cross section of the straight waveguides. (:
Rectangular profile in the cross section of the straight rectangular waveguide; (b) Circular profile in the cross section of
the straight rectangular waveguide; (c) Three dielectric layers and a metallic layer in the cross section of the hollow
waveguide.
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circular profile in the cross section of the straight rectangular waveguide. Figure 1(c) shows an
example for three dielectric layers and a metallic layer in the cross section of the straigh
hollow waveguide.

In order to solve these inhomogeneous dielectric materials, we need to calculate the dielectri
profile, the elements of the matrix and its derivatives of the dielectric profile. In the next
section, we explain the techniques to solve problems with inhomogeneous dielectric materials
in the cross section of the straight rectangular waveguide (Figure 1(a) and 1(b)) and also in the
cross section of the straight circular waveguide (Figure 1(c)).

3. The technique to solve inhomogeneous dielectric profiles

The particular application is based onthe  function[34]. The  functionis used in order to solve
discontinuous problems of the rectangular profile, and circular profHe in the cros s chtion of the

straight waveguide. The  function is defined as &P YC exp 2= 2 jrj> for r >

b
where C is a constant, and alr¥%1. Inthelimit ! 0,the functionis shownin Figure 2.

The technique that based on  function is very effective to solve complex problems, in relation
to the conventional methods, especially when we have a large numbers of dielectric layers anc
a metal layer, as shown in Figure 1(c). We will demonstrate how to use with the proposed

technique for all the cases that are shown in the examples inFigure 1(a)-(c).

3.1. The technique based on  function for the rectangular profile in the cross section of
the straight rectangular waveguide

The elements of the matrix g(n, m) are calculated for an arbitrary profile in the cross section of
the straight waveguide according to Figure 3(a) and 3(b). Figure 3(a) shows the arbitrary
profile in the cross section of the straight waveguide. Figure 3(b) shows the rectangular profile
in the cross section of the straight waveguide, according toFigure 1(a).

A we(T)

Figure 2. The technique based on function in the limit ! 0 to solve discontinuous problems.
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The dielectric profile gox; y Bs given accordingto o;y b ¥ odl p gdx;y BHpAccording to Figure 3(a)
and 3(b) and for gdx; y b ¥g,, we obtain

g 6a 6b
. Jo ;
gon; mP/a 4ab adx ) exp | kxp ky dy

g9 ( 6X12 aylg ) 0 X11 6Y12 )

Y, =0 dx exp | kxp ky dyp dx exp | kxp ky dy 1)
4ab X11 y11 X12 y11
0 X11 0 Y11 6X12 0 Y )
b dx exp j kxp ky dyp dx exp j kexp ky dy :
X12 Yio X11 Y12

If y,, and y,, are not functions of x, then the dielectric profile is given by
o)

X12 Y12
gon;, mP/a % cosdkx felx cos kyy dy: (2)

X11 Y11

The derivative of the dielectric profile in the case of y,, and y,, are functions of x, is given by
d

X12

g,n; mb7s

I K
——  G3Gyksin % Vi, Yy COS Ey YD Yy Cosdx X, 3)

X11

where g,d;y b Y@l=edx;y Hadedx;y dx bedx;y P Yeodlp gox,y Bk, Yadn xxa, and k, Y2 dm y b
Similarly, we can calculate the value of g &; mkPwhere g, &y P ¥8l=edx; y Hédedx; y xdy b

For the cross section as shown inFigures 1(a) and 3(b), the center of the rectangle is located &
(0.5a,0.5b)y,,=b/2 +c/2andy,, =b/2 c/2. Thus, for this casey,, Yy;;=candy,,p y,;=Db.

y
b A b
12 2 Y2 Y2
s z O~ |
—-a 1| Xn
Wi Vu a; X —-a Yu Yu a
Yy X | Xp u Yu Yu X
. . w0 |%
ye ye Y2 Y12
-b
-b
(a) (b)

Figure 3. (a). The arbitrary profile in the cross section of the straight waveguide. (b). The rectangular profile in the cross
section of the straight waveguide, according to Figure 1(a).
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3.2. The technique based on  function for the circular profile in the cross section of the
straight rectangular waveguide

The equation of the circle is given by & a=2Bp & b=2B vr2 The center of the circle i
located at (0.5qa, 0.5 b), as shown inFigure 1(b). W% obtain two possibilities without this

y XPvb=2 12 & a2B and y,&XPYb=2p r2 & a2B, where y, vy, Y%
q
2 r2 & a2Bandy,,py,; %b.

The dielectric profile for the circle is given where the center is located at (0.5 a, 0.5 b)Figure 1(b)) by

3¢ vb U 9o O0r<n 1=2 4
gocy®s 7 gexp 1 qab rp =2 r<rnip =2’ “)
where
12
ab Y , 5
a 12 1 &1 1:2|32 ()
q

elsegdx; y b= 0. The radius of the circle is given byr ¥4 & a=2Bp & b=2B

The derivatives of the dielectric profile for the circle are given where the center is located at(0.5 a
0.5 b), as shown inFigure 1(b), wherer; =2 r<r;p 1=2by

2 g, cos expl qab¥ & q=2p 12
! |

gX]/4 I21
1pgexp 1 qadb 2 ¥ & =2

(6)

— 2 g, sin expl qﬁ&blrz d, 1=2b 12:
y

I21 (7)
1pgeexp 1 qab 2 ¥ & 1=2FF

elseg, =0, andg, = 0.

The elements of the matrices for the circular profile are given where the center is located at (0.5 :
0.5 b) Figure 1(b)) by

(5, 5
o a m s b2
gén,mb%ab . cos a r cos |o2 cos b rsin |o2
62 6r1b 1=2 )
n a m b
COS — rcos — €0S — rsin - exp 1 ab rdrd ,
p S a Io2 5 Io2 p q
(8)
8
2 62 6r1p 1=2 21,
o o =2 be 1 d bcos
g, & b a_8> h 1“2 a1 EZXP q
T0on o2 o §; =20 1pgexpl qab (9)

n a m . b
cos? r cos |oé cosT rsin |oE rdrd
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20, Op 1=

29, 2% & 1=2Pexp 1 g &Psin
ab.> 0 r

gy&h; m B

K
I

2
L2 2 1§, =2F 1pgexp 1 qab (10)

n a m . b
cosz r cos bE cosT rsin |oE rdrd

q
wherer %2 & a:2I5|oQ/ b=2B.

The proposed techniques in this subsection and the subsection 3.1 relate to the method fc
the propagation along the straight rectangular metallic waveguide [32]. The techniques and
the particular applications to solve the rectangular and circular profiles in the cross section of
the straight rectangular waveguide are important in order to improve the mode model [32].
The method is based on the Laplace and Fourier transform and their inverse transforms
Laplace transform is necessary to obtain the comfortable and simple input-output connections
of the fields. The output transverse field profiles are computed by the inverse Laplace and
Fourier transforms.

The matrix G is given by the form.

2 3
90 910 920 - 9m - 9
90 Y90 910 - 9a&mim - 9a 1m
90 Y10
G Org : (11)
Ohm %00
O - Yoo

Similarly, the Gy and Gy matrices are obtained by the derivatives of the dielectric profile. These
matrices relate to the method that is based on the Laplace and Fourier transforms and thei
inverse [32].

Several examples will demonstrate in the next section in order to explore the effects of the
rectangular and circular materials in the cross section Figure 1(a) and 1(b)) along the straight
waveguide on the output field. All the graphical results will be demonstrated as a response to
a half-sine (TE;p) input-wave profile and the rectangular and circular materials in the cross
section of the straight rectangular waveguide.

3.3. The technique based on  function for the circular profile in the cross section of the
straight circular waveguide

The cross section of hollow waveguide (Figure 1(c)) is made of a tube of various types of three
dielectric layers and a metallic layer. The internal and external diameters are denoted as 2kt
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2y, 2b,, 2a, and 2(atn,), respectively, where ,, is the thickness of the metallic layer. In
addition, we denote the thickness of the dielectric layers asd;, dy, and ds, respectively, where
di=b; b,d,=b, by,andds3=a b,. The refractive index in the particular case with the three
dielectric layers and the metallic layer in the cross section of the straight hollow waveguide
(Figure 1(c)) is calculated as follows:

8

2
nop &y nokexp 1 L b =2 r<b =2
op 1 nokexp 2w dp 2P 1 b 1
ny " # bp 1=2 r<b =2
2
npom, nikEexp 1 2 b =2 r<b =2
1p &y ngkexp 2w b 2P 2 i
ndrb¥% n, " # bip 222 r<b =2, (12)
2
np & nykexp 1 3 =2 r< =2
2p Mz nykexp 2w anp 2P b > bp 3
nsp M nskexp 1 4 a =2 r<a =2
3p @y nzkeXp 2 w dp 2P 3 b 4
Nm else

where the parameters 1, 2, 3, and jareverysmall[e.g., 1= 2= 3=% b=50, 4= /50].
The refractive indices of the air, dielectric and metallic layers are denoted asng, n;, ny, nz, and
Nm, respectively. In this study, we suppose that ng > n, > n;.

The transverse derivative of the dielectric profile is calculated as follows:
8

0 n , # O r<b 1:2
an; ngkexp 1 L ¥ dHp 1=2b ;2
PO T ap mp S b 1=2 r<bp ;=2
2 ”h iz 1= 1=
nop &y nokexp 1 L 2 1, GHp 2K
ob &1 ngRexp 2w dp 2P 1 b 1
0 " # bp 1:2 r< bl 2:2
2
4n, nikexp 1 2 ¥ =2pb ,2
2 M "p 2 % anp 2 dyb 2=2P;
5 h i bl 2:2 r<b1b 2:2
2
nop s nokexp 1 2 2 1 ® =2
2p &3 nyRexp 2 % dnp 2P 1 b 2
gra'b% 0 " # blb 2:2 r<b2 3:2:
2
3 1 = 2
s nzlre>l<lp ! 2 W dpp g2F o omb e b, 3=2 r<bpp 3=2
2 ”h |2 3~ 3~
nsp ®m nakexp 1 el 2 1 & =2
3bp &dm nzRexp 2w dyp a2F 1 b 2
0 " , # be 3:2 r<a 4:2
4, nakexp 1 4 ¥ &Ep 4=2b 42
m N3 "p 2 % @b sof b 4=2P 4 o e i
2 “h |2 4= 4=
nap &m nakexp 1 4 2 1, @p 4=2F
3p dm nzkexp Z % &mp 2P 4 b 4
"0 else

(13)
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The proposed technique in this subsection relates to the theoretical model that based o
Maxwell’s equations, Fourier-Bessel series, Laplace transform, and the inverse Laplace trar
form [33]. In this theoretical model, the longitudinal components of the fields are developed
into the Fourier-Bessel series. The transverse components of the fields are expressed as fu
tions of the longitudinal components in the Laplace plane and are obtained by using the
inverse Laplace transform by the residue method. The separation of the variables is obtainec
by using the orthogonal relations.

The output transverse components of the fields of the straight hollow waveguide are finally

expressed in a form of transfer matrix function, and the derivation has been already explained in
detail in Ref. [33]. The contribution of the proposed technique to calculate the refractive indices
(n& B and the transverse derivative of the dielectric profile (g,) for three dielectric layers is
important to improve the method that is based on the mode model [33]. This improved method

is important to reduce the transmission losses of the dielectric coated metal waveguides.

4. Numerical results

Several examples for all geometry of the rectangular and circular waveguides and the dielectric
profile are demonstrated in this section for three cases, as shown inFigure 1(a)c).

4.1. Numerical results for the rectangular dielectric material in the cross section of the
straight rectangular waveguide

The analytical method for the dielectric slab [35] is shown in Figure 4(a). The slab profile in the
cross section is based on transcendental equation, as follows:

k.

Ey1 Y% j— sind xp 0< x<'t (14)

0

ks sind th
Eyo Yaj— cos & a2b t<x<tpd 15
2" cos @ a2p b (15)

k.
EjzYaj—sin¥da xb th d< x< a, (16)
0
where K K and k2 K2 result from the transcendental equation.

aTd % an & & mota bvo: 17)

The criterion for the convergence of the solution is given by
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< max 1= =h =
CoN b Iog: I E'y\‘pz o Ey - (18)

for N 1, where o2\ p 1B is the number of the modes. By increasing the orderN, then E,dN |
approachesk,.

Figure 4(a) shows the geometry of the slab profile for practical case of the slab dielectric
material, where a =20 mm, b = 10 mm, d = 3.3 mm, t = 8.35 mm, ¥ 6:9 cm, ande, = 9.

Figure 4(b) demonstrates the output result of the comparison between the theoretical mode!
with the analytical solution [35].

Figure 4(c) shows the criterion of the convergence in Eq. (18). Between N =7 and N = 9 th
value of the criterion is equal to 2. According to Figure 4(b) and 4(c), the comparison has
shown good agreement.

All the next graphical results are demonstrated as a response to a half-sine TE;g) input-wave
profile.

Figure 5(a)(f) relates to discontinuous problem according to Figure 1(a). Figure 5(a)~(d) shows the
results of the output field as a response to a half-sine TE;g) input-wave profile. In this case,
¢ =d =3.3mmand the center of the rectangle is located at the point (0.5 a, 0.5 b), as shown iRigure 1
(a)for e =3,5, 7,and 10, respectively. The other parameters are a=b =@n, z=15cm kg = 167 Em,

=3.75cm and =58 Em. The output fields are strongly affected by the input wave profile (TEjq
mode), the rectangular profile, and the location of the center of the rectangle (0.5 a, 0.5 b).

Figure 5(e) shows the output amplitude and the Gaussian shape of the central peak in the
same cross section ofFigure 5(a)~d), wherea=2cm, b =2 cm, y = b/2 =10 mm, ¢ = 3.8im,
d=3.3mm, z=15cm ky = 167 =m, and for e =3, 5, 7, and 10, respectively.

y 12

5 i -0.8
— 8 -1
§ -1.2
6 -1.4
S Z 16
€0 = | © .8
2
2+ 2.2
. . . . 24

0 a X 0.0 0.005 0.01 0015 0.02

| X [m]
(a) (b) (c)

Figure 4. (a). The cross section of the straight rectangular waveguide. (b). The results between our model and th
analytical method. (c). The criterion of the convergence according to Eq. (18).
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Figure 5. The output field as a response to a half-sine TE;p) input-wave profile where ¢ = d = 3.3 mmand the center of the
rectangle is located at the point (0.5 a, 0.5 b) according td-igure 1(a), where: (a).e = 3; (b).e, =5; (c).e; =7; (d).e- = 10. The
other parametersarea=b=2m, z=15cm ky =167 =m, =3.75cm and =58 Tm. (e). The output field for g =3, 5,7
and 10, respectively, where a=b =2 cm, y = b/2 = 10 mm. (f). The output profiles for N =1, 3, 5, and 7, where, = 10.

By increasing only the value of e of the rectangular dielectric profile, the TE;o wave profile
decreased, the Gaussian shape of the output field increased, and the tative amplitude decreased.
In addition, by increasing only the value of e, the width of the Gaussian shape decreased.

The output profiles and the amplitudes for N = 1, 3, 5, and 7 are shown in Figure 5(f), for g =
10. By increasing only the parameter of the order N, the output field approaches to the final
output field.

According to the results, we see that the output fields are strongly affected by the input wave profile
(TE1o mode), the rectangular profile, and the location of the center of the rectangle (0.5 a, 0.5 b).

4.2. Numerical results for the circular dielectric material in the cross section of the straight
rectangular waveguide

Figure 6(a)—(f) relates to discontinuous problem according to Figure 1(b). Figure 6(a)—(d)
demonstrates the results of the output field as a response toTE;q input-wave profile, for e =
3,5, 7, and 10, respectively. The radius of the circle in this case is equal to 2mmand the center
of the circle is located at the point (0.5 a, 0.5 b), as shown irFigure 1(b).

The other parametersarea=b =2m, z=15cm ky =167 Em, =3.75cm and =58 Em.

Figure 6(e) shows the output amplitude and the Gaussian shape of the central peak in the
same cross section ofigure 6(a)«d), where e =3, 5, 7, and 10, respectively.
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Figure 6. The output field as a response to a half-sine TE,) input-wave profile where the radius of all circle is equal to 2.5 mm
and the center of the circle is located at the point (0.5 a, 0.5 b) according téigure 1(b), where: (a).e; = 3; (b).e: =5; (¢c)& =7; (d).
e =10. The other parametersarea=b=@m z=15cm ko =167 Em, =3.75cmand =58 Em. (e). The outputfield for e =3,
5, 7, and 10, respectively, where a = b = 20 mm, y = b/2 = 10 mm. The radius of all circles is equal ta2mm. (f). The output
profiles forN =1, 3,5, and 7, wheree, = 10.

The output profiles are shown in Figure 6(f) for N = 1, 3, 5, and 7, wheree, = 10. The othe
parameters area=b=2Zm, z=15cm ky = 167 Em, =3.75cm and =58 Em.

By increasing only the parameter e of the circular dielectric profile from 3 to 10, the Gaussian
shape of the output transverse profile of the field increased, the TE;o wave profile decreased,
and the relative amplitude of the output field decreased.

The output fields of Figure 6(a)—(f) are strongly affected by the input wave profile ( TE;o mode),
the circular profile, and the location of the center of the circle (0.5 a, 0.5 b).

Itis interesting to see a similar behavior of the output results in the cases of rectangular profiles
(Figure 5(a)—(f)) that relate to Figure 1(a) and in the cases of circular profiles Figure 6(a)—f))
that relate to Figure 1(b), for every value of &, respectively. According to these output results,
we see the similar behavior for every value of e, but the amplitudes of the output fields are
different.

4.3. Numerical results for the three dielectric layers and a metallic layer
in the cross section of the straight hollow waveguide

The comparison between our theoretical result of the output power density with the laboratory
result in the case of the straight hollow waveguide with one dielectric layer and a metallic layer
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is demonstrated in Figure 7(a) and 7(b). In this example, the diameter (2a) of the waveguide is

2 mm, the thickness of the dielectric layer [dsg d is 0:75 m, and the minimum spot-size (wo) is

0.3 mm. The length of the straight waveguide is 1 m. The refractive indices of the air, the

dielectric layer (Agl) and the metallic layer (Ag) are ngp%l, Nagp¥s2:2, and Nagp¥a

135 753, respectively. The value of the refractive index of the material at a wavelength of
=10.6 mis taken from the table compiled by Miyagi et al. [36].

The results of the output power density §S,,j P(e.g., Figure 7(a)) show the behavior of the
solutions for the TEMpy mode in excitation. The comparison between our theoretical result
(Figure 7(a)) and the published experimental data [37], as shown also in Figure 7(b) shows
good agreement of a Gaussian shape as expected, except for the secondary small propagati
mode. The experimental result is taken into account the roughness of the internal wall of the
waveguide, but our theoretical model is not taken the roughness.

Miyagi and Kawakami showed that transmission losses of the dielectric-coated metal wave-
guides are drastically reduced when a multiple dielectric layer is formed instead of a single
dielectric layer [31]. The simplest and most efficient multilayer structure is three dielectric
layers that deposited on a metal layer.

Thus, in this subsection, we present the output results that relate to the proposed technique
and the particular application for the cross section of the straight hollow waveguide with three
dielectric layers (and not only with one dielectric layer) and a metallic layer. In this case, we
can improve the method [33], in the case of the three dielectric layers and a metallic layer in the
cross section of the straight hollow waveguide.

Figure 8(a)—(c) relates to discontinuous problem according to Figure 1(c). The output power
density for the straight hollow waveguide with three dielectric layers is shown in  Figure 8(a)-
(c). Figure 8(a) is shown for a = 0.8 mm and wp = 0.1 mm. Figure 8(b) is shown for a = 0.8 mm
and wp = 0.3 mm. Figure 8(c) is shown for a = 0.6 mm and wy = 0.3 mm. The other parameter:
areb=05mm, Y4106 m,ngp=1,n1=2.22 10 ®ny=4 j10 ®,ng=6 j10 ° nm=nsmgp=
13.5 j 75.3, and the length of the straight waveguide is 1 m.

Figure 7. The comparison between our theoretical results of the output power density with the laboratory results in the
case of the straight hollow waveguide with one dielectric layer. The parameters are a = 1 mm, wo = 0.3 mm, dag 5= 0.7¢

m, =10.6 m, ngp=1,Namgp= 2.2,N;agp= 13.5 j 75, and the length of the straight waveguide is 1 m. (a). theoretical
result. (b). laboratory result.
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Figure 8. The output power density for the straight hollow waveguide with three dielectric layers, where (a). a = 0.8 mm
and wp = 0.1 mm. (b). a =0.8 mm andw = 0.3 mm. (c). a = 0.6 mm andvg = 0.3 mm. The other parameters are: b= 0.5 mn

Y106 m,ngpp=1,n; =222 (10 ®,n;=4 j10 ®,n3g=6 j10 ° ny =ngmgp=13.5 j 75.3, and the length of the straight
waveguide is 1 m.

By changing only the spot size from wg = 0.1 to 0.3 mm, with the same other parameters, thi
output power density is changed, as shown in Figure 8(a) and 8(b). The results of the output
power density dS,,j Pshow the behavior of the solutions for the TEMgo mode in excitation. By
changing only the spot size from wp = 0.3 to 0.1 mm, the width of the output Gaussian becomes
more narrow. The output field results are strongly affected by the spot size and the structure of
the three layers and the metallic layer in the cross section of the straight hollow waveguide.

This mode model can be a useful tool to predict the relevant parameters in the case of th
hollow waveguide with three dielectric layers and a metallic layer (Ag) for practical applica-
tions (output fields, output power density and output power transmission), before carrying
out experiments in the laboratory.

5. Conclusions

The main objective of this chapter was to develop the techniques that enable us to solw
problems with inhomogeneous dielectric materials in the cross section of the straight rectan-
gular and circular waveguides. The proposed techniques are very effective in relation to the
conventional methods because they allow the development of expressions in the cross sectio
only according to the specific discontinuous problem. In this way, the mode model methods
become an improved methods to solve discontinuous problems in the cross section (and no
only for continuous problems).

Three examples of inhomogeneous dielectric profiles in the cross section of the straight wave
guides were shown in Figure 1(a)Ac). Figure 1(a) and 1(b) show the rectangular and circular
profiles in the cross section of the straight rectangular waveguide, respectively. Figure 1(c)
shows three dielectric layers and a metallic layer in the cross section of the straight hollow
waveguide. The second objective is to understand the influence of the inhomogeneous dielec
tric materials on the output fields.

The proposed techniques are important to improve the methods that are based on Laplace anc
Fourier transforms and their inverse transforms also for the discontinuous rectangular and
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circular profiles in the cross section. The technique based on  function was explained in
detail in this chapter.

The result of the comparison between the theoretical models with the analytical solution [35] is
shown in Figure 4(b) and the convergence is shown inFigure 4(c). The comparison has showr
good agreement.

The results for the rectangular profile in the cross section of the straight rectangular waveguide
(Figure 1(a)) were shown in Figure 5(a)f). Figure 5(a){(d) shows the results of the output
field as a response to a half-sine TE;p) input-wave profile. The output fields are strongly
affected by the input wave profile ( TE;o mode), the rectangular profile, and the location of the
center of the rectangle (0.5 a, 0.5 b).

By increasing only the value of g of the rectangular dielectric material, the Gaussian shape o
the output field increased, the TE;o wave profile decreased, the relative amplitude decreased
and the width of the Gaussian shape decreased. The output field approaches to the fina
output field, by increasing only the parameter of the order N, as shown in Figure 5(f).

The results for the circular profile in the cross section of the straight rectangular waveguide
(Figure 1(b)) were shown in Figure 6(a)~(f). Figure 6(a)—(d) shows the results of the output
field as a response to a half-sine TE;g) input-wave profile.

By increasing only the value of the parameter e of the circular dielectric material (Figure 1(b))
in the rectangular cross section from 3 to 10, the Gaussian shape of the output transvers
profile of the field increased, the TE;o wave profile decreased, and the relative amplitude of
the output field decreased.

The output fields of Figure 5(a)~(f) and Figure 6(a)f) are strongly affected by the input wave
profile (TEp mode), the rectangular profile or circular profile, and the location of the center of
the rectangle or the circle (0.5 a, 0.5 b).

It is interesting to see a similar behavior of the output results in the cases of rectangular profiles
(Figure 5(a)~(f)) that relate to Figure 1(a) and in the cases of circular profiles Figure 6(a)«f)) that
relate to Figure 1(b), for every value of e, respectively. According to these output results, we see¢
the similar behavior for every value of e, but the amplitudes of the output fields are different.

The comparison between our theoretical result (Figure 7(a)) and the published experimental
data [37], as shown also inFigure 7(b) shows good agreement of a Gaussian shape as expecte
except for the secondary small propagation mode. The experimental result is taken intc
account the roughness of the internal wall of the waveguide, but our theoretical model is not
taken the roughness.

The output power density for the straight hollow waveguide with three dielectric layers
(Figure 1(c)) is shown in Figure 8(a)—c). The output field results are strongly affected by the
spot size and the structure of the three layers and the metallic layer in the cross section of thi
straight hollow waveguide.

These models are useful to predict the structure of the output fields for rectangular and circular
profiles in straight waveguides in the cases of microwave and millimeter-wave regimes and in
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the cases of infrared regime. These models can be a useful tool to predict the relevant paramete
for practical applications, before carrying out experiments in the laboratory.
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