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Abstract

This chapter presents techniques to solve problems of propagation along the straight
rectangular and circular waveguides with inhomogeneous dielectric materials in the cross
section. These techniques are very important to improve the methods that are based on
Laplace and Fourier transforms and their inverse transforms also for the discontinuous
rectangular and circular profiles in the cross section (and not only for the continuous
profiles). The main objective of this chapter is to develop the techniques that enable us to
solve problems with inhomogeneous dielectric materials in the cross section of the straight
rectangular and circular waveguides. The second objective is to understand the influence
of the inhomogeneous dielectric materials on the output fields. The method in this chapter
is based on the Laplace and Fourier transforms and their inverse transforms. The pro-
posed techniques together with the methods that are based on Laplace and Fourier trans-
forms and their inverse transforms are important to improve the methods also for the
discontinuous rectangular and circular profiles in the cross section. The applications are
useful for straight waveguides in the microwave and the millimeter-wave regimes, for the
straight hollow waveguide and for infrared field, also in the cases of inhomogeneous
dielectric materials in the cross section.

Keywords: wave propagation, inhomogeneous dielectric materials, rectangular and
circular waveguides, dielectric profiles

1. Introduction

The methods of straight waveguides have been proposed in the literature. Review of numerical
and approximate methods for the modal analysis of general optical dielectric waveguides with

�i�������������7�K�H���$�X�W�K�R�U���V�������/�L�F�H�Q�V�H�H���,�Q�W�H�F�K�2�S�H�Q�����7�K�L�V���F�K�D�S�W�H�U���L�V���G�L�V�W�U�L�E�X�W�H�G���X�Q�G�H�U���W�K�H���W�H�U�P�V���R�I���W�K�H���&�U�H�D�W�L�Y�H

�&�R�P�P�R�Q�V���$�W�W�U�L�E�X�W�L�R�Q���/�L�F�H�Q�V�H�����K�W�W�S�������F�U�H�D�W�L�Y�H�F�R�P�P�R�Q�V���R�U�J���O�L�F�H�Q�V�H�V���E�\���������������Z�K�L�F�K���S�H�U�P�L�W�V���X�Q�U�H�V�W�U�L�F�W�H�G���X�V�H��

�G�L�V�W�U�L�E�X�W�L�R�Q�����D�Q�G���U�H�S�U�R�G�X�F�W�L�R�Q���L�Q���D�Q�\���P�H�G�L�X�P�����S�U�R�Y�L�G�H�G���W�K�H���R�U�L�J�L�Q�D�O���Z�R�U�N���L�V���S�U�R�S�H�U�O�\���F�L�W�H�G��



emphasis on recent developments has been published [1]. Examples of important methods
have been proposed such as finite-difference method, the integral-equation method, and
methods based on series expansion. Full-vectorial matched interface and boundary method
for modal analysis of dielectric waveguides has been proposed [2]. The method distinguishes
itself with other existing interface methods by avoiding the use of the Taylor series expansion
and by introducing the concept of the iterative use of low-order jump conditions.

A review of the hollow waveguide and the applications has been presented [3, 4]. A review of
hollow waveguides, infrared transmitting, and fibers has been presented [5]. Hollow wave-
guides with metallic and dielectric layers have been proposed to reduce the transmission
losses. A hollow waveguide can be made from any flexible or rigid tube, such as glass, plastic
or glass, and the inner hollow surface is covered by a metallic layer and a dielectric overlayer.
The structure of the layer enables to transmit both the TE and TM polarization with low
attenuation [6, 7].

Selective suppression of electromagnetic modes in rectangular waveguides has been presented
[8] by using distributed wall losses. Analytical model for the corrugated rectangular wave-
guide has been extended to compute the dispersion and interaction impedance [9].

A Fourier operator method has been used to derive for the first time an exact closed-form
eigenvalue equation for the scalar mode propagation constants of a buried rectangular dielec-
tric waveguide [10]. Wave propagation in an inhomogeneous transversely magnetized rectan-
gular waveguide has been studied with the aid of a modified Sturm-Liouville differential
equation [11]. A fundamental and accurate technique to compute the propagation constant of
waves in a lossy rectangular waveguide has been proposed [12]. This method is based on
matching the electric and magnetic fields at the boundary and allowing the wavenumbers to
take complex values.

A method that relates to the propagation constant for the bound modes in the dielectric
rectangular waveguides has been proposed [13]. An analysis of rectangular folded-waveguide
slow-wave structure has been developed using conformal mapping by using Schwarz
Christoffel transformation [14]. A simple closed form expression to compute the time-domain
reflection coefficient for a transient TE10 mode wave incident on a dielectric step discontinuity
in a rectangular waveguide has been presented [15]. In this paper, an exponential series
approximation was provided for efficient computation of the reflected and transmitted field
waveforms.

The electromagnetic fields in rectangular conducting waveguides filled with uniaxial aniso-
tropic media have been characterized [16]. In this paper, the electric type dyadic Green’s
function due to an electric source was derived by using eigenfunctions expansion and the
Ohm-Rayleigh method. An improved generalized admittance matrix technique based on
mode matching method has been proposed [17]. The generalized scattering matrix of wave-
guide structure and its discontinuity problems is obtained with relationship equations and
reflection coefficients.

A full-vectorial boundary integral equation method for computing guided modes of optical
waveguides has been proposed [18]. Method for the propagation constants of fiber waveguides
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of arbitrary cross section shape has been proposed [19]. In this paper, the proposed techniques
used to solve problems of scattering by irregularly shaped dielectric bodies, and in the static
limit, for solving the problem of an irregular dielectric or permeable body in an external field.

The rectangular dielectric waveguide technique for the determination of complex permittivity
of a wide class of dielectric materials of various thicknesses and cross sections has been
described [20]. In this paper, the technique has been presented to determine the dielectric
constant of materials. The fields and propagation constants of dielectric waveguides have been
determined within the scalar regime [21] by using two-dimensional Fourier series expansions.
Propagation of modes in some rectangular waveguides using the finite-difference time-domain
method has been proposed [22]. Analysis of rectangular waveguide using finite element
method has been proposed [23].

Wave propagation and dielectric permittivity reconstruction in the case of a rectangular wave-
guide have been studied [24]. According to this paper, we study the electromagnetic wave
propagation in a rectangular waveguide filled with an inhomogeneous dielectric material in the
longitudinal direction. Light propagation in a cylindrical waveguide with a complex, metallic
and dielectric function has been proposed [25]. Advancement of algebraic function approxima-
tion in eigenvalue problems of lossless metallic waveguides to infinite dimensions has been
investigated [26]. The method of algebraic function approximation in eigenvalue problems of
lossless metallic waveguides such as a closed uniform cylindrical waveguides has been proposed
[27]. Analysis of longitudinally inhomogeneous waveguides using Taylor ’s series expansion has
been proposed [28]. Analysis of longitudinally inhomogeneous waveguides using the Fourier
series expansion has been proposed [29]. The method of external excitation for analysis of
arbitrarily-shaped hollow conducting waveguides has been proposed [30].

A circular metallic hollow waveguide with inner dielectric multilayers has been designed by
Miyagi and Kawakami [31] with the emphasis on low-loss transmission of the HE11 mode for
the infrared. According to this paper, the transmission losses of the dielectric-coated metal
waveguides are drastically reduced when a multiple dielectric layer is formed instead of a
single dielectric layer. The simplest and most efficient multilayer structure is a three-dielectric-
layer stack deposited on a metal layer.

A transfer matrix function for the analysis of electromagnetic wave propagation along the
straight dielectric waveguide with arbitrary profiles has been proposed [32]. According to this
paper, the method is based on the Laplace and Fourier transforms, and the inverse Laplace and
Fourier transforms. A rigorous approach for the propagation of electromagnetic fields along a
straight hollow waveguide with a circular cross section has been proposed [33]. The cross
section is made of a metallic layer, and only one dielectric layer upon it. The separation of
variables is obtained by using the orthogonal-relations. The longitudinal components of the
fields are developed into the Fourier-Bessel series. The transverse components of the fields are
expressed as functions of the longitudinal components in the Laplace plane and are obtained
by using the inverse Laplace transform by the residue method.

In order to solve more complex problems of coatings in the cross section of the dielectric
waveguides, such as rectangular and circular profiles, then it is important to develop in each
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modal an improved technique to calculate the dielectric profile, the elements of the matrix and
its derivatives of the dielectric profile.

The main objective of this chapter is to develop the techniques that enable us to solve problems
with inhomogeneous dielectric materials in the cross section of the straight rectangular and
circular waveguides. The second objective is to understand the influence of the inhomoge-
neous dielectric materials on the output fields. Thus, we need to develop the technique and a
particular application to calculate the profiles in the cross section. Namely, we need to calculate
the dielectric profile, the elements of the matrix and its derivatives of the dielectric profile in
the cases of the straight rectangular and circular waveguides. The proposed techniques are
important to improve the methods that are based on Laplace and Fourier transforms and their
inverse Laplace and Fourier transforms also for the discontinuous rectangular and circular
profiles in the cross section (and not only for the continuous profiles).

2. Formulation of the problem

In this chapter, we present techniques for solving discontinuous problems of dielectric mate-
rials in the cross section of the straight waveguide for applications in the microwave and
millimeter-wave regimes and in the cases of infrared regime. The proposed techniques are
very effective in relation to the conventional methods because they allow the development of
expressions in the cross section only according to the specific discontinuous problem. In this
way, the mode model method becomes an improved method to solve discontinuous problems
in the cross section.

Three examples of inhomogeneous dielectric materials in the cross section of the straight
waveguides are shown in Figure 1(a)–(c). Figure 1(a) shows an example of rectangular profile
in the cross section of the straight rectangular waveguide. Figure 1(b) shows an example of

Figure 1. Three examples of inhomogeneous dielectric materials in the cross section of the straight waveguides. (a)
Rectangular profile in the cross section of the straight rectangular waveguide; (b) Circular profile in the cross section of
the straight rectangular waveguide; (c) Three dielectric layers and a metallic layer in the cross section of the hollow
waveguide.
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circular profile in the cross section of the straight rectangular waveguide. Figure 1(c) shows an
example for three dielectric layers and a metallic layer in the cross section of the straight
hollow waveguide.

In order to solve these inhomogeneous dielectric materials, we need to calculate the dielectric
profile, the elements of the matrix and its derivatives of the dielectric profile. In the next
section, we explain the techniques to solve problems with inhomogeneous dielectric materials
in the cross section of the straight rectangular waveguide (Figure 1(a) and 1(b)) and also in the
cross section of the straight circular waveguide (Figure 1(c)).

3. The technique to solve inhomogeneous dielectric profiles

The particular application is based on the � � function [34]. The � � function is used in order to solve
discontinuous problems of the rectangular profile, and circular profile in the cros s section of the

straight waveguide. The � � function is defined as � � rð Þ ¼C� exp � � 2= � 2 � rj j2
� �h i

for �r� > � ,

where C� is a constant, and
Ð

� � rð Þdr ¼ 1. In the limit � ! 0, the� � function is shown in Figure 2.

The technique that based on� � function is very effective to solve complex problems, in relation
to the conventional methods, especially when we have a large numbers of dielectric layers and
a metal layer, as shown in Figure 1(c). We will demonstrate how to use with the proposed
technique for all the cases that are shown in the examples inFigure 1(a)–(c).

3.1. The technique based on � � function for the rectangular profile in the cross section of
the straight rectangular waveguide

The elements of the matrix g(n, m) are calculated for an arbitrary profile in the cross section of
the straight waveguide according to Figure 3(a) and 3(b). Figure 3(a) shows the arbitrary
profile in the cross section of the straight waveguide. Figure 3(b) shows the rectangular profile
in the cross section of the straight waveguide, according toFigure 1(a).

Figure 2. The technique based on� � function in the limit � ! 0 to solve discontinuous problems.
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The dielectric profile g x; yð Þis given according to � x; yð Þ ¼� 0 1 þ g x; yð Þð Þ. According to Figure 3(a)
and 3(b) and for g x; yð Þ ¼g0, we obtain

g n; mð Þ¼
g0

4ab

ða

� a
dx

ðb

� b
exp � j kxx þ kyy

� �� �
dy

¼
g0

4ab

ðx12

x11

dx
ðy12

y11

exp � j kxx þ kyy
� �� �

dy þ
ð� x11

� x12

dx
ðy12

y11

exp � j kxx þ kyy
� �� �

dy

(

þ
ð� x11

� x12

dx
ð� y11

� y12

exp � j kxx þ kyy
� �� �

dy þ
ðx12

x11

dx
ð� y11

� y12

exp � j kxx þ kyy
� �� �

dy

)

:

(1)

If y11 and y12 are not functions of x, then the dielectric profile is given by

g n; mð Þ¼
g0

ab

ðx12

x11

cos kxxð Þdx
ðy12

y11

cos kyy
� �

dy: (2)

The derivative of the dielectric profile in the case of y11 and y12 are functions of x, is given by

gx n; mð Þ¼
2

am�

ðx12

x11

gx x; yð Þsin
ky

2
y12 � y11

� �
� �

cos
ky

2
y12 þ y11

� �
� �

cos kxxð Þdx, (3)

where gx x;yð Þ ¼1=e x;yð Þð Þde x;yð Þ=dxð Þ, e x;yð Þ ¼e0 1þ g x;yð Þð Þ, kx ¼ n� xð Þ=a, and ky ¼ m� yð Þ=b.
Similarly, we can calculate the value of gy n; mð Þ, where gy x; yð Þ ¼1=e x; yð Þð Þde x; yð Þ=dyð Þ.

For the cross section as shown inFigures 1(a) and 3(b), the center of the rectangle is located at
(0.5 a, 0.5 b),y12 = b/2 + c/2 andy11 = b/2� c/2. Thus, for this case,y12 � y11 = c andy12 þ y11 = b.

Figure 3. (a). The arbitrary profile in the cross section of the straight waveguide. (b). The rectangular profile in the cross
section of the straight waveguide, according to Figure 1(a).
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3.2. The technique based on � � function for the circular profile in the cross section of the
straight rectangular waveguide

The equation of the circle is given by x � a=2ð Þ2 þ y � b=2ð Þ2 ¼ r2. The center of the circle is
located at (0.5 a, 0.5 b), as shown inFigure 1(b). We obtain two possibilities without this

y11 xð Þ ¼b=2 �
�������������������������������
r2 � x � a=2ð Þ2

q
and y12 xð Þ ¼b=2 þ

�������������������������������
r2 � x � a=2ð Þ2

q
, where y12 � y11 ¼

2
�������������������������������
r2 � x � a=2ð Þ2

q
and y12 þ y11 ¼ b.

The dielectric profile for the circle is given where the center is located at (0.5 a, 0.5 b) (Figure 1(b)) by

g x; yð Þ ¼
g0 0� r < r1 � � 1=2

g0 exp 1 � q� rð Þ
	 


r1 � � 1=2� r < r1 þ � 1=2
,

�
(4)

where

q� rð Þ ¼
� 1

2

� 1
2 � r � r1 � � 1=2ð Þ½ �2

, (5)

elseg x; yð Þ= 0. The radius of the circle is given byr ¼
������������������������������������������������
x � a=2ð Þ2 þ y � b=2ð Þ2

q
.

The derivatives of the dielectric profile for the circle are given where the center is located at(0.5 a,
0.5 b), as shown inFigure 1(b), where r1 � � 1=2� r < r1 þ � 1=2 by

gx ¼
� 2 g0 cos� exp 1 � q� rð Þ

	 

r � r1 � � 1=2ð Þ½ �� 1

2

1 þ g0 exp 1 � q� rð Þ
	 
� 


� 1
2 � r � r1 � � 1=2ð Þ½ �2

h i 2 , (6)

gy ¼
� 2 g0 sin � exp 1 � q� rð Þ

	 

r � r1 � � 1=2ð Þ½ �� 1

2

1 þ g0 exp 1 � q� rð Þ
	 
� 


� 1
2 � r � r1 � � 1=2ð Þ½ �2

h i 2 , (7)

elsegx = 0, andgy = 0.

The elements of the matrices for the circular profile are given where the center is located at (0.5 a,
0.5 b) (Figure 1(b)) by

g n; mð Þ¼
g0

ab

ð2�

0

ðr1� � 1=2

0
cos

n�
a

r cos� þ
a
2

� �� �
cos

m�
b

r sin � þ
b
2

� �� �(

þ
ð2�

0

ðr1þ � 1=2

r1� � 1=2
cos

n�
a

r cos� þ
a
2

� �� �
cos

m�
b

r sin � þ
b
2

� �� �
exp 1 � q� rð Þ

	 

)

rdrd� ,

(8)

gx n; mð Þ¼ �
2g0

ab

ð2�

0

ðr1þ � 1=2

r1� � 1=2

� 1
2 r � r1 � � 1=2ð Þ½ �exp 1 � q� rð Þ

	 

cos�

� 1
2 � r � r1 � � 1=2ð Þ½ �2

h i 2
1 þ g0 exp 1 � q� rð Þ

	 
	 


8
><

>:

cos
n�
a

r cos� þ
a
2

� �� �
cos

m�
b

r sin � þ
b
2

� �� � �
rdrd� ,

(9)
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gy n; mð Þ¼ �
2g0

ab

ð2�

0

ðr1þ � 1=2

r1� � 1=2

� 1
2 r � r1 � � 1=2ð Þ½ �exp 1 � q� rð Þ

	 

sin �

� 1
2 � r � r1 � � 1=2ð Þ½ �2

h i 2
1 þ g0 exp 1 � q� rð Þ

	 
	 


8
><

>:

cos
n�
a

r cos� þ
a
2

� �� �
cos

m�
b

r sin � þ
b
2

� �� � �
rdrd� ,

(10)

where r ¼
������������������������������������������������
x � a=2ð Þ2 þ y � b=2ð Þ2

q
.

The proposed techniques in this subsection and the subsection 3.1 relate to the method for
the propagation along the straight rectangular metallic waveguide [32]. The techniques and
the particular applications to solve the rectangular and circular profiles in the cross section of
the straight rectangular waveguide are important in order to improve the mode model [32].
The method is based on the Laplace and Fourier transform and their inverse transforms.
Laplace transform is necessary to obtain the comfortable and simple input-output connections
of the fields. The output transverse field profiles are computed by the inverse Laplace and
Fourier transforms.

The matrix G is given by the form.

G ¼

g00 g� 10 g� 20 … g� nm … g� NM

g10 g00 g� 10 … g� n� 1ð Þm … g� N� 1ð ÞM

g20 g10 � � �

� g20 � � �

gnm � � � g00 �

�

gNM … … … … … g00

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

: (11)

Similarly, the Gx and Gy matrices are obtained by the derivatives of the dielectric profile. These
matrices relate to the method that is based on the Laplace and Fourier transforms and their
inverse [32].

Several examples will demonstrate in the next section in order to explore the effects of the
rectangular and circular materials in the cross section (Figure 1(a) and 1(b)) along the straight
waveguide on the output field. All the graphical results will be demonstrated as a response to
a half-sine (TE10) input-wave profile and the rectangular and circular materials in the cross
section of the straight rectangular waveguide.

3.3. The technique based on � � function for the circular profile in the cross section of the
straight circular waveguide

The cross section of hollow waveguide (Figure 1(c)) is made of a tube of various types of three
dielectric layers and a metallic layer. The internal and external diameters are denoted as 2b,
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2b1, 2b2, 2a, and 2(a+� m), respectively, where � m is the thickness of the metallic layer. In
addition, we denote the thickness of the dielectric layers asd1, d2, and d3, respectively, where
d1 =b1 � b, d2 =b2 � b1, and d3 = a� b2. The refractive index in the particular case with the three
dielectric layers and the metallic layer in the cross section of the straight hollow waveguide
(Figure 1(c)) is calculated as follows:

n rð Þ ¼

n0 0� r < b � � 1=2

n0 þ n1 � n0ð Þexp 1 �
� 1

2

� 1
2 � r � bþ � 1=2ð Þ½ �2

" #

b � � 1=2� r < bþ � 1=2

n1 bþ � 1=2� r < b1 � � 2=2

n1 þ n2 � n1ð Þexp 1 �
� 2

2

� 2
2 � r � b1 þ � 2=2ð Þ½ �2

" #

b1 � � 2=2� r < b1 þ � 2=2

n2 b1 þ � 2=2� r < b2 � � 2=2

n2 þ n3 � n2ð Þexp 1 �
� 3

2

� 3
2 � r � b2 þ � 3=2ð Þ½ �2

" #

b2 � � 2=2� r < b2 þ � 3=2

n3 b2 þ � 3=2� r < a� � 3=2

n3 þ nm � n3ð Þexp 1 �
� 4

2

� 4
2 � r � aþ � 4=2ð Þ½ �2

" #

a� � 3=2� r < aþ � 4=2

nm else

,

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

(12)

where the parameters� 1, � 2, � 3, and � 4 are very small [e.g., � 1 = � 2 = � 3 = a� b½ �=50, � 4 = � m/50].
The refractive indices of the air, dielectric and metallic layers are denoted asn0, n1, n2, n3, and
nm, respectively. In this study, we suppose that n3 > n2 > n1.

The transverse derivative of the dielectric profile is calculated as follows:

gr rð Þ ¼

0 0� r < b� � 1=2

� 4 n1 � n0ð Þexp 1�
� 1

2

� 1
2 � r � bþ � 1=2ð Þ½ �2

" #

r � bþ � 1=2ð Þ½ �� 1
2

n0 þ n1 � n0ð Þexp 1�
� 1

2

� 1
2 � r � bþ � 1=2ð Þ½ �2

" #

� 1
2 � r � bþ � 1=2ð Þ½ �2

h i 2
b� � 1=2� r < bþ � 1=2

0 bþ � 1=2� r < b1 � � 2=2

� 4 n2 � n1ð Þexp 1�
� 2

2

� 2
2 � r � b1 þ � 2=2ð Þ½ �2

" #

r � b1 þ � 2=2ð Þ½ �� 2
2

n2 þ n3 � n2ð Þexp 1�
� 2

2

� 2
2 � r � b1 þ � 2=2ð Þ½ �2

" #

� 1
2 � r � b1 þ � 2=2ð Þ½ �2

h i 2
b1 � � 2=2� r < b1 þ � 2=2

0 b1 þ � 2=2� r < b2 � � 3=2

� 4 n3 � n2ð Þexp 1�
� 3

2

� 3
2 � r � b2 þ � 3=2ð Þ½ �2

" #

r � b2 þ � 3=2ð Þ½ �� 3
2

n3 þ nm � n3ð Þexp 1�
� 3

2

� 3
2 � r � b2 þ � 3=2ð Þ½ �2

" #

� 1
2 � r � b1 þ � 2=2ð Þ½ �2

h i 2
b2 � � 3=2� r < b2 þ � 3=2

0 b2 þ � 3=2� r < a� � 4=2

� 4 nm � n3ð Þexp 1�
� 4

2

� 4
2 � r � aþ � 4=2ð Þ½ �2

" #

r � aþ � 4=2ð Þ½ �� 4
2

n3 þ nm � n3ð Þexp 1�
� 4

2

� 4
2 � r � aþ � 4=2ð Þ½ �2

" #

� 4
2 � r � aþ � 4=2ð Þ½ �2

h i 2
a� � 4=2� r < aþ � 4=2

0 else

:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
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(13)
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The proposed technique in this subsection relates to the theoretical model that based on
Maxwell ’s equations, Fourier-Bessel series, Laplace transform, and the inverse Laplace trans-
form [33]. In this theoretical model, the longitudinal components of the fields are developed
into the Fourier-Bessel series. The transverse components of the fields are expressed as func-
tions of the longitudinal components in the Laplace plane and are obtained by using the
inverse Laplace transform by the residue method. The separation of the variables is obtained
by using the orthogonal relations.

The output transverse components of the fields of the straight hollow waveguide are finally
expressed in a form of transfer matrix function, and the derivation has been already explained in
detail in Ref. [33]. The contribution of the proposed technique to calculate the refractive indices
(n rð Þ) and the transverse derivative of the dielectric profile (gr) for three dielectric layers is
important to improve the method that is based on the mode model [33]. This improved method
is important to reduce the transmission losses of the dielectric coated metal waveguides.

4. Numerical results

Several examples for all geometry of the rectangular and circular waveguides and the dielectric
profile are demonstrated in this section for three cases, as shown inFigure 1(a)–(c).

4.1. Numerical results for the rectangular dielectric material in the cross section of the
straight rectangular waveguide

The analytical method for the dielectric slab [35] is shown in Figure 4(a). The slab profile in the
cross section is based on transcendental equation, as follows:

Ey1 ¼ j
kz

� 0
sin � xð Þ 0 < x < t (14)

Ey2 ¼ j
kz

� 0

sin � tð Þ
cos � t � a=2ð Þ

� � cos � x � a=2ð Þ
	 


t < x < t þ d (15)

Ey3 ¼ j
kz

� 0
sin � a� xð Þ½ � t þ d < x < a, (16)

where � �
��������������
k2

o � k2
z

q
and � �

������������������
� rk

2
o � k2

z

q
result from the transcendental equation.

a� d
d

� �
d�
2

tan
d�
2

� �
� t�ð Þcot t�ð Þ ¼0: (17)

The criterion for the convergence of the solution is given by
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C Nð Þ � log
max jENþ 2

y � EN
y j

� �

�max ENþ 2
y

� �
� min EN

y

� �
�

8
<

:

9
=

;
, (18)

for N � 1, where 2N þ 1ð Þ2 is the number of the modes. By increasing the orderN, then Ey Nð Þ
approachesEy.

Figure 4(a) shows the geometry of the slab profile for practical case of the slab dielectric
material, where a = 20 mm, b = 10 mm, d = 3.3 mm, t = 8.35 mm,	 ¼ 6:9 cm, and er = 9.

Figure 4(b) demonstrates the output result of the comparison between the theoretical model
with the analytical solution [35].

Figure 4(c) shows the criterion of the convergence in Eq. (18). Between N = 7 and N = 9 the
value of the criterion is equal to � 2. According to Figure 4(b) and 4(c), the comparison has
shown good agreement.

All the next graphical results are demonstrated as a response to a half-sine (TE10) input-wave
profile.

Figure 5(a)–(f) relates to discontinuous problem according to Figure 1(a).Figure 5(a)–(d) shows the
results of the output field as a response to a half-sine (TE10) input-wave profile. In this case,
c = d = 3.3mmand the center of the rectangle is located at the point (0.5 a, 0.5 b), as shown inFigure 1
(a)for er = 3, 5, 7, and 10, respectively. The other parameters are a = b = 2cm, z = 15cm, k0 = 167 1=m,
	 = 3.75cm, and 
 = 58 1=m. The output fields are strongly affected by the input wave profile (TE10

mode), the rectangular profile, and the location of the center of the rectangle (0.5 a, 0.5 b).

Figure 5(e) shows the output amplitude and the Gaussian shape of the central peak in the
same cross section ofFigure 5(a)–(d), where a = 2 cm, b = 2 cm, y = b/2 = 10 mm, c = 3.3mm,
d = 3.3mm, z = 15cm, k0 = 167 1=m, and for er =3, 5, 7, and 10, respectively.

Figure 4. (a). The cross section of the straight rectangular waveguide. (b). The results between our model and the
analytical method. (c). The criterion of the convergence according to Eq. (18).
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By increasing only the value of er of the rectangular dielectric profile, the TE10 wave profile
decreased, the Gaussian shape of the output field increased, and the relative amplitude decreased.
In addition, by increasing only the value of er , the width of the Gaussian shape decreased.

The output profiles and the amplitudes for N = 1, 3, 5, and 7 are shown in Figure 5(f) , for er =
10. By increasing only the parameter of the order N, the output field approaches to the final
output field.

According to the results, we see that the output fields are strongly affected by the input wave profile
(TE10 mode), the rectangular profile, and the location of the center of the rectangle (0.5 a, 0.5 b).

4.2. Numerical results for the circular dielectric material in the cross section of the straight
rectangular waveguide

Figure 6(a)–(f) relates to discontinuous problem according to Figure 1(b). Figure 6(a)–(d)
demonstrates the results of the output field as a response toTE10 input-wave profile, for er =
3, 5, 7, and 10, respectively. The radius of the circle in this case is equal to 2.5mmand the center
of the circle is located at the point (0.5 a, 0.5 b), as shown inFigure 1(b).

The other parameters are a = b = 2cm, z = 15cm, k0 = 167 1=m, 	 = 3.75cm, and 
 = 58 1=m.

Figure 6(e) shows the output amplitude and the Gaussian shape of the central peak in the
same cross section ofFigure 6(a)–(d), where er =3, 5, 7, and 10, respectively.

Figure 5. The output field as a response to a half-sine (TE10) input-wave profile where c = d = 3.3 mmand the center of the
rectangle is located at the point (0.5 a, 0.5 b) according toFigure 1(a), where: (a).er = 3; (b).er = 5; (c).er = 7; (d).er = 10. The
other parameters are a = b = 2cm, z = 15cm, k0 = 167 1=m, 	 = 3.75cm, and 
 = 58 1=m . (e). The output field for er =3, 5, 7,
and 10, respectively, where a = b = 2 cm, y = b/2 = 10 mm. (f). The output profiles for N = 1, 3, 5, and 7, whereer = 10.
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The output profiles are shown in Figure 6(f) for N = 1, 3, 5, and 7, whereer = 10. The other
parameters are a = b = 2cm, z = 15cm, k0 = 167 1=m, 	 = 3.75cm, and 
 = 58 1=m.

By increasing only the parameter er of the circular dielectric profile from 3 to 10, the Gaussian
shape of the output transverse profile of the field increased, the TE10 wave profile decreased,
and the relative amplitude of the output field decreased.

The output fields of Figure 6(a)–(f) are strongly affected by the input wave profile ( TE10 mode),
the circular profile, and the location of the center of the circle (0.5 a, 0.5 b).

It is interesting to see a similar behavior of the output results in the cases of rectangular profiles
(Figure 5(a)–(f)) that relate to Figure 1(a) and in the cases of circular profiles (Figure 6(a)–(f))
that relate to Figure 1(b), for every value of er , respectively. According to these output results,
we see the similar behavior for every value of er , but the amplitudes of the output fields are
different.

4.3. Numerical results for the three dielectric layers and a metallic layer
in the cross section of the straight hollow waveguide

The comparison between our theoretical result of the output power density with the laboratory
result in the case of the straight hollow waveguide with one dielectric layer and a metallic layer

Figure 6. The output field as a response to a half-sine (TE10) input-wave profile where the radius of all circle is equal to 2.5 mm
and the center of the circle is located at the point (0.5 a, 0.5 b) according toFigure 1(b), where: (a).er = 3; (b).er = 5; (c).er = 7; (d).
er = 10. The other parameters are a = b = 2cm, z = 15cm, k0 = 167 1=m, 	 = 3.75cm, and 
 = 58 1=m . (e). The output field for er =3,
5, 7, and 10, respectively, where a = b = 20 mm, y = b/2 = 10 mm. The radius of all circles is equal to 2.5 mm. (f). The output
profiles for N = 1, 3, 5, and 7, whereer = 10.
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is demonstrated in Figure 7(a) and 7(b). In this example, the diameter (2a) of the waveguide is
2 mm, the thickness of the dielectric layer [d AgIð Þ] is 0:75 � m, and the minimum spot-size (w0) is

0.3 mm. The length of the straight waveguide is 1 m. The refractive indices of the air, the
dielectric layer (AgI) and the metallic layer (Ag) are n 0ð Þ¼ 1, n AgIð Þ¼ 2:2, and n Agð Þ¼

13:5 � j75:3, respectively. The value of the refractive index of the material at a wavelength of
	 =10.6� m is taken from the table compiled by Miyagi et al. [36].

The results of the output power density jSavjð Þ(e.g., Figure 7(a)) show the behavior of the
solutions for the TEM00 mode in excitation. The comparison between our theoretical result
(Figure 7(a)) and the published experimental data [37], as shown also in Figure 7(b) shows
good agreement of a Gaussian shape as expected, except for the secondary small propagation
mode. The experimental result is taken into account the roughness of the internal wall of the
waveguide, but our theoretical model is not taken the roughness.

Miyagi and Kawakami showed that transmission losses of the dielectric-coated metal wave-
guides are drastically reduced when a multiple dielectric layer is formed instead of a single
dielectric layer [31]. The simplest and most efficient multilayer structure is three dielectric
layers that deposited on a metal layer.

Thus, in this subsection, we present the output results that relate to the proposed technique
and the particular application for the cross section of the straight hollow waveguide with three
dielectric layers (and not only with one dielectric layer) and a metallic layer. In this case, we
can improve the method [33], in the case of the three dielectric layers and a metallic layer in the
cross section of the straight hollow waveguide.

Figure 8(a)–(c) relates to discontinuous problem according to Figure 1(c). The output power
density for the straight hollow waveguide with three dielectric layers is shown in Figure 8(a)–
(c). Figure 8(a) is shown for a = 0.8 mm and w0 = 0.1 mm.Figure 8(b) is shown for a = 0.8 mm
and w0 = 0.3 mm.Figure 8(c) is shown for a = 0.6 mm and w0 = 0.3 mm. The other parameters

are b = 0.5 mm,	 ¼ 10:6 � m , n 0ð Þ= 1,n1 = 2.22� j 10� 6, n2 = 4� j 10� 6, n3 = 6� j 10� 6, nm = n Agð Þ=

13.5� j 75.3, and the length of the straight waveguide is 1 m.

Figure 7. The comparison between our theoretical results of the output power density with the laboratory results in the
case of the straight hollow waveguide with one dielectric layer. The parameters are a = 1 mm, w0 = 0.3 mm,d AgIð Þ= 0.75
� m, 	 = 10.6� m, n 0ð Þ= 1, n AgIð Þ= 2.2,n Agð Þ= 13.5� j 75, and the length of the straight waveguide is 1 m. (a). theoretical
result. (b). laboratory result.
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By changing only the spot size from w0 = 0.1 to 0.3 mm, with the same other parameters, the
output power density is changed, as shown in Figure 8(a) and 8(b). The results of the output
power density jSavjð Þshow the behavior of the solutions for the TEM00 mode in excitation. By
changing only the spot size from w0 = 0.3 to 0.1 mm, the width of the output Gaussian becomes
more narrow. The output field results are strongly affected by the spot size and the structure of
the three layers and the metallic layer in the cross section of the straight hollow waveguide.

This mode model can be a useful tool to predict the relevant parameters in the case of the
hollow waveguide with three dielectric layers and a metallic layer (Ag) for practical applica-
tions (output fields, output power density and output power transmission), before carrying
out experiments in the laboratory.

5. Conclusions

The main objective of this chapter was to develop the techniques that enable us to solve
problems with inhomogeneous dielectric materials in the cross section of the straight rectan-
gular and circular waveguides. The proposed techniques are very effective in relation to the
conventional methods because they allow the development of expressions in the cross section
only according to the specific discontinuous problem. In this way, the mode model methods
become an improved methods to solve discontinuous problems in the cross section (and not
only for continuous problems).

Three examples of inhomogeneous dielectric profiles in the cross section of the straight wave-
guides were shown in Figure 1(a)–(c). Figure 1(a) and 1(b) show the rectangular and circular
profiles in the cross section of the straight rectangular waveguide, respectively. Figure 1(c)
shows three dielectric layers and a metallic layer in the cross section of the straight hollow
waveguide. The second objective is to understand the influence of the inhomogeneous dielec-
tric materials on the output fields.

The proposed techniques are important to improve the methods that are based on Laplace and
Fourier transforms and their inverse transforms also for the discontinuous rectangular and

Figure 8. The output power density for the straight hollow waveguide with three dielectric layers, where (a). a = 0.8 mm
and w0 = 0.1 mm. (b). a = 0.8 mm andw0 = 0.3 mm. (c). a = 0.6 mm andw0 = 0.3 mm. The other parameters are: b = 0.5 mm,
	 ¼ 10:6 � m , n 0ð Þ= 1,n1 = 2.22� j 10� 6, n2 = 4� j 10� 6, n3 = 6� j 10� 6, nm = n Agð Þ= 13.5� j 75.3, and the length of the straight
waveguide is 1 m.
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circular profiles in the cross section. The technique based on� � function was explained in
detail in this chapter.

The result of the comparison between the theoretical models with the analytical solution [35] is
shown in Figure 4(b) and the convergence is shown inFigure 4(c). The comparison has shown
good agreement.

The results for the rectangular profile in the cross section of the straight rectangular waveguide
(Figure 1(a)) were shown in Figure 5(a)–(f). Figure 5(a)–(d) shows the results of the output
field as a response to a half-sine (TE10) input-wave profile. The output fields are strongly
affected by the input wave profile ( TE10 mode), the rectangular profile, and the location of the
center of the rectangle (0.5 a, 0.5 b).

By increasing only the value of er of the rectangular dielectric material, the Gaussian shape of
the output field increased, the TE10 wave profile decreased, the relative amplitude decreased,
and the width of the Gaussian shape decreased. The output field approaches to the final
output field, by increasing only the parameter of the order N, as shown in Figure 5(f) .

The results for the circular profile in the cross section of the straight rectangular waveguide
(Figure 1(b)) were shown in Figure 6(a)–(f). Figure 6(a)–(d) shows the results of the output
field as a response to a half-sine (TE10) input-wave profile.

By increasing only the value of the parameter er of the circular dielectric material ( Figure 1(b))
in the rectangular cross section from 3 to 10, the Gaussian shape of the output transverse
profile of the field increased, the TE10 wave profile decreased, and the relative amplitude of
the output field decreased.

The output fields of Figure 5(a)–(f) and Figure 6(a)–(f) are strongly affected by the input wave
profile (TE10 mode), the rectangular profile or circular profile, and the location of the center of
the rectangle or the circle (0.5 a, 0.5 b).

It is interesting to see a similar behavior of the output results in the cases of rectangular profiles
(Figure 5(a)–(f)) that relate to Figure 1(a) and in the cases of circular profiles (Figure 6(a)–(f)) that
relate to Figure 1(b), for every value of er , respectively. According to these output results, we see
the similar behavior for every value of er , but the amplitudes of the output fields are different.

The comparison between our theoretical result (Figure 7(a)) and the published experimental
data [37], as shown also inFigure 7(b) shows good agreement of a Gaussian shape as expected,
except for the secondary small propagation mode. The experimental result is taken into
account the roughness of the internal wall of the waveguide, but our theoretical model is not
taken the roughness.

The output power density for the straight hollow waveguide with three dielectric layers
(Figure 1(c)) is shown in Figure 8(a)–(c). The output field results are strongly affected by the
spot size and the structure of the three layers and the metallic layer in the cross section of the
straight hollow waveguide.

These models are useful to predict the structure of the output fields for rectangular and circular
profiles in straight waveguides in the cases of microwave and millimeter-wave regimes and in
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the cases of infrared regime. These models can be a useful tool to predict the relevant parameters
for practical applications, before carrying out experiments in the laboratory.
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