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1. Introduction    

1.1 The localization problem 

Nowadays, nearly all mobile robotic tasks require some knowledge of the robot location in 
the environment. For example, those tasks involving the robot to reach a specific target 
require knowledge about the current robot pose in order to plan a path to the goal. Also, 
exploration tasks require some estimate of the robot pose in order to decide whether a 
specific region has been already visited by the robot or not.  The problem of computing the 
robot pose is known as the mobile robot localization problem. 
The mobile robot localization problem appears in many flavours. In some cases, only a 

qualitative pose estimate is needed. For example, for high level spatial reasoning, the robot 

may only need to know if a certain area, such as a room, has been previously visited or not. 

This kind of localization is commonly named weak localization. In some other cases, 

quantitative pose estimates with respect to a fixed reference frame are required. For example, 

to build metric maps, such as occupancy grids, the robot needs accurate numerical estimates 

of its pose in the space. This approach to localization is usually referred to as strong 

localization. 

Both weak and strong localization problems can be defined in a global or in a local context, 
constituting the so called global localization and local localization problems respectively. The 
former refers to the obtention of the robot pose without an a priori estimate of its location. It 
is called global localization by analogy with global function minimization, whereby an 
optimum must be found without a reliable initial guess. On the contrary, local localization, 
sometimes named pose maintenance, refers to a continuous refinement of the robot pose, 
starting with an initial guess. 
This chapter focuses on the strong localization problem in the local context. From now on, in 

the context of this document, the terms localization and mobile robot localization will refer 

to the strong localization problem in the local context. A common approach to confront this 

localization problem is the use of exteroceptive sensors, such as range finders or cameras, 

measuring the external environment. Exteroceptive sensor data is correlated at subsequent 

robot poses to compute displacement estimates, usually based on initial guesses provided 

by proprioceptive sensors, such as odometers or inertial units. As a consequence of this, the 

quality of the pose estimates is strongly related to the quality of the measurements provided 

by the exteroceptive sensors.  O
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1.2 The sonar sensors 

Many recent localization strategies rely on accurate sensors, such as laser range scanners  

(Hähnel et al. 2003; Biber & Straβer 2003; Montesano et al. 2005; Minguez et al. 2006). Today, 
off the shelf laser sensors provide thousands of readings per second with a sub degree 
angular resolution. Other sensors, such as standard Polaroid ultrasonic range finders, are 
only able to provide tenths of readings per second, with angular resolutions one or two 
orders of magnitude worse than laser. Moreover, effects such as multiple reflections or 
cross-talking are very frequent in sonar sensing, producing large amounts of readings not 
corresponding to real objects in the environment. Figure 1 compares the sets of readings 
gathered simultaneously by a laser scanner and an ultrasonic range finder along the same 
trajectory. The laser set contains 150 times more readings than the sonar set. This provides a 
clear idea of the sparse sets of readings provided by ultrasonic range finders when 
compared to laser scanners. Also, it can be observed how the ultrasonic set contains large 
amounts of wrong readings, due to the previously mentioned effects. 
 

 

Fig. 1. Example of readings gathered by a laser scanner (left) and a ring of 16 ultrasonic 
range finders (right). 

Nevertheless, ultrasonic range finders have interesting properties that make them appealing 
in the mobile robotics community (Lee 1996). On the one hand, their size, power 
consumption and price are better than those of laser scanners. Consequently, they are well 
suited for low cost and domestic robots, such as automatic vacuum cleaners. On the other 
hand, their basic behaviour is shared with underwater sonar sensors, which are vastly used 
in underwater and marine robotics. Thus, typical underwater sonar, although being far 
more complex than standard Polaroid ultrasonic range finders, can take profit of those 
localization techniques accounting for sonar limitations. In the context of this work, the 
terms sonar, ultrasonic range finder and ultrasonic sensor will be used interchangeably, and will 
refer to standard time-of-flight Polaroid ultrasonic range finders. 
The validity of ultrasonic range finders to perform localization has been demonstrated by 
different researchers.  For instance, Tardós et al. (Tardós et al. 2002) use a perceptual 
grouping technique to identify and localize environmental features, such as lines and 
corners. These features are correlated using robust data association to perform SLAM with 

sonar sensors. Also, Groβmann et al. (Groβmann & Poli 2001) confront the sonar localization 
problem by means of the Hough transform and probability grids to detect walls and 
corners. Burguera et al. (Burguera et al. 2008a) adopt a different approach, named spIC 
(sonar probabilistic Iterative Correspondence), not requiring environmental features to be 
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detected. They have shown that scan matching localization, even in its most basic expression 
(Burguera et al. 2005), can be applied to sonar sensors if their limitations and uncertainties 
are appropriately taken into account. Also, a recent laser scan matching technique, the NDT 

(Normal Distributions Transform) (Biber & Straβer 2003) has been adapted to work with sonar 
sensors (Burguera et al. 2008b). 

1.3 Probabilistic methods 

It is broadly accepted that probabilistic methods are the most promising ones to deal with 
sensor and pose uncertainties in real-time (Thrun et al. 2005). A key concept in probabilistic 
robotics is that of belief. The beliefs, which reflect the robot’s internal knowledge about its 
state, are represented by probability distributions. In the localization context, the beliefs 
reflect the robot’s internal knowledge about its pose in the space. The most general 
approach to compute beliefs is the Bayes filter, which determines the belief distribution from 
control data and measurements. However, the general Bayes filter algorithm is not a 
tractable implementation for continuous state spaces, such as the one of robot poses.  
Gaussian filters are one of the earlier tractable implementations of Bayes filters. One 
particular Gaussian filter, the Kalman filter (Kalman 1960), has been vastly used to perform 
mobile robot localization and SLAM. A Kalman filter represents the belief by means of a 
normal distribution. Mainly due to the normal distribution assumption, Kalman filters fail 
to represent ambiguities and to recover from localization (Neira & Tardós 2001; Castellanos 
et al. 2004). These problems are especially relevant when dealing with ultrasonic range 
finders. On the one hand, the low sonar angular resolution may lead to ambiguous robot 
pose estimates. On the other hand, wrong readings due to multiple reflections and cross-
talking combined with the low measurement rate of ultrasonic range finders may lead the 
filter to unrecoverable localization failures. 
An alternative tractable implementation of the Bayes filter is the Particle filter (Metropolis 
and Ulam 1949, Doucet et al. 2001). In particle filters, the belief distribution is represented by 
a set of samples, called particles, randomly drawn from the belief itself. The particle filter is 
in charge of recursively updating the particle set. Dellaert et al. (Dellaert et al. 1999) and Fox 
et al. (Fox et al. 1999) introduced particle filters in the localization context, defining the so-
called MCL (Monte Carlo Localization). Since then, particle filters have been successfully 
applied to SLAM (Montemerlo et al. 2002; Hähnel et al. 2003), multi-robot localization (Fox 
et al. 2000) and localization given an a priori map both using laser (Yaqub & Katupitiya 2007) 
and sonar sensors (Thrun et al. 2001), among many other applications.  
Particle filters are nonparametric implementations of Bayes filters. They are said to have two 
important advantages. First, they can approximate a wide range of probability distributions, 
even multimodal. When compared to Kalman filters, which can only deal with normal 
distributions, this feature constitutes an important benefit. These filters are much better 
suited than Kalman filters to represent ambiguities and to cope with localization failures. 
The second advantage of particle filters is that, even its most straightforward 
implementation exhibits very good results when applied to localization. Thus, a particle 
filter constitutes an excellent tool to perform localization using ultrasonic range finders as 
exteroceptive sensors. 
A key point in a particle filter is the so called measurement model. Broadly speaking, the 
measurement model is in charge of determining how likely the current sensor readings can 
be explained by each particle. This is usually accomplished by means of an a priori map. The 
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current sensor readings are matched against the map and the degree of matching defines the 
measurement model.  
Silver et al. (Silver et al. 2004) proposed a method not requiring any a priori map and dealing 
with underwater sonar sensors. Their proposal was to store a small local history of range 
readings for each particle, so that the current readings could be matched against each of the 
local histories. In order to compute the degree of matching, they borrowed a concept from 
the scan matching community. They compute the degree of matching as a function of the 
ICP (Iterative Closest Point) scan matching error (Lu & Milios 1997). Although this approach 
was only tested in simulation, it does not require any a priori map and exhibits very good 
results. 

1.4 Chapter overview 

In this document we describe the use of the ICP scan matching as a measurement model in a 
particle filter to perform mobile robot localization using standard, terrestrial, Polaroid 
ultrasonic range finders. The particles are augmented with local environment information. 
This local information is recursively updated at each time step, allowing the localization 
process to be performed without any a priori map. Also, the aim of this local information is 
to deal with the sparseness of the sets of sonar readings.  
In order to validate and measure the quality of this approach, sonar and laser data has been 
simultaneously gathered in different environments. Using the laser readings, a ground truth 
has been constructed. Then, the sonar-based particle localization is evaluated by comparing 
its results to the ground truth. The presented evaluation method takes into account the 
whole robot trajectory, instead of only its end points. The experiments evaluate different 
algorithm’s parameters. The experimental results show how the proposed approach to 
sonar-based localization is able to provide robust and accurate robot pose estimates. 
This chapter is structured as follows. The general particle filter operation, as well as the 

specific details of the sonar-based particle localization, is provided in Section 2. The notation 

used along the paper is also presented in this section. Section 3 focuses on the measurement 

model and the introduction of local environment information on the particles. A 

quantitative evaluation method is presented in Section 4. Also in this section, the 

experimental results evaluating the algorithm are shown and discussed. Section 5 concludes 

the chapter, and some proposals of future work are given in Section 6. 

2. The particle filter 

2.1 Overview and notation 

The key idea in mobile robot localization is to estimate the robot pose from sensor data. 

Thus, in the localization context, the robot pose is the state to be estimated. However, the 

robot pose is usually not directly observable by sensors. In consequence, the robot pose has 

to be inferred from sensor data. In order to accomplish this state estimation process, at least 

two models are necessary. On the one hand, a model describing the evolution of the robot 

poses with time. On the other hand, a model that relates the sensor measurements to the 

robot poses. The former is commonly named the motion model, although it is also referred to 

as the system model or the plant model. The latter is the so called measurement model. 

As stated previously, Bayes filters constitute a general, widely used, approach to state 
estimation. They are recursive estimators consisting on two main steps: the control update 

www.intechopen.com



Mobile Robot Localization using Particle Filters and Sonar Sensors 

 

217 

and the measurement update. The control update predicts the robot pose one time step 
forward, by means of the motion model. The measurement update uses the latest sensor 
readings and the measurement model to modify the prediction. This update is based on the 
Bayes theorem, and that is why these recursive estimators are named Bayes filters. 
The general Bayes filter algorithm involves integration over the whole state space. In 
localization, the state space is the continuous space of robot poses. In consequence, the 
general Bayes filter algorithm is not computationally tractable in most of the localization 
problems. Nevertheless, there exist several tractable implementations of the Bayes filter. 
Among them the particle filter is capturing the attention of the localization community. The 
key idea is to represent the belief by a set of weighted random samples called particles. 
Thanks to this, the filter is able to deal with arbitrary probability distributions, not 
necessarily unimodal. Thus, they are particularly well suited to perform sonar-based 
localization, and they will focus the attention of this chapter. Additionally, the presented 
approach does not require an a priori map of the environment. The particular 
implementation of the particle filter to perform such task is described in detail in Section 2.2. 
Now, some notation is provided. 
Let  and  denote the sonar measurements and the control vector, respectively, at time 
step t. In the context of this chapter,  corresponds to odometry data. Let the set of particles 
at time step t be defined as follows:  

  (1) 

where M is the number of particles. Each  is a concrete instantiation of the robot pose 

 at time t. Each  is the particle importance factor, also referred to as weight, so 

that . A key issue in the presented approach is , a short history of the 

most recent k sets of sonar readings. This history constitutes the particle local map, and it is 
intended to cope with the low amount of readings provided by ultrasonic range finders. 
Also, these local maps are recursively updated during the filter operation, letting the 
localization process work without the use of a priori maps. The use and on-line building of 

 is one of the novelties of the presented approach, and will be described in detail in 

Section 3. In the context of this chapter, the terms local map, history and readings history will 

be used interchangeably and will refer to . 

Let  denote the relative robot motion from time step t-1 to time step t according to the 
particle m. Finally, let the operators  and  denote the inversion and the compounding 
transformations, similarly to those defined by Smith et al. (Smith et al. 1990). These 
operators will be now described, together with two additional compounding operators for 
transforming the references of a point (Tardós et al. 2002) and of a set of points.  
Only to perform such description, the following notation will be used. Let 

denote the location of a coordinate frame B relative to a coordinate frame 

A. Let be defined similarly. Finally, let  denote the 

location of the point p relative to the coordinate frame B. The compounding  

denotes the location of the coordinate frame C relative to A, and is computed as follows: 

 

(2) 
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The inversion  denotes the location of coordinate frame A relative to B as follows: 

 

(3) 

The compounding  denotes the location of the point p relative to the 

coordinate frame A as follows: 

 
(4) 

Finally, if the right-hand operand of the compounding transformation is a set of points, the 
transformation is applied individually to each point and, thus, the compounding returns the 
resulting set of points. Figure 2 summarizes the notation used along this chapter. 

2.2 Sonar-based particle localization 

A particle filter builds the particle set  recursively from the particle set  one time step 
earlier. Thus, it is necessary to start the recursion by defining the initial particle set . If an 

a priori map is available, this initialization is accomplished by uniformly distributing  
over the free space in the map. However, the presented approach uses local maps to avoid 
the need for previous information. In consequence, the particle set initialization has to be in 

charge of building .  
 

x1
[m] x2

[m] x3
[m] xt-1

[m] xt
[m]

xt-1
[m]

xt
[m] xt-1

[m] xt
[m]

=

st-1
[m]

zt
...

 

Fig. 2. Notation used for sonar-based particle filtering 

To initialize the particle set, the robot has to move during k time steps computing its pose 

using odometry. Then, the robot pose  for all particles is set to the odometric pose 

estimate after the mentioned k time steps. During this initialization, k sets of sonar readings 

are gathered. Their coordinates are represented with respect to a coordinate frame 

located in  using the odometry estimates. The initial local map  for all particles is 

then set to the mentioned k sets of sonar readings. 
Although this initial dependence on odometry may seem problematic, it is not if the value of 
k is appropriately chosen. Different values for this parameter will be tested and 
experimentally evaluated along this chapter. It will be shown that good values for this 
parameter are around k=100. So, let us assume for the moment this value. Let also assume a 
mobile robotic platform providing odometric and sonar readings at steps of 100ms. This 
time step is quite common. In this case, the robot has to rely solely on odometry during the 
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first 10s of operation. In many robot applications, the odometric error accumulated during 
10s is negligible if compared to the whole mission execution.  
After the initialization process, the sonar-based particle filter localization algorithm is 
executed at each time step. Figure 3-a shows the algorithm, where two loops involving the 
whole particle set can be observed. The first loop, from line 1 to line 3, predicts the robot 
pose by means of the motion model. Thus, it constitutes the control update. The second 
loop, from line 4 to line 8, updates the particle set according to the sensor readings and 
constitutes the measurement update. It is important to remark that, although the 
measurement model is executed in line 3, the weights it computes are not used until line 5. 
Thus, the measurement update is performed from line 4 to 8 although the measurement 
model appears in line 3. 
Line 2 is in charge of sampling the motion model. As stated previously, in order to perform 
a state estimation process, a motion model is necessary. In general terms, the motion model 
describes the evolution of the robot pose with time. Thus, in general, the motion model 
provides an estimate of where the robot is at time t, given its previous pose at time t-1 and 
the current control vector . However, our proposal for the motion model is not to compute 
the absolute robot pose at time t, but relative motions from one time step to the next. In 

consequence, line 2 generates hypothetical robot motions   from time step t-1 to time 

step t using a stochastic motion model that does not depend on . This step involves 

sampling from the distribution , where  represents a robot motion from time step 
t-1 to time step t. This distribution depends on the specific robot configuration, and it is out 
of the scope of this chapter to discuss it. Relevant information on this subject can be found 
on (Thrun et al. 2005). 
 

(a) 
 

(b) 

Fig. 3. Sonar-Based Particle Localization algorithm (a) and Low Variance Sampling 
algorithm (b). 

www.intechopen.com



 Advances in Sonar Technology 

 

220 

The second model necessary to perform the state estimation is the measurement model, 
which relates the sonar readings to the robot pose. Line 3 uses the measurement model to 
incorporate the current readings  into the particle set by computing the importance factor 

. Those particles with the relative motions that better explain the current readings will 

have better weights. This is accomplished by correlating  and  by means of an ICP-like 

approach and will be described in Section 3. 
Line 5 executes the so called resampling, also referred to as importance sampling. The 
importance sampling is the core of the measurement update step. At this point, the 
algorithm draws with replacement M particles. The probability of drawing each particle is 
proportional to its importance factor. Differently speaking, during the importance sampling, 
those particles with better weights have higher probability to remain in the particle set. 
There is a problem in particle filters directly related to the importance sampling. The 

statistics extracted from the particles may differ from the statistic of the original density, 

because the particle set only holds a finite number of random samples. This problem may 

lead to a degeneracy phenomenon through repetitive resampling (Sanjeev Arulampalam et al. 

2002). Degeneracy appears when, after a number of resampling steps, all but one particle 

have negligible weights.  Among the existing resampling strategies, the low variance sampling 

has proved to be very efficient, in computational terms, while reducing the degeneracy 

phenomenon. The underlying idea is to select the samples in a sequential stochastic process 

instead of independently. A comprehensible description of the algorithm is available in 

(Thrun et al. 2005). Because of the mentioned advantages, the low variance sampling has 

been adopted in the present work. The algorithm is presented in Figure 3-b.  

Going back to Figure 3-a, the line 6 is in charge of updating the global robot pose for each 
particle selected during the resampling step. This is accomplished by compounding the 
global robot pose at time t-1 with the relative motion from time step t-1 to time step t. This 
idea is illustrated in Figure 2. 
Line 7 is in charge of building the new local map of each particle, by adding the current set 

of sonar readings and discarding to oldest readings so that the map size remains constant 

along the whole mission execution. This process will be described in Section 3. 

Finally, line 8 constructs the new particle set . After this step, depending on the specific 
robot application, the particle set may be treated in different ways. For instance, some 

applications need a single vector   informing the most likely robot pose. In that 

cases, the mean of   may be used. Some other applications require a continuous 

probability density function to be extracted from the samples. In those cases, techniques 
such as Gaussian approximation, K-Means or Kernel Density Estimation can be used. The reader 
is directed to (Thrun et al. 2005) to learn more about these density extraction techniques. 

3. Matching sets of readings 

3.1 Overview and notation 

In particle filters, the measurement model is in charge of computing the weights of the 

particles. In particle filter localization, the weights represent the likelihood of having the 

current set of readings  at the robot pose . Thus, . This dependence 

on the absolute robot pose is useful if an a priori map is available, because the range readings 

can be matched against the global map using the absolute robot pose. 
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However, one advantage of the presented approach is that it does not require a previously 
constructed map. Instead, local maps are recursively built during the mission execution. For 

a given particle, the local map  is represented with respect to the coordinate frame in 

 (see Figure 2). Also, the presented motion model generates , the relative motions 

from time step t-1 to time step t. Taking into account that the current set of readings  has 
been gathered at time t, the particle weight can be computed by evaluating the degree of 

matching between  and . Figure 2 clarifies this point. Thus, in our approach, 

. Broadly speaking, the idea is to weight the particles according to 

the existing overlap between the current set of readings and the stored maps. Computing 
the overlap between two sets of range readings is a common practice in the scan matching 
community. Thus, some scan matching concepts will be used in this section. Next, some 
notation is introduced. 
 

r

ti

i
r t

mxt
mxt-1

mxt-2
 

Fig. 4. Relations between the coordinate frames used by the measurement model. The 
circular sector represents the sonar beam. The dashed cross is the robot coordinate frame. 

Let  represent the range reading provided by the i-th sonar sensor at time step t. Let this 
reading be represented with respect to a coordinate frame located on the sonar sensor and 
aligned with the ultrasonic acoustic axis. Thus,  has the form , where r is the raw 
range provided by the sensor. 
Let  denote the relative position of the sonar sensor i with respect to the robot reference 
frame. Ultrasonic range finders are assumed to be at fixed positions on the robot body. 
Consequently,  does not change over time. That is why the subindex t has been dropped. 
Figure 4 illustrates the notation.  

3.2 Building the local maps 

At time t, the array of ultrasonic range sensors provides a set of raw range readings. The set 
 is built from the raw range readings as follows: 

  (5) 

where   is the set of sonar sensors that have generated a reading during the time step t. 
Each item in  will be denoted , meaning that it was gathered at time t and produced by 

the i-th sonar sensor.  
Let  be defined as the set of readings in  represented with respect to the coordinate 

frame of   using the relative motion   proposed by the particle: 

  (6) 
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Each item in  will be denoted by , meaning that it has been generated from . 

To ease notation, let  denote the local map . It was stated previously that all the 

readings in  are represented with respect to the coordinate frame of . This is 

accomplished by building  as follows: 

 

(7) 

where k is the local map size. By observing the previous equation it is easy to see that  

can be obtained recursively from ,  and . This recursive update, which is 

performed by the update history function in line 7 of Figure 3-a, can be expressed as follows: 

  (8) 

First, the readings in  are represented with respect to the coordinate frame of  by 

compounding them with . Then, the new set of readings  is added. Finally, although 

not been represented in Equation (8), the oldest readings in the resulting set have to be 

deleted so that the size of the local maps remains constant along the whole mission 

execution. 

3.3 The measurement model 

There exist many algorithms to match sets of range readings in the scan matching literature] 

(Lu & Milios 1997; Rusinkiewicz & Levoy 2001; Pfister et al. 2004; Burguera et al. 2008a). 

Most of them follow the structure proposed by the ICP algorithm. The key step in the ICP 

algorithm is the establishment of point to point correspondences between readings in two 

consecutive range scans. These correspondences are established by means of the Euclidian 

distance, and they give information about the degree of matching between two sets of 

readings. Our proposal is to measure the degree of matching between  and  in that 

way. This will constitute our measurement model. 

Let  and  be points in  and  respectively. To decide whether a correspondence 
between  and  can be established or not, the Euclidian distance is used: 

  (9) 

For each , the closest point  according to the distance in Equation (9) is 
selected to be the corresponding point. Thus, the set C of correspondences is defined as 
follows: 

  (10) 

Broadly speaking, the idea is to establish correspondences between the points in  and 
 that are closer in the Euclidian sense. This is commonly referred to as the closest point 

rule.  
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The sum of Euclidian distances between pairs of corresponding points is a good indicator of 
the degree of matching between  and : the worse the matching, the bigger the sum 
of distances. However, the importance factor represents the opposite idea: particles that 
produce better matching should have higher weights. In consequence, the importance factor 
for a particle m is computed as follows: 

 
(11)

In order to avoid numerical problems, those situations where the sum of distances is close to 
zero should be especially taken into account. However, experimental results suggest that, 
due to the noisy nature of sonar sensors, these situations are extremely unusual. 

4. Experimental results 

4.1 Experimental setup 

In order to evaluate the presented approach, a Pioneer 3-DX robot, endowed with 16 
Polaroid ultrasonic range finders and a Hokuyo URG-04LX laser scanner, has been used. 
The robot has moved in four different environments in our university, gathering various 
data sets. Each data set contains the odometry information, the sonar range readings and the 
laser range readings. The laser readings have only been used to obtain ground truth pose 
estimates. In order to obtain such ground truth, the ICP scan matching algorithm has been 
applied to the laser readings. Then, the wheel encoder readings have been corrupted with 

Gaussian noise (  and ) to simulate worse floor conditions. Thus, the 
quality of our algorithm operating with noisy and sparse sets of sonar readings in bad floor 
conditions is compared to a well known localization algorithm operating with dense and 
high quality laser readings and good floor conditions. 
 

  

Fig. 5. Fragment of a real trajectory (left) and the polyline that approximates it (right). The 
dots represent the vertexes. 

In order to quantitatively compare odometry and the different particle filter configurations, 
the following procedure has been used. First, the trajectories obtained by odometry, particle 
filter and ground truth are approximated by polylines. The vertex density of each polyline 
increases in those regions with significant amount of robot rotation. Also, the maximum 
robot motion between two vertexes has been set to 1m. This kind of approximation is useful 
to overcome the local perturbations in the individual motion estimates, both for odometry, 
particle filter and ground truth. Figure 5 exemplifies the polyline approximation. Then, the 
individual edges of the trajectory being evaluated are locally compared to those of the 
ground truth. The Euclidian distance between their end points is used as a measure of the 
edge error. Finally, the edge errors for the trajectory being evaluated are summed. This sum 
is normalized, using the path lengths between vertexes and the number of edges, and 
constitutes the trajectory error. Due to the mentioned normalization, the errors of different 
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trajectories can be compared. It is important to remark that, as a result of the mentioned 
procedure, the evaluation takes into account the whole trajectory, not only its end points. 
Two different experiments have been performed. The first experiment evaluates our 
approach with respect to the number of particles, M. The second experiment evaluates our 
approach with respect to the local map size, k. 

4.2 Evaluating the influence of the number of particles 

The first experiment evaluates the quality and the execution time of our approach with 
respect to the number of particles. The values of M that have been tested are 10 and 50, to 
observe how the algorithm behaves with a low number of particles, and then 100, 200 and 
400 particles. The local map sizes has been set to k=100. The trajectory error has been 
computed for odometry and particle filter using the mentioned number of particles.  
 

(a) 
 

(b) 

Fig. 6. Experimental results obtained using different numbers of particles and setting the 
history size to k=100. (a) Means and standard deviations of the trajectory errors. (b) Means 
and standard deviations of the execution time per data set item on a Matlab implementation. 

Figure 6-a depicts the mean and the standard deviation of the obtained trajectory errors for 

all data sets. The graphical representation of the standard deviation has been reduced to a 

20% to provide a clear representation, both for odometry and particle filter. Also, although 

the odometric error does not depend on the number of particles, it has been included on the 

figure for comparison purposes.  

The first thing to be noticed is that the presented approach is able to reduce the odometric 

error in all cases. Even if only 10 particles are used, the resulting trajectory is, in mean, a 

21.9% better than odometry. In the case of 400 particles, the resulting trajectory achieves, in 

mean, a 60% of improvement with respect to odometry. Also, the standard deviations of the 

particle filter errors are significantly lower than those of odometry. This suggests that the 

quality of the particle filter estimates is barely influenced by the initial odometric error. 

The second thing to be noticed is that a large error reduction appears from 10 to 50 particles. 

From this number of particles onward, the error reduction is very small. This suggests that 

the behaviour of our algorithm does not strongly depend on the number of particles. It also 

suggests that using a number of particles between 50 and 100 would be a good choice, more 

if the execution times are taken into account.  
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Figure 6-b shows the mean and the standard deviation of the execution times per data set 
item, with respect to the number of particles. It is important to remark that these execution 
times correspond to a non optimized Matlab implementation. Thus, the absolute values are 
meaningless as a C++ implementation will greatly increase the execution speed. The interest 
of these results is that the execution time is strongly linear with the number of particles. This 
linear relation reinforces the idea that using between 50 and 100 particles is the better choice: 
the small improvement of using more particles does not compensate the increase in 
computation time. 

4.3 Evaluating the influence of the local maps size 

The second experiment evaluates the quality and the execution time of our approach with 
respect to the local maps size. Now, the number of particles is set to 100, as it has shown to be a 
good choice, and the history sizes k=25, k=50, k=100, k=200, k=400 and k=800 are tested.  
 

(a) 
 

(b) 

Fig. 7. Experimental results obtained using different local map sizes and setting the number 
of particles to M=100. (a) Means and standard deviations of the trajectory errors. (b) Means 
and standard deviations of the execution time per data set item on a Matlab implementation. 

Figure 7-a shows the mean and the standard deviation of the trajectory errors, both for 

odometry and particle filter. The standard deviation has been graphically reduced to a 20% 

to provide a clear representation. 

It can be observed how the effects of the history size are more noticeable than those of the 

number of particles. For example, if the very short history k=25 is used, the resulting 

trajectory is worse than the one provided by odometry. The reason of this problem is that, 

using a very short history, the influence of spurious and wrong readings in the 

measurement model is not negligible. Also, it is clear that increasing the history size may 

lead to better results than increasing the number of particles. For instance, the trajectory 

obtained using M=100 and k=400 is an 87% better than the odometric one, while the 

trajectory obtained using M=400 and k=100 is only a 60% better.  

It is important to remark that the quality of the particle filter slightly decreases for k=800. 
This quality reduction is mainly due to the initialization process. As stated previously, the 
time spent to build the initial particle set  depends on the value of k. In our 
implementation, setting k=800 means that the robot has to solely rely on odometry during 1 
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minute and 20 seconds at the beginning of its operation. This dependence on odometry is 
responsible of the mentioned quality reduction. 
Figure 7-b shows the mean and the standard deviation of the execution times per data set 
item. As in the previous experiment, these times correspond to a non optimized Matlab 
implementation. Thus, the interest of the execution times does not reside on their absolute 
values but on their evolution with respect to the history size.  
Similarly to the previous experiment, the execution time is strongly linear with the history 
size. Looking at the Figures 6-b and 7-b , it is clear that taking into account the time 
consumption, the better choice is to increase the history size rather than the number of 
particles. For instance, the errors for M=400 and k=100 are similar to those of M=100 and 
k=200, but the mean execution time for the former is more than twice the execution time of 
the latter.  

4.4 Qualitative evaluation 

In order to provide a clear understanding of the results, some images are provided for visual 

inspection. Different trajectories have been plotted, as well as the sonar readings according 

to each trajectory. 

Figure 8 visually depicts some of the results of the first experiment. The quality of the 

algorithm with respect to the number of particles can be observed. The first row shows the 

initial odometry estimates in four different environments. The second, third and fourth rows 

depict the results using an increasing number of particles (10, 100 and 400). All of them 

correspond to a history size of k=100. Finally, the fifth row shows the results of applying ICP 

to the laser readings. It is important to remark that, although ground truth trajectory has 

been obtained by matching laser range readings, the visual map shown in the last row has 

been plotted with the sonar readings to make the visual comparison easier.  

It can be observed how, as the number of particles increases, the resulting trajectory 

becomes more similar to the ground truth. Even in the large environment of the fourth 

column, where the robot has moved more than 150m, the final pose estimate is very close to 

the ground truth. The environment in the third column deserves special attention. By 

observing the initial odometric estimate, it is easy to see that a significant error appears at 

the beginning of the trajectory. Because the initial particle set  construction requires for 

the robot to be confident on odometry at the beginning of its operation, this initial error can 

not be fully corrected. That is why the particle filter provides a visual map rotated with 

respect to the ground truth. However, the shape of the trajectory is almost identical to the 

one of the ground truth.  

The Figure 9 visually depicts some of the results of the second experiment. The quality of 

the algorithm with respect to the history size can be observed. The first and fifth rows, 

which correspond to the initial odometric estimates and the ground truth respectively, are 

the same that in Figure 8, and are plotted here again to provide a clear idea of the evolution 

of the pose estimates. The second, third and fourth row correspond to history sizes of k=25, 

k=50 and k=200. In all of them, the number of particles used is M=100. Thus, the results for 

k=100 can be observed in the third row of Figure 8. 

It can be observed how the changes in the history size are clearly reflected in the quality of 

the resulting trajectory. Very accurate trajectories appear when a history size of 200 is used. 

As stated previously, the last row corresponds to the localization results of the well known 
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ICP algorithm applied to accurate and dense sets of laser range readings. On the contrary, 

our algorithm operates with the sparse and noisy sets of readings provided by standard 

Polaroid ultrasonic range finders. Moreover, our algorithm operated on a corrupted 

odometry, simulating bad floor conditions. Thus, it is remarkable that the presented 

approach is able to provide localization results close to the ones provided by a standard 

laser scan matching algorithm. 

 

Fig. 8. Trajectories and sonar readings according to odometry (first row), particle filter using 
10, 100 and 400 particles respectively (second to fourth row) and ICP laser scan matching 
(fifth row). The local map size used is k=100. 
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Fig. 9. Trajectories and sonar readings according to odometry (first row), particle filter using 
history sizes of k=25, k=50 and k=200 respectively (second to fourth row) and ICP laser scan 
matching (fifth row). The number of particles used is M=100. 
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5. Conclusion 

Localization is a key issue in mobile robotics nowadays. Nearly all robotic tasks require 

some knowledge of the robot location in the environment. A common way to perform 

localization is to correlate exteroceptive sensor data at subsequent robot poses. This 

approach is strongly dependant on the exteroceptive sensor quality. Because of this, many 

localization algorithms rely on accurate laser range finders, providing dense sets of 

readings.  

Standard ultrasonic range finders are not able to provide such dense and accurate 

information. That is why they are not frequently used in terrestrial mobile robot localization. 

However, they are appealing in terms of size, prize and power consumption. Moreover, 

their basic behaviour is shared with underwater sonar, which is extensively used in 

underwater and marine robotics. Consequently, a localization technique involving 

ultrasonic range finders is of great interest in the mobile robotics community. 

In this chapter, particle filters have been proposed as a tool to perform localization using 

ultrasonic range finders. One of the advantages of the presented approach is that it does not 

require the use of previously constructed maps. Thus, it is suitable even for environments 

where no a priori knowledge is available. This is accomplished by recursively building local 

maps, which represent the local view that each particle in the filter has about the 

surrounding environment. Being the local map size constant, the time consumption required 

to deal with them is also constant.  

The measurement model, which is in charge of computing the weights for the particles, has 

been defined similarly to the closest point rule of the ICP scan matching algorithm. The idea 

for the measurement model is to use the closest point rule to decide the amount of existing 

overlap between the current set of sonar readings and each of the local maps. 

An experimental setup, involving the construction of a ground truth using accurate and 

dense laser readings, has been presented. Also, a technique to quantitatively compare 

different trajectories is discussed. By comparing different particle filter configurations with 

the ground truth, numerical error measures are obtained.  

Two experiments have been defined. The first evaluates the effects of different sizes for the 
particle set. The second measures the effects of different sizes for the local maps. In both 
experiments, both the quality of the estimates and the time consumption has been observed. 
The results suggest that, thanks to the use of particle filters high quality localization results 
can be obtained using standard Polaroid ultrasonic range finders. These results are 
comparable to those obtained by standard scan matching algorithms applied to laser 
readings.  

6. Future work 

The presented measurement model is based on the ICP scan matching algorithm. This 
algorithm, which has been vastly used by the localization community, has also proved to be 
effective when applied to sonar readings (Burguera et al. 2005). However, recent works 
show that other matching approaches are able to provide more accurate and robust 
estimates (Burguera et al. 2008a; Burguera et al. 2008b). In consequence, it is reasonable to 
assume that the presented particle filter approach could benefit of these recent matching 
techniques in the measurement model. 
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