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Abstract

Availability quantification and prediction of IT infrastructure in data centers are of para-
mount importance for online business enterprises. In this chapter, we present comprehen-
sive availability models for practical case studies in order to demonstrate a state-space
stochastic reward net model for typical data center systems for quantitative assessment of
system availability. We present stochastic reward net models of a virtualized server sys-
tem, a data center network based on DCell topology, and a conceptual data center for
disaster tolerance. The systems are then evaluated against various metrics of interest,
including steady state availability, downtime and downtime cost, and sensitivity analysis.

Keywords: virtualized servers system, data center system, disaster tolerant data center

1. Introduction

Data centers (DCs) have been the core-centric of modern ICT ecosystems in recent decad
Computing resources and crucial telecommunications are centralized in a data center tc
constantly facilitate online business and to connect people from distant parts of the world
through the internet. Giant internet companies such as Facebook, Amazon, and Google hav
built huge state-of-the-art centers to house their own IT infrastructure. According to a study by
the Ponemon Institute [1] regarding the cost of data center outages from 63 DCs located in the
United States over a 12-month period, the average cost due to unplanned outages in 2016 we
US$ 740,357, which steadily increased by 46% from US$ 505,502 since it was first studied
2010. Specifically, a minute of downtime costs around US$ 7900 on average. However, onlin
businesses actually face more severe revenue losses due to IT service downtime. In early 20:
Amazon suffered an incredible business loss of US$ 66,240/minute due to server downtimi

[ 7KH $XWKRU V  /LFHQVHH ,QWHFK2SHQ 7KLV FKDSWHU LV GLVWULEXWHG
|ntech0pen &RPPRQV $WWULEXWLRQ /LFHQVH KWWS FUHDWLYHFRPPRQV RUJ OLFHQVHV E
GLVWULEXWLRQ DQG UHSURGXFWLRQ LQ DQ\ PHGLXP {9l KH RULILQD
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over a period of approximately 15 minutes. The causes of system outages in DCs span fror
uncertain failures of IT parts/blocks to natural disasters. Therefore, a quantification of IT
infrastructure availability in DCs under various scenarios in advance of system development
is of paramount importance for big tech companies.

Availability assessment approaches are primarily based on measurement and modeling
methods. Model-based approaches are fast and relatively inexpensive methods for syster
availability analysis in comparison with measurement-based methods. System modeling can
be accomplished using discrete-event simulation [2, 3], analytical models, or a hybrid of both
approaches. Analytical models fall into four main categories [4—7]: (i) non-state-space model
(reliability graph (RelGraph), reliability block diagram (RBG), or fault tree (FT)), state-space
models (Markov chains, Stochastic Petri net (SPN), stochastic reward net (SRN), etc.), hiere
chical models, and fixed-point iterative models. Non-state-space modeling paradigms provide
a relatively quick evaluation of basic metrics for a system (reliability, availability, MTTF) with a
proper capture of overall system architecture. State-space models, on the other hand, ce
capture sophisticated behaviors and operations of a system. This approach can handle failure
repair dependencies and complex interactions between system components. To avoid th
largeness problem (or state-space explosion problem) in state-space models, we use hierarcl
cal modeling techniques of non-state-space and state-space models at upper and lower level
as well as fix-point iterative models. In this chapter, we focus on studying complex system
operations in DCs captured by using an SRN.

The structure of this chapter is organized into six sections. Section 2 provides preliminary
concepts of availability modeling and analysis of data center systems (DCS). Subsequentl
several case studies are presented. Section 3 offers an availability model of a unit system of tr
virtualized server (VSS) in DCs. In Section 4, we present availability modeling of a data centel
network (DCN) based on DCell topology. We present an SRN model for a DC in order to study
disaster tolerance in Section 5. Finally, we present conclusions in Section 6.

2. Availability quantification of data center systems: basic concepts

Availability A(t) of a DCS represents the probability of its operating system taking the correct
state at an instantt, regardless of the number of failures and repairs during the interval (0,t).
Instantaneous/poindvailability A(t) is related to the system reliability, as defined in Eq. (1).
6t
AdbPYRaPp R xRoOXkEX (1)
0

R(t) is the instantaneous reliability at t of the system, which is defined in Eq. (2):
o}
Ratb ¥ faxelx (2

t

f(x) is the probability density function of a random variable X, which represents the systenis
lifetime or time to failure.
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g(x) is a renewal process rate in the interval (0,t), as defined in Eq. (3)
O,
goxb Vixbp gdx ulbduku 3
0

m(x)dx is the probability that a renewal process cycle will be completed in the time interval [ x,
x + dX. R(t-x) is the probability that the system works properly for the remaining time interval  t-x.
R(t-x)m(x)dxis the probability of the case that a fault has occurred and that after the repair/renewal
(which occurred at the instancex, 0 < x <t) the system resumed functioning with no further faults.
If a system is not repairable, the concept ofA(t) is identical with that of reliability R(t).

Steady-state availability (SSA3 the system availability after a long running time, where the
limiting value A(t) tends to decrease from 1 at the initial instant, as defined in Eq. (4) and Eq. (5,
MTTF

A Vi lim A& B 4
aum “MTTEp MTTR @)

A YalimAdg P/
t p

()

The failure rate( ) implies the frequency of system failure is determined by the total number of
failures within an item population, divided by the total time expended by that population,
during a particular measurement interval under the stated conditions. Repair ratg ) implies
the frequency of system repair determined as the average number of repairs over a period o
maintenance time. Mean time to failure (MTTF)epresents the expected time in which a systen
functions correctly before its first failure. Mean time to repair (MTTR)epresents the expecte:
time required for system repair. In the case where failure/repair events comply with exponen-
tial distributions, MTTF and MTTR represent an arithmetic inversion of failure and repair
rates, as shown in Eq. (6). SSA can be computed from Eqg. (5).

1 1
MTTF %= MTTR %= (6)

In industry, system administrators are usually concerned with system downtimémeasured in
minutes per year) and downtime cosfwith a cost unit C per minute of system downtime). These
values can be computed with Eq. (7) and (8).

Downtime¥+ 8L A P8760 60 (7,

J

Downtime Cost %4C 6l A P8760 60 (8
Sensitivity analysigs performed to assess the importance of system parameters by two tect
niques. () Repeatedly substitute specific parameter values in one range at a time while
the others remain constant, and observe system behaviors in accordance with the variation o
the selected parameter. This approach studies the system responses upon a broad range of tl
parameters under consideration. (i) Differential sensitivity analysiscompute partial derivatives
of the measure of interest with respect to each system parameter as determined in Eq. (9) ¢
(10) to yield a scaled sensitivity.
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SMby 9)

A
SSBAPYi— (10)

Stochastic reward net (SRN§] has been an appropriate modeling paradigm to capture opera-
tional complexities in industrial hardware and software systems [9 —14]. According to a specific
description of system operations, ones can model system behaviors using place(s), transition(:
and arc(s) as three main components in an SRN model. To represent a certain entity of th
system to be considered, we use token(s) (normally denoted by a dot or an integer number tc
represent a number of corresponding entities) which reside in each place of the SRN model
And to capture its operational state variations, we use (input/output) arcs to connect tra nsition(s)
to place(s) or place(s) to transition(s), respectively. A firing of a transition is triggered when a
certain condition of system state is matched in order to allow the token(s) in a place are
removed, and then deposited in another place. The transitions of tokens in an SRN mode
captures the systenis operations while the residence of tokens in places represent the systers
operational state at a time, which is call marking. The Boolean condition attached to eact
transition which is to enable/disable the transition is called the guard. A set of guard functions
can be defined to articulate the behaviors of system state dependence and transition. ¢
marking-dependence (denoted by a # sign attached to a transition) is incorporated when the
transition’s rate is dependent on the marking of the SRN model at a time. Other features o
SRN including inhibitor arcs, multiplicities, and input arcs can simplify the construction of
SRN models.

SRN-based availability quantification framewalpresented in Figure 1. The availability quanti-
fication framework consists of three stages: (i) requirement specification, (ii) SRN-based syster
modeling and (iii) system analysis. Service level agreement (SLA) [15, 16] between systel
owner and customer details system specification and requirements. In the stage (i), taking intc

. Probl I
I [ Poor Art H obien System Requirement
I Statements Spec1f1cat1011 I
—:::::: o= e
| System System |
| Behavior Architecture l
| J Desion Design l Mode]_ing
I Default I
| Pamameter |
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I
| Steady-state Sensitivity I
Analysis Analysis |
L = = 1

Figure 1. SRN-based availability quantification framework.
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account the literature review based on prior art and contemporary development of the system,
ones can define problem statements to be modeled and observed. In the stage (ii), the person

charge of modeling and evaluating the system can refer various default values of systenr
parameters from previous work. He/she can propose the architecture design and detailec
behaviors taken into consideration of the system. The SRN is used to capture the pre-define:
system operations. The SRN system model is then analyzed and the system availability evalu
ation is performed with regard to various output measures of interest via different analysis

approaches such as steady-state availability and/or sensitivity analysis.

3. Case study I: a virtualized server system

3.1. System architecture

Figure 2 shows a general VSS architecture. A VSS is a computing unit in a DC which consist
of a number of physical servers (also called hostsH1, H2, ..., H,). Each server is in turn
virtualized using bare-metal virtualization technology [17 —19]. Thus, each server hosts it
own hypervisor (hereinafter, called the virtual machine monitor (VMM)). The physical server
is capable of running a number of virtual machines (VM) on top of its VMM. For the sake of
fault tolerance and data storage of VMMs and VMs, the physical servers are interconnected vie
a network pipeline to each other, and to a shared storage area network (SAN).

To focus on modeling complex behaviors of a virtualized system in a detailed manner, we
consider a small-size VSS consisting of two hosts l1 and H2) connected to a shared SAN
Each host runs its own virtual machine monitors VMM1 and VMM2, respectively. Two VMs
are also created on each hostyM1 for host H1 and VM2 for host H2. In the next section, we
will present SRN models of the above-mentioned subsystems. The models capture in detai
various failure modes and recovery methods, including hardware failures in physical hosts
and SAN [20, 21], failures due to non-aging related Mandelbugs on both VMM and VM

subsystems [22], and software aging-related failures and corresponding time-interval software
rejuvenation techniques for VMM and VM subsystems [23, 24]. Furthermore, we incorporate

g i . i

Shared Storage

Figure 2. A virtualized server system with two physical servers.
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hierarchically complex dependencies between subsystems, including the dependences of a VI
on its VMM, a VM on the shared SAN, and a VMM on its host. Without loss of generality, the

proposed SRN model represents the sophisticated operations of, and interactions betwee
subsystems, in a typical virtualized system as a computing unit brick in a practical DC.
The model can be further extended in the future by incorporating a large scale cloud system
as in [25].

3.2. SRN models of VSS

The SRN system model is presented inFigure 3. We use a two-state SRN model to capture the
operational state (UP) and failed state (DOWN) of the physical parts, including host 1 (H1),
host 2 (H2), and SAN, as shown in Figure 3(a)—(c), respectively.

The VMM subsystem models are shown in Figure 3(d) and (f) for VMM1 and its clock,
respectively, and in Figure 3(e) and (g) for VMM2 and its clock, respectively. Without loss of
generality, a model of a VMM (either VMM1 or VMM2) subsystem consists of six state
(represented by shaded places): (i) normally running state Pymmup), (ii) failure state due to
non-Mandelbugs (Pymme), (iii) down-state due to a failure of its underlying host (P vmman). (1)
failure-probable state due to aging problems (Pymwmip), (V) aging-failure state due to aging of
equipment (Pymmar), and (vi) rejuvenation-process state (Rvwmrej). Initially, there is a token in
Pvmmup tO represent a running VMM. If it fails due to a non-aging Mandelbug, the transition
time Tymwmr is fired to transit the token into Pywvr. Recovery is captured by Tymmrepair After
running for a long time, the VMM suffers a high failure probability while remaining opera-
tional. Therefore, it goes to the failure-probable statePyymi as Tymwrp I fired. Failure due to
aging occurs soon afterTyumar is fired and the VMM goes to the aging-failure state Pymmas- ItS
recovery is represented by the firing of Typmar- If the VMM ’s underlying host goes down (i.e., a
token is deposited in Py in respective Figure 3(a) or (b)) while the VMM is in the UP states
(normal Pymmyp OF failure-probable Pymmep), the VMM immediately enters the down-state
Pymman through the immediate fired transitions  tymmupdn OF tymmipdan- A reset is necessary fo
the VMM to go up (captured by Tywmmreset after its host is recovered. In the meantime, the
VMM clock is initiated by a token in  Pymmciock Which counts time by firing a timed transition
Tyvmmclockinterval that complies with the cyuwm-Stage Erlang distribution. Every software rejuve-
nation process interval on a VMM is represented by a firing of Tymmclockintervay @Nd the token in
Pymmciock IS removed and deposited in Pymmpoiicy- Thus, rejuvenation is triggered if there is a
VMM in' Pymmup OF Pymmrp DY firing the immediate transitions  tymmuprej OF tymmrej- AlsO, the
token in Pymmpolicy Of the VMM clock model is moved to  Pymmtrigger. The VMM represented by
a token in Pymmrej is then rejuvenated and returned to the normal state Pyymup as Tymmrej IS
fired. The VMM clock is reset as typmmeockresetiS fired to start a new interval of time-based
software rejuvenation on a VMM. The modeling of VMM1 on host H1 and VMMZ2 on host H2
are identical based on the general model description as above.

Modeling of VM subsystems is shown in Figure 3(h) and (j) for VM1 subsystem and its clock,
respectively, and Figure 3(i) and (k) for VM2 subsystem and its clock, respectively. The models
initiate with two tokens in Py, representing two VMs on each host. In general, the SRM
model of a VM subsystem also consists of six states as in the VMM subsystem does including
(1) normal state (Pymyp), (ii) failure state due to non-aging Mandelbugs (Pywms), (iii) down-state
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Figure 3. SRN system model of a VSS: (a) Host 1, (b) Host 2, (c) SAN, (d) VMML1, (e) VMM2, (f) VMM1s clock, (g
VMM2’s clock, (h) VM1, (i) VM2, (j) VM1’s clock, and (k) VM2's clock.

due to a failure of underlying VMM (' Pyman), (iv) failure-probable state due to aging problems
(Pvmrp), (v) aging-failure state due to a failure of aging (Pvmar) and (vi) rejuvenation-process
state (Pymrej). The operations of the VM subsystem in correspondence with the transitions of
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tokens in the SRN model are similarly described as those of the VMM subsystem. However, the
SRN model of the VM subsystem is further extended by incorporating (i) marking-dependence
represented by a“#’ mark nearby selected timed transitions (Tymp, Tvmt: Tvmrese) tO capture
the cases in which two VMs in the same state compete with each other in order to transit to a
new state and (ii) dependence between the VM subsystem and SAN. The second dependence
captured by the immediate transitions tymupor tvmtos tvmdnor tvmpor tvmato @Nd tymrejo iN the VM
model, and tymciocko tvmpolicyo @Nd tymiriggero IN the VM clock model. As the SAN fails (depicted
by a token in Psang), these transitions are fired to remove tokens in the VM model and VM
clock model, regardless of their locations representing the loss of VM images on SAN and VM
clock functionalities. Nevertheless, as soon as the SAN is recovered, two VMs are immediatel’
created on the SAN, and they are booted onto a VMM of a corresponding host. The creation o'
multiple VMs is captured by tymsiop Whereas the booting of a VM in the sequence is capturec
by TymbootWith marking-dependence. The VM clock is also started after the recovery of a SAN,
as captured by PypciockstopNd two immediate transitions  tymciockstop?Nd tymciockstart

3.3. Availability analysis scenarios and results

We implemented the SRN models in the Stochastic Petri Net Package (SPNP) [26]. Inpt
parameters are selected based on previous work [20, 27], as shown ifable 1.

Input  Description Transitions Value Input Description Transitions Value

hr Host repair Tuir Thor 3 days hi Host fail Thar, Thot 1 years

wmmi VMM non-aging  Tummat, Tvmmzs 2654 hours ¢ VM non-aging Tyumif, Tvmzt 2893 hours
failure failure

vmmr VMM reset TvMM1reses 1 min vmr VM repair Tum1repain 30 min

TVMMZreset TVMZrepair
vmmr VMM repair TVMerepain 100 min vmr VM restart TVereset 50s
TVMMZrepair TVMZreset

vmmp VMM failure- Tummirps Tvmmeztp 2 months vmip VM failure-probable  Tymimp, Tumzp 1 month
probable

vmmat VMM aging- Tummian Tvmmzar 2 weeks vmaf VM aging failure Tumian Tvmzar 1 week
failure

vmmar VMM aging TVMMlarvTVMMZar 120 min vmar VM aging recovery TVMlan TVM2ar 120 min
recovery

vmm VMM clock TVMMchockinterval 1 week vm VM clock interval TVMchockintervai 3.5 dayS
interval TVMMchockintervaI TVMZClockintervaI

vmmrej VMM TVMerejv TVMerej 2 min vmrej VM rejuvenation TVerejx TVMZrej 1 min
rejuvenation

Sf SAN fail Tsant 1year vmb VM booting after TyvM1boos 50s

sr SAN repair TsaNrepair 3 days VMM rejuvenation TvM2boot

CvmMm Cvmm -Stage X 10 Cvm cym-Stage Erlang X 10

Erlang distribution
distribution

Table 1. Input parameters of SRN models.
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Cases Description SSA of VMM  SSA of VM
| Rejuvenation is applied on all VMM and VM subsystems in both hosts. 0.999912470996 0.991769547¢

Il Rejuvenation is not applied only on one of VMM subsystems in two hosts but  0.999908948744 0.991766082(
applied on both VM subsystems in two hosts.

111 Rejuvenation is applied on both VMM subsystems in two hosts but not 0.999912470996 0.991770317.
applied to only one of two VM subsystems.

\% Rejuvenation is not applied on haft side of the system including VMM1 and 0.999908948744 0.991766912i
VM1 subsystems but applied on VMM2 and VM2 subsystems.

\Y Rejuvenation is not applied on both VMM subsystems in two hosts but 0.999905284754 0.991763344!
applied on both VM subsystems.

VI Rejuvenation is applied on both VMM subsystems in two hosts, but not 0.999912470996 0.991771080:
applied on both VM subsystems.

\i Rejuvenation is not applied on VMM and VM subsystems in both hosts. 0.999905284754 0.991764199¢

Table 2. Analysis scenarios of VSS and SSAs of VMM and VM subsystems.

» Steady-state availability/e conducted numerical experiments in seven case studies witt
regard to different rejuvenation combinations. The case studies are described along witt
analysis results of SSA of VMM and SSA of VM in Table 2. The reward functions used to
compute SSAs are defined as

g 100 #Pummup P #PRummarp P #PRumm2up P #PRuvm2rp > 0
SSA/Mm Ya
" 0: otherwise
o (11)
< 1:if #Pump b #Rmip P #PRmoup b #Rumzrp > 0
SSAm Ya
" 0: otherwise

where #Py is the number of token in place Pyx. The results show that the following:

i.  Time-based rejuvenation techniques with default parameters, when implemented on
both VMM and VM subsystems in combination does not gain the highest SSA for the
virtualized system. When a VMM undergoes a rejuvenation process, it pulls down all
VMs running on top of the VMM,;

ii.  Rejuvenation on VMM exposes more effectiveness in gaining higher SSA in comparisol
to the VM.

iii. An appropriate rejuvenation combination implemented on either a VMM or VM with
proper clock intervals can actually enhance system availability.

»  Sensitivity analysis of SSAThe sensitivity analysis is observed in five case studies w.r.t the
variation of: (i) only VMML clock ’s interval; (ii) only VM1 clock ’s interval; (iii) both VMM1
and VMM2 clocks’ interval; (iv) both VM1 and VM2 clocks ’ interval; and (v) all clock
intervals with the same duration, as shown in Figure 4. The findings are as follows:
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Figure 4. Sensitivity analysis of SSA of VMM and VM subsystems: (a) SSA of VM with respect to VMM clocks’ intervals,

(b) SSA of VM with respect to VM clocks’ intervals, (¢) SSA of VMM with respect to VMM clocks ’ intervals, and (d) SSA of
VMM with respect to VM clocks ’ intervals.

I. Figure 4(a) and (b) shows that rejuvenation processes on VMM reduce SSA of th
VM, but those on VM can improve. A proper combination of rejuvenation processes
on the VMM and VM can yield an efficient impact for maintaining high values of
SSA of VM.

ii.  Figure 4(c) and (d) shows that there is no dependence of a VMM on its VM incorpo-
rated in the modeling of the proposed VSS yet. Also, rejuvenation implemented on
both VMM subsystems of both hosts obviously gains higher SSA of VMM than it
would if implemented on only one of the VMM subsystems.

4. Case study Il: a DCell-based data center network

4.1. A typical DCN architecture

In this section, the DCell in consideration is expanded in size up to a network of virtualized

servers complying a DCell topology. A DCell [28] is recursively constructed based on the most
basic elementDCelly as follows:

i A DCelly consists ofn physical servers connected to ann-port switch.
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ii. A DCell, is composed ofn + 1 DCelps. Each server of aDCell, in a DCell; has two links.
One connects to its switch, the other connects to the corresponding server in anothe
DCellp, complying with a predetermined DCell routing algorithm. Consequently, every
pair of DCellps in a DCell; has an exact unique link between each other.

iii. A DCellis a levelk of DCell_;.

To apply the proposed modeling approach using SRN, we focus on studying a special case o
DCell-based DCN at level 1 (DCelly). Particularly, a cell DCell, consists of two physical servers
and one shared switch. DCell; is composed of threeDCellgs, as shown in Figure 5. We assume
that each server has two NICs, one for connecting to the switch in the same cell, and the othe
for direct connection between the server in a cell and the corresponding server in another cell
which complies with DCell network routing topology. The system architecture is detailed as
follows: (i) DCelly[0] consists of switch SO two hosts HOO and HO1, a number of VMs (ngg of
VMOO and ng; of VMO01) on the hosts HOO and HO1, respectively; (ii) the description of other
cells goes in the same manner.

4.2. Proposed SRN model

The SRN system model of the DCell-based DCN is presented inFigure 6. To simplify the
modeling and to focus on sophisticated interactions between VMs and servers in a cell and in
different cells of the network, we use two-state SRN models (consisting of UP and DOWN
states) for physical parts of the system, including hosts and switches, as shown inFigure 6(a)—(j).
Initially, there is a token in the UP state for each model of a certain physical part, which is

Figure 5. An architecture of a DCell-based data center network.
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Figure 6. SRN system model of a DCell-based data center network.

depicted by a black dot which represents the initial normal working state of the physical hosts

and switches. Contrary to the presented case-study of VSS in Section 3, we do not take int
account the modeling of the VMM subsystem. Instead, we combine host and VMM in a unique

model by considering the mean time to failure equivalent (MTTFeq) and mean time to repair
equivalent (MTTReq) of the VMM subsystem as input parameters in the two-state models of
hosts. Also, we simplify the modeling of the VM subsystem by using only two-state SRN models

as shown in Figure 6(g) (VM subsystem model). There is an initial number of VMs on each host
in a general case as represented by tokens in UP states. Specifically, there argy of VMs in
Pymooup: @nd N1 of VMs in Pypo14p i cell DCel[0]. In DCell[1], the numbers of VMs initially

running in a normal state on each host are n,o of VM10, and n,; of VM11, which are hosted on
H10 and H11, respectively. Those numbers inDCelly[2] are n,g of VM20 and n,, of VM21. Unlike
the SRN model of a single unit of VSS inFigure 3, we capture in the SRN system model the VM
live migration techniques within a cell and between different cells for the sake of fault tolerance
and improvement of system availability.
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The VM migration is implemented between two hosts in a cell when a host in the cell experi-
ences downtime due to a certain failure. In cell DCelly[0] for instance, the VM live migration is

triggered to migrate all running VMs from the host HOO to the host HO1 immediately when the
host HOO fails (represented by a token in Pyooqr). The immediate transition tygosis triggered to
remove all tokens in Pyygoup @and deposit them in Pypmoimig- As the timed transition Tymoimig IS
fired, the tokens in Pypmoimig are removed and deposited in Pyyo1p, representing the comple-
tion of VM live migration processes from HOO to HO1. If host HO1 fails (i.e., a token is placed ir
PHo1dn), the VM live migration is performed from HO1to HOO and is captured by the immediate
transition tyo1¢ (to trigger VM live migration processes), the place Pymoomig (the state of a VM in
migration), and the timed transition Tymoomig (t0 represent the migration processes that take
time to complete). The description of VM live migration within a cell occurs in the same

manner for other cells DCellp[1] and DCelly[2].

In the case of a failed switch in a cell, VM live migration is performed between two hosts in
two different cells via a peer-to-peer connection. For instance, if switch SOfails, the connections
between the two hosts HOO and HO1 in cell DCellp[0] and the two host connections to outside
users are disrupted. However, the number of VMO0 and VMOL1 are still running on hosts HOO
and HO1, respectively. It is necessary to migrate these VMs to other cells in order to enhance th
overall availability of the system. The VM migration processes from cell DCelly[0] to the other
two cells are triggered by the two immediate transitions tyyo1m (to migrate VMs from DCellp[0]
to DCellg[1]) and tymozm (to migrate VMs from DCellg[0] to DCellg[2]). After that, the tokens in
Pymooup @re removed and deposited in Pypmoim and are then deposited in Pypioup in cell
DCellp[1] as Tymoim is fired. The transition of tokens Pyygoup in DCell[0] to Pymioup in cell
DCelly[1] captures the migration of VM on host HOO after a failure of switch SO between the
two different cells. On the other side, the tokens in Pymo1up are removed and deposited in
Pymozm and are then deposited in Pymzoyp in cell DCellp[2]. This represents the migrations of
VMs on host HO1 after the failure of switch SOfrom cell DCelly[0] to cell DCellp[2].

Without loss of generality, the VM live migration techniques within a cell and between two
cells are described in detail as above for cellDCelly[0]. These migrations apply similarly to the
other cells DCellp[1] and DCelly[2].

4.3. Availability evaluation

The proposed SRN models are all implemented in SPNP. The default input parameters are listec
in Table 3. To reduce the complexity of model analysis, we initiate only one VM on each host HOO

Input Description Values Input  Description Values
H Host failure rate 800 hours 4 Host repair rate 9.8 hours
vm VM failure rate 4 months VM VM repair rate 30 min
s Switch failure rate 1 year s Switch repair rate 24 hours
mig  Network bandwidth withina DCell, 1 GB/s m Network bandwidth between two DCell os 256 Mb/s
Sum VM image size 10GB Noo» Nor  No. Of initial VMs in  Dcelp[0] 1

Table 3. Default input parameters for SRN system model of a DCN.
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and HO1 in cell DCell[0] in the default case, and there are no other VMs in the other cells
However, we also evaluate the impact of the number of VMs in the DCN on the overall system
availability. In this case-study, we consider two different evaluation scenarios: (I) a standalone
DCellO (with two hosts and one switch), and (ll) the proposed three-cell DCN (as modeled
above). The reward rates used to compute SSA of the two cases are defined as follows:

8
< 1:if #Pumooup P #Pumowp > 0 && #Pspyp ¥aval
A| 1/4 )
0 : otherwise

S 11if #Pumoon b #Ronp > 0 && #Peup Yl

% (12)
kK #Rmioup b #Pumiwp > 0 && #Psyyp Ya¥al

An Va

% K #Rmoap b #Ruowp > O && #Pouyp Yl

0 : otherwise

»  Steady-state availability:

*  We first evaluate SSA and downtime of the two scenarios as shown in Table 4. We
assume that a minute of system downtime incurs a penalty of 16,000 USD for the
system owner according to the SLA signedwith customers [29]. The results clearly
show that the proposed three-cell DCN obtains much higher availability, and thus
reduce downtime minutes and downtime cost penalty in a year than a standalone cell
with only two physical servers.

*  We also evaluate the impact of the initial number of VMs in a DCN on the system’s
overall availability, as shown in Table 5. The results show that as we increase th
initial number of VMs, the overall system availability also increases. The increasec
SSA in the proposed three-cell DCN is also faster than in the standaloneDCell,.
However, if the initial number of VMs (represented by the total number of tokens in
the proposed SRN system model) obtains a large value, it causes anemory errofin
computing the system availability due to the largeness problem of the SRN model.

»  Sensitivity analysis of SSAVMe observe the variation of SSA in accordance with changes il
the selected input parameters, including MTTF and MTTR of hosts, VMs and switches,
and VM migration rate between two hosts in a cell or in two different cells, as shown in
Figure 7. The results show that:

Case Description SSA No. of nines Downtime (min/year) Downtime cost (USD/year)
| Standalone DCelly 0.997240422469 2.55 1450.4 23,206,943
Il Proposed three-cell DCN  0.999950276761 4.30 26.1 418,152

Table 4. Steady-state availability and downtime cost.
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Num [ I

SSA #nines SSA #nines
1 0.997064755072 2.532356 0.999773875854 3.t
2 0.997240422469 2.559157 0.999950276761 4.
3 0.997240488479 2.559168 0.999950574780 4
4 0.997240519634 2.559173 0.999950839446 4.
5 0.997240550678 2.559178 0.999951101800 4
6 0.997240759564 2.559210 m.e m.e

(m.e: memory error)

Table 5. Impact of number of VMs.

Figure 7. Sensitivity analysis with respect to impacting parameters. (a) MTTF, (b) MTTR, (c) VM migration rate.

» SSAisimproved as we increase MTTFs and VM migration rates, and as we decreas
MTTRs.

* In Figure 7(a), we see that the switch is an important component of the network
because its MTTF is small. Thus, the SSA clearly drops down vertically in comparison
to the MTTFs of other components. Furthermore, MTTF of a host is a significani
parameter in the long-run since it causes a better enhancement in the overall avail
ability than the other MTTFs.

* In Figure 7(b), we clearly find that the repair time of a switch does not affect the SSA
because we perform VM migration between cells to tolerate the failures of switches.
This ensures that VMs can be migrated to other cells, regardless of the failure/recov
ery of a certain switch. However, we can see that the recovery of a VM has a greate
impact on SSA than that of a host.

* In Figure 7(c), the migration rates of VMs between cells can clearly enhance SSA i
comparison with those within a cell. However, the low value of the VM migration
rate within a cell severely drops the system’s availability.
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5. Case study lll: a Disaster Tolerant Data Center (DTDC)

5.1. A typical system architecture of a DTDC

This case-study considers disaster tolerance of cloud computing in a DCS. The system is con
posed of two different DCs (DC1 and DC2), which are geographically located in two distant

regions, as shown inFigure 8. In each DC, we place a VSS of two physical servers (H1 and H2 it
DC1, and H3 and H4 in DC2). All physical machines are assumed to be identical. Each server i
initially capable of running a VM (VM1~VM4 runs on H1~H4, respectively). Shared network

attached storage (NAS) is equipped in each DC to provide distributed storage and a VM migra-
tion mechanism between two hosts in the same DC. To implement disaster tolerance and recov
ery strategies between DCs, a back-up server is incorporated to provide VM data backup. The
back-up server allows periodic synchronization of VM data between DCs. This allows the most-
updated VM data to be recovered onto an operational DC after a disaster strikes on another DC.

Furthermore, to enhance the systems overall availability, we use the (active-standby) fail-over
technique and VM switching mechanism. Specifically, when a VM on a certain host fails, a
standby VM on the same host wakes up and takes over the operations of the failed VM. If there
is no standby VM on the same host, the standby VM on the remaining host goes up and takes
place on the failed host.

If a host in a DC fails, its VMs in the standby state are switched on in order to load onto the
remaining host. Various VM migration mechanisms are also taken into account in this system.
VM live-migration is performed between two hosts in a DC when one of the hosts fails. VM

migration between two DCs is triggered when a DC undergoes a system failure when two
hosts enter a downtime period simultaneously. When a disaster devastates a DC, VM migra-
tion between the back-up server (in a safe zone) and the remaining operational DC is
implemented as a means of disaster recovery.

5.2. Availability modeling of a DTDC

The SRN system model for availability quantification of the studied DTDC is shown in  Figure 9.
We use simplified two-state SRN models (UP and DOWN) to capture general failure and recovery
behaviors of physical parts in the system, including the physical hosts H1-H4 (Figure 9(a), (b), (j),

Figure 8. A conceptual architecture of a disaster tolerant data center system.
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Figure 9. SRN system model of a disaster tolerant data center.

and (i), respectively), NAS1 in DC1, and NAS2 in DC2 (Figure 9(c) and (h), respectively). We use
immediate transitions tyype tHdowno INAsupo @Nd tyasdownotO remove tokens in the up and down
places of the host and NAS models in order to represent the entire operational termination ofaDC
when a disaster strikes. When the disaster passes and the reconstructed DC starts a new oper
tional cycle, the immediate transitions typin and tyasupin @re used to deposit new tokens in the up
states of the host and NAS models. The occurrence of a disaster at a site is also represented
using a two-state model as shown in Figure 9(d) and (g) for the occurrence of a disaster at DC:
and DC2, respectively. The two-state SRN model in Figure 9(f) captures the operational and
failure states of the back-up server.

The modeling of VM subsystems in DC1 and DC2 are shown in Figure 9(e) and (k), respec:
tively. Since we initially assume that all hosts and VMs are identical, the modeling of the two
DCs is also identical. The model initializes N tokens in Pymiup, and the other N tokens in
Pumastd represent N operational VMs with their N standby VMs at the beginning. Each VM
sub-model mainly has four states, including the operational state (Pymyp), failure state (Pymsai),
standby state (Pymsa), and synchronization state (Pymsynd- If @ VM fails, it moves from the
upstate Py, to the failure state Pyurai. When the failed VM is repaired, it moves to the
standby state Pyusig- At this point, the active-standby fail-over mechanism of VMs is captured
as follows. When a VM fails, a standby VM (represented by a token in Pystg) On the same hos
(before the disaster) or on the remaining host (after the disaster) transits toPyysync in order to
synchronize the most-updated data on the NAS of that DC corresponding to the previously
failed VM. It then goes up to Py, and takes the place of the failed VM. Dependence marks
are placed near timed transitions Tymti and Tymrepair 1O represent the competition between
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failure and repair of VMs on the same host. The VM live-migration technique is triggered as a
host fails, which is captured by an immediate transition tyum, a place Pymsm, and a timed
transition Tymmigrate FOr instance, when host H1 fails, the VM live-migration is triggered to

migrate running VMs from the failed H1 to the running H2. Thus, tymmai2iS triggered to fire. A

number of tokens in Pyu1,p are removed and deposited at Pyusimizas it waits for migration.

The timed transition Tymzmigrate IS then fired to depict the migration process of VMs onto host
H2. The tokens in Pyyvsimi2are removed and deposited in Pyyzyp. The reversed migration from
host H2 to H1 is captured by tymmz1, Pumsimiz and Tymimigratein the same manner. The place:
Pymsimand Pyusom represent the storage of VMs on NAS1 and NAS2. When the two hosts in a
DC enter downtime, all tokens in the VM sub-models of VM1 and VM2 are removed by

immediate transitions tymupo: tvmrailor tvmstdo @Nd tymsynco (attached to four main states of VM
sub-models) and deposited in Pyys1im Via tymsimin. HOWever, if a disaster strikes, the all tokens
are removed from the places in the VM sub-models via the out-going immediate transitions
tyMupor tmfailor tvmstdo tvMsynco tvmsmo @Nd tymsmo AS the failed data center is reconstructed, &
pre-defined number of VMs are created on the NAS, which is captured by depositing tokens in

Pymsm Via tymsmine The VMs are then assigned to hosts via the time transition Typsmin-

The VM migration techniques between the two DCs, and between the backup server and the
two DCs, are modeled in Figure 9(I). The placePy g represents the storage of VMs in the back:
up server. When a DC is destroyed due to a disaster, its VMs are stored in the back-up serve
and represented by creating new tokens inPy,g via the timed transition Tyygin. When there is
a remaining DC in its operational state, the tokens in Pyyg are transmitted to the
corresponding Pymsmig Via the timed transition Tymspre The tokens are then deposited in
Pvmsm Via the timed transition Tyusm Of the respective DC model with an imperfect coverage
factor Cgpmg If this process fails with coverage factor (1-Cgnmig), the tokens are moved to Pypsome
via Tymsms @and returned to Pyyg Via Tymsmiree ThiS transition of tokens captures the VM
migration from the back-up server to the operational DC. In the case when the back-up server
fails, the immediate transitions tymgo, tymsmigo and tymsmioremove all tokens in Pyyg, Pymsmigs
and Pyusme to represent the loss of VM image files on the back-up server. The VMs will be
created on the back-up server as soon as it is recovered. The VM migration between two DCs i
triggered when two hosts in a DC enter downtime simultaneously. In this case, we propose the
two hosts H1 and H2 in DC1 also stay in a downtime period simultaneously. A number of
VMs on DCL1 are still stored in NAS1, represented by tokens in Pyysim Thus, it is necessary tc
migrate these VMs onto the running DC2. The tokens are then transmitted to Pypmsiomigafter a
pre-migration process (Tymsizprd- The VM migration process is finalized with an imperfect
coverage factor Cyg as the transition Tymsiomig is fired. If this migration process fails with
coverage factor (1Cy,g), the tokens are moved to Pyusiomigio @and returned to NAS1 in the
original DC1 via Tymsi2migree The VM migration from DC2 to DC1 is performed similarly and
captured by the places Pyms2imig Pyms2imigs the timed transition Tymszipre Tvms21imig (With
imperfect coverage factor Cyig), Tvms21migr(With coverage factor 1-Cpig), and Tymszimigree

5.3. Avalilability evaluation

The SRN system model is implemented in SPNP. Default input parameter values are shown in
Table 6. We assume that the number of VMs on a host is only one in order to reduce
complexity in model computation and analysis.
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Input Description Assigned transitions Values
Hf Host failure rate Thit Thzt Thah That 800 hours
Hr Host recovery rate Th1n Thor THan THar 9.8 hours
NAS NAS failure rate Tnasih Tnaszs 45 years
NAST NAS recovery rate Trnasin TNAS2E 4 hours
pcoccur  TiMe to disaster occurrence at a DC Tbcioccur ToC2occur 100 years
per DC recovery rate after a disaster Tocin Tocar 1year
Bf Backup DC failure rate Tef 50,000 hours
Br Backup DC recovery rate Ter 30 min
VMfail VM failure rate Tumataits Tvmzfaits Tvmstails Tvmafail 4 months
vMrepair VM repair rate Tumirepais TvMzrepais TvM3repais 30 min
TVM4repair
VMsync VM synchronization rate Tumisyne Tvmzsyne TvMasyne Tvmasync D MiNn
vMmigrate VM migration rate between hosts Tumimigrate TvM2migrate TvM3migrate 5s
TVM4migrate
VMSmin VM loading rate into a host Tymsiminy Tvmsiminz Tvms2ming, ls
Tyms2mina
VMSpre VM pre-migration rate between DCs and backup server Tymsizpre Tvms2ipre TvMsipre 5 min
TVMSZpre
vmsmigrec VM return rate to NAS after a migration failure Tumsizmigres TvMS21migrec 1 min
vmsmisyne VM synchronization rate with backup DC after a Tymsimisyne TvMS2misync 1 min
migration failure
Camig Imperfect factor of VM migration from backup DC 0.95
Cinig Imperfect factor of VM migration between DCs 0.85
N Number of VMs in a host 1
Sum Size of VM image and related data 4GB
NET Network speed 20 MB/s

Table 6. Default input parameters.

o Steady state availabilityVe evaluate the availability of the DTDC in seven operational
scenarios by varying imperfect VM migration coverage factors between the backup servel
and the DCs and disaster occurrence frequency as follows: (I) The system of tw
standalone DCs without DT confronts disasters at the mean time to occurrence of 100 year
(default value); (II) The system with default parameters; (111-V) The network connection
has a high probability of failure (i.e., low probability of success in VM migration pro-
cesses) and the system is planted in an area with mean disaster time set alternatively t
100, 200, and 300 years; (VI-VIII) In contrast to cases (Il1)-(V), the migration betwee
distant parts may succeed with high probability and the DCs location experiences disas-
ters with mean time to occurrence also set to 100, 200, and 300 years. The results of S
and downtime evaluation are shown in Table 7 such that following criteria are satisfied:
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Case Gamig Cmig DCoccur  SSA No. of nines Downtime (min/year) Downtime cost (USD/year)
| X X 100 years 0.989455392105 1.98 5542.2 8,675,934.6

1 0.95 0.85 100years 0.999843164703 3.80 82.4 1,318,922.1

1l 0.1 0.1 100 years 0.998942162067 2.98 556.0 8,895,993.9

\% 0.1 0.1 200 years 0.999635096345 3.44 191.8 3,068,693.8

\% 0.1 0.1 300 years 0.999795681447 3.69 107.4 1,718,237.3

Vi 0.9 0.9 100 years 0.999841085616 3.80 83.5 1,336,406.4

VI 0.9 0.9 200 years 0.999946639371 4.27 28.0 448,741.5

Vil 0.9 0.9 300 years 0.999968676113 4.50 16.5 263,421.4

Table 7. SSA and downtime analyses.

* The safer DCs locations (longer frequency of disaster occurrence) results in a highe
system SSA.

 DCs should be placed in isolated areas to avoid any severe damage from disastrou:
events, even though the network connection between distant parts of the systernr
might deal with more failure during VM migration processes.

* Higher SSA values are obtained with more reliable network connections, i.e. for
network connections that can guarantee a higher success rate for transmissio
between distant parts of the system.

Sensitivity analysisAs shown in Figure 10, we analyzed the sensitivity of the system’s SSA
with respect to different parameters, including imperfect coverage factors of VM migra-
tion (Cgmig and Cpig), time to disaster occurrences ( pcoccw, VM image size (Sym), and
network bandwidth ( net). The impact of Sy and  ngr is shown in Figure 10(f). The

Figure 10. Sensitivity analysis of a DTDC steady state availability: (a) Cgmig, (0) Ciig: (€) bcoceur (d) Sum, (€) nem (F)
NET, S\/M-
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results show that: (i) the disaster tolerance solution with a back-up center would improve
SSA, even when connections between the back-up center with DCs incur imperfections ir
VM migration processes; (ii) imperfections in the VM migration processes between DCs
slightly impact SSA when it increases; (iii) the system’'s SSA is improved vastly if DCs are
located in safe areas with lower disaster occurrence frequency; (iv) larger VMs can reduc
the overall availability of the system; (v) a faster network connection between distant
locations can actually boost the systenis availability, especially for network speeds rang-
ing in 0-20 Mb/s, if the speed increases much higher, the effect is not much different frorr
the default parameters; (vi) the variation of both ( net, Sym) confirms the fact that higher
network speed and smaller VM sizes result in apparently higher SSA, whereas slowetl
network and larger VMs severely reduce the system’s availability.

6. Conclusion(s)

This chapter presented a set of availability models based on stochastic reward net for compre
hensive system availability evaluation in data center systems. The data center systems sca
during evaluation was increased from a system of two virtualized servers (considered as a unit
block in data centers) in Section 3, to a typical network of virtualized servers complying with a

DCell topology in Section 4. Finally, the evaluated data centers are scaled up to a two-site dat:
center for disaster tolerance with a back-up center. A variety of fault and disaster tolerant
techniques were incorporated in the systems in order to achieve high availability. The systems
were evaluated under various case studies with regards to different metrics of interest, includ-
ing steady state availability and its sensitivity with respect to a number of impac factors. The
analysis results show comprehensive system behaviors and improved availability in accor-
dance with incorporated techniques in the data center systems.
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