We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,400
Open access books available

118,000
International authors and editors

130M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter 8

High-Pressure High-Temperature (HPHT) Synthesis of Functional Materials

Wallace Matizamhuka

Abstract

High-pressure techniques have been used extensively in effecting phase changes in materials science for decades. The use of high-pressure high temperature enables changes in material atomic arrangement or structure which in turn brings about changes in functional properties such as magnetism, optical, electrical and thermal conductivity. High-pressure technology is highly specialised and requires understanding to fully utilise its potential as a tool for the development of new and novel functional materials with improved properties. This chapter explores the various high-pressure technologies available and how they have been utilised to obtain a wide range of functional ceramic materials for a wide range of applications.

Keywords: high-pressure high-temperature sintering, functional materials, high-pressure synthesis, phase transition

1. Introduction

The discovery of novel properties and quantum states at high pressure has led to a number of new functional material categories. Pressure has long been recognised as a fundamental thermodynamic variable which can be used to manipulate electronic, magnetic, structural and vibrational properties of materials for a wide range of applications. High pressure effectively decreases the atomic volume and increases the electronic density of reactants which results in unusual and interesting properties. There are two basic approaches evident to high-pressure synthesis which involves structural transformation on the one hand and formation of new chemical bonds on the other. Particularly noticeable discoveries in high-pressure physics include metallisation of hydrogen, quantum criticality, high T_c superconductors, polymorphism and exotic metals [1].
High-Pressure High-Temperature (HPHT) Synthesis of Functional Materials

http://dx.doi.org/10.5772/intechopen.72453

[40] Zou P, Xu G, Wang S, Chen P, Huang F. Effect of high pressure sintering and annealing on microstructure and thermoelectric properties of nanocrystalline Bi_{2}Te_{2.7}Se_{0.3} doped with Gd. Progress in Natural Science: Materials International. Jun 30, 2014;24(3):210-217. DOI: 10.1016/j.pnsc.2014.05.009

