We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,200 Open access books available
116,000 International authors and editors
125M Downloads

154 Countries delivered to
TOP 1% Our authors are among the most cited scientists
12.2% Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
1. Cognitive and computational neuroscience: principles, algorithms, and applications

The term “computational neuroscience” was introduced by Schwartz [1] through the organization of a conference in California in 1985. Cognitive and computational neuroscience evaluates the different brain functions (e.g., attention, emotion, perception, learning, consciousness, anesthesia, cognition, and memory) in terms of the information processing procedure of the brain [2]. This topic is an interdisciplinary issue that links the diverse backgrounds of neuroscience, cognitive science, psychology, mathematics, biomedical engineering, computer science, robotics, and physics. Therefore, the main idea of this book is to present a general framework for the researchers from diverse fields.

2. Related works

Cognitive and computational neuroscience has many medical and engineering applications such as rehabilitation [3], psychology and psychiatric disorders (e.g., depression, chronic addiction, post-traumatic stress disorder, dementia, attention deficit hyperactivity disorder, and autism) [4], brain-computer interface [3, 5], human-computer interaction [6], neurofeedback [7, 8], marketing [9], robotic [10], and decision-making [11]. Research in cognitive and computational neuroscience is categorized into four main topics, including experimental neuroscience (e.g., electrophysiology, neuron, synapse, synaptic plasticity, memory, conditioning, learning, consciousness, vision, neuroimaging), theoretical neuroscience (e.g., models of neurons, single-neuron modeling, spiking networks, network dynamics, behaviors of the brain networks, mathematical models of the brain activity, sensory processing, connectivity analysis), dynamical systems (e.g., synchronization, oscillators, pattern formation, chaos),
and computational intelligence (e.g., neural networks, graph theory, reinforcement learning, pattern recognition, evolutionary computation, information theory, statistics, and signal processing).

Suitable brain signals and images are usually used according to invasive or non-invasive acquisition techniques. Therefore, non-invasive techniques, such as electroencephalography (EEG) [12, 13], event-related potentials (ERPs) [14, 15], magnetoencephalography (MEG) [3, 16], functional magnetic resonance imaging (fMRI) [17], positron emission tomography (PET) [18], transcranial direct current stimulation (tDCS) [19], and transcranial magnetic stimulation (TMS) [20], are generally preferred.

This section presents a detailed discussion of previous related works on different methods based on epilepsy and seizure detection along with different machine-learning approaches. In one study, Hosseini et al. [21] proposed a qualitative and quantitative analysis of EEG signals for epileptic seizure recognition. Hosseini et al. [22] proposed an approach for seizure and epilepsy recognition using chaos analysis of EEG signals. Hosseini [23] proposed a hybrid method based on higher order spectra (HOS) for recognition of seizure and epilepsy using EEG and electrocorticography (ECOG) signals.

Several studies have been proposed for the presentation of functional models, conceptual models, bio-inspired frameworks, signal processing approaches, image processing approaches, and electrophysiology studies based on cognitive processes, including emotion, stress, and attention. In one study, Hosseini et al. [24, 25] proposed a labeling approach of EEG signals in emotional stress state using self-assessment and psychophysiological signals. Hosseini [26] and Hosseini et al. [27–29] presented an HOS approach for emotional stress detection using EEG signals. Hosseini et al. [30, 31] designed an emotion recognition system using entropy analysis of EEG signals. Hosseini et al. [32] proposed an improved model of the behavioral calcium channels in the hippocampus CA1 cells during stress.


This chapter attempts to introduce the different approaches, principles, applications, and theories in cognitive and computational neuroscience, from a historical development, focusing particularly on the recent development of the field and its specialization within psychology, computational neuroscience, and engineering.
Author details

Seyyed Abed Hosseini

Address all correspondence to: hosseyni@mshdiau.ac.ir

Research Center of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran

References


[12] Hosseini SA, Quantification of EEG signals for evaluation of emotional stress level [MSc thesis]. Biomedical Department, Faculty of Engineering, Islamic Azad University Mashhad Branch; 2009


[29] Hosseini SA, Khalilzadeh MA. Qualitative and quantitative evaluation of EEG signals in emotional state with through higher order spectra, In: 3rd Iranian Congress on Fuzzy and Intelligent Systems. Yazd: Intelligent Systems Scientific Society of Iran; 2009


[39] Hosseini SA. A computationally inspired model of brain activity in selective attentional state and its application for estimating the depth of anesthesia [PhD thesis]. Electrical Department, Faculty of Engineering, Ferdowsi University of Mashhad; 2016