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1. Introduction    
 

Methods and approaches in systems engineering are often based on the results of empirical 
observations or on individual success stories. Every real-world embedded system design 
stems from decisions based on an application domain knowledge that includes facts about 
some previous design practice. Evidently, such decisions relate to system architecture 
components, called in this paper as application patterns, which determine not only a 
required system behavior but also some presupposed implementation principles. 
Application patterns should respect those particular solutions that were successful in 
previous relevant design cases. While focused on the system architecture range that covers 
more than software components, the application patterns look in many features like well-
known software object-oriented design concepts such as reusable patterns (Coad and 
Yourdon, 1990), design patterns (Gamma et al., 1995), and frameworks (Johnson, 1997). By 
the way, there are also other related concepts such as use cases (Jacobson, 1992), 
architectural styles (Shaw and Garlan, 1996), or templates (Turner, 1997), which could be 
utilized for the purpose of this paper instead of introducing a novel notion. Nevertheless, 
application patterns can structure behavioral specifications and, concurrently, they can 
support architectural components specification reuse. 
Nowadays, industrial scale reusability frequently requires a knowledge-based support. 
Case-based reasoning (see e.g. Kolodner, 1993) can provide such a support. The method 
differs from other rather traditional procedures of Artificial Intelligence relying on case 
history: for a new problem, it strives for a similar old solution saved in a case library. Any 
case library serves as a knowledge base of a case-based reasoning system. The system 
acquires knowledge from old cases while learning can be achieved accumulating new cases. 
Solving a new case, the most similar old case is retrieved from the case library. The 
suggested solution of a new case is generated in conformity with the retrieved old case. This 
book chapter proposes not only how to represent a system’s formal specification as an 
application pattern structure of specification fragments, but also how to measure similarity 
of formal specifications for retrieval. In this chapter, case-based reasoning support to reuse 
is focused on specifications by finite-state and timed automata, or by state and timed-state 
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sequences. The same principles can be applied for specifications by temporal and real-time 
logics.  
The following sections of this chapter introduce the principles of design reuse applied by the 
way of application patterns. Then, employing application patterns fitting a class of real-time 
embedded systems, the kernel of this contribution presents two design projects: petrol 
pumping station dispenser controller and multiple lift control system. Via identification of 
the identical or similar application patterns in both design cases, this contribution proves the 
possibility to reuse substantial parts of formal specifications in a relevant sub-domain of 
embedded systems. The last part of the paper deals with knowledge-based support for this 
reuse process applying case-based reasoning paradigm.  
The contribution provides principles of case-based reasoning support to reuse in frame of 
formal specification-based system design aiming at industrial applications domain. This 
book chapter stems from the paper (Sveda, Vrba and Rysavy, 2007) modified and extended 
by deploying temporal logic formulas for specifications. 

 
2. State of the Art 
 

To reuse an application pattern, whose implementation usually consists both of software 
and hardware components, it means to reuse its formal specification, development of which 
is very expensive and, consequently, worthwhile for reuse. This paper is aimed at 
behavioral specifications employing state or timed-state sequences, which correspond to 
Kripke style semantics of linear, discrete time temporal or real-time logics, and at their 
closed-form descriptions by finite-state or timed automata (Alur and Henzinger, 1992). 
Geppert and Roessler (2001) present a reuse-driven SDL design methodology that appears 
closely related approach to the problem discussed in this contribution. 
Software design reuse belongs to highly published topics for almost 20 years, see namely 
Frakes and Kang (2005), but also Arora and Kulkarni (1998), Sutcliffe and Maiden (1998), 
Mili et al. (1997), Holzblatt et al. (1997), and Henninger (1997). Namely the state-dependent 
specification-based approach discussed by Zaremski et. al. (1997) and by van Lamsweerde 
and Wilmet (1998) inspired the application patterns handling presented in the current 
paper. To relate application patterns to the previously mentioned software oriented 
concepts more definitely, the inherited characteristics of the archetypal terminology, 
omitting namely their exclusive software orientation, can be restated as follows. A pattern 
describes a problem to be solved, a solution, and the context in which that solution works. 
Patterns are supposed to describe recurring solutions that have stood the test of time. 
Design patterns are the micro-architectural elements of frameworks. A framework -- which 
represents a generic application that allows creating different applications from an 
application sub-domain -- is an integrated set of patterns that can be reused. While each 
pattern describes a decision point in the development of an application, a pattern language 
is the organized collection of patterns for a particular application domain, and becomes an 
auxiliary method that guides the development process, see the pioneer work by Alexander 
(1977). 
Application patterns correspond not only to design patterns but also to frameworks while 
respecting multi-layer hierarchical structures. Embodying domain knowledge, application 
patterns deal both with requirement and implementation specifications (Shaw and Garlan, 
1996). In fact, a precise characterization of the way, in which implementation specifications 
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and requirements differ, depends on the precise location of the interface between an 
embedded system, which is to be implemented, and its environment, which generates 
requirements on system’s services. However, there are no strict boundaries in between: both 
implementation specifications and requirements rely on designer’s view, i.e. also on 
application patterns employed. 
A design reuse process involves several necessary reuse tasks that can be grouped into two 
categories: supply-side and demand-side reuse (Sen, 1997). Supply-side reuse tasks include 
identification, creation, and classification of reusable artefacts. Demand-side reuse tasks 
include namely retrieval, adaptation, and storage of reusable artefacts. For the purpose of 
this paper, the reusable artefacts are represented by application patterns. 
After introducing principles of the temporal logic deployed in the following specifications, 
next sections provide two case studies, based on implemented design projects, using 
application patterns that enable to discuss concrete examples of application patterns 
reusability. 

 
3. Temporal Logic of Actions 
 

Temporal Logic of Actions (TLA) is a variant of linear-time temporal logic. It was developed 
by Lamport (1994) primarily for specifying distributed algorithms, but several works shown 
that the area of application is much broader. The system of TLA+ extends TLA with data 
structures allowing for easier description of complex specification patterns.  
TLA+ specifications are organized into modules. Modules can contain declarations, 
definitions, and assertions by means of logical formulas. The declarations consist of 
constants and variables. Constants can be uninterpreted until an automated verification 
procedure is used to verify the properties of the specification. Variables keep the state of the 
system, they can change in the system and the specification is expressed in terms of 
transition formulas that assert the values of the variables as observed in different states of 
the system that are related by the system transitions.  
The overall specification is given by the temporal formula defined as a conjunction of the 
form 

I ∧ [N]v ∧ L, 
 

where I is the initial condition, N is the next-state relation (composed from transition 
formulas), and L is a conjunction of fairness properties, each concerning a disjunct of the 
next-state relation. Transition formulas, also called actions, are ordinary formulas of 
untyped first-order logic defined on a denumerable set of variables, partitioned into sets of 
flexible and rigid variables.  Moreover, a set of primed flexible variables, in the form of v’, is 
defined. Transition formulas then can contain all these kinds of variables to express a 
relation between two consecutive states. The generation of a transition system for the 
purpose of model checking verification or for the simulation is governed by the enabled 
transition formulas. The formula [N]v admits system transitions that leave a set of variables 
v unchanged. This is known as stuttering, which is a key concept of TLA that enables the 
refinement and compositional specifications. The initial condition and next-state relation 
specify the possible behaviour of the system. Fairness conditions strengthen the 
specification by asserting that given actions must occur.  
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The TLA+ does not formally distinguish between a system specification and a property. 
Both are expressed as formulas of temporal logic and connected by implication S ⇒ F, 
where S is a specification and F is a property. Confirming the validity of this implication 
stands for showing that the specification S has the property F. 
The TLA+ is accompanied with a set of tools. One of such tool, the TLA+ model checker, 
TLC, is state-of-the-art model analyzer that can compute and explore the state space of finite 
instances of TLA+ models.  The input to TLC consists of specification file describing the 
model and configuration file, which defines the finite-state instance of the model to be 
analysed. An execution of TLC produces a result that gives answer to the model correctness. 
In case of finding a problem, this is reported with a state-sequence demonstrating the trace 
in the model that leads to the problematic state. Inevitably, the TLC suffers the problem of 
state space explosion that is, nevertheless, partially addressed by a technique known as 
symmetry reduction allowing for verification of moderate size system specifications. 

 
4. Petrol Dispenser Control System 
 

The first case study pertains to a petrol pumping station dispenser with a distributed, 
multiple microcomputer counter/controller (for more details see Sveda, 1996). A dispenser 
controller is interconnected with its environment through an interface with volume meter 
(input), pump motor (output), main and by-pass valves (outputs) that enable full or 
throttled flow, release signal (input) generated by cashier, unhooked nozzle detection 
(input), product's unit price (input), and volume and price displays (outputs). 
 

4.1 Two-level structure for dispenser control 

The first employed application pattern stems from the two-level structure proposed by 
Xinyao et al. (1994): the higher level behaves as an event-driven component, and the lower 
level behaves as a set of real-time interconnected components. The behavior of the higher 
level component can be described by the following state sequences of a finite-state 
automaton with states "blocked-idle," "ready," "full fuel," "throttled" and "closed," and with 
inputs "release," (nozzle) "hung on/off," "close" (the preset or maximal displayable volume 
achieved), "throttle" (to slow down the flow to enable exact dosage) and "error": 
 
blocked-idle  

release→    ready  
hung off→    full_fuel  

hung on→   blocked-idle 

blocked-idle  
release→    ready  

hung off→    full_fuel 
 throttle→  

  
throttled 

 hung on→     blocked-idle 

blocked-idle  
release→    ready  

hung off→    full_fuel 
 throttle→  

  
throttled 

 close  →     closed 
 hung on→  

  
blocked-idle 

blocked-idle  
error

   →   blocked-error 

blocked-idle  
release→    ready  

error
   →  blocked-error 

blocked-idle  
release→    ready  

hung off→    full_fuel  
error

   →  blocked-error 

blocked-idle  
release→    ready  

hung off→  
   
full_fuel  

throttle
 →  

 
throttled  

error
   → blocked-error 

 
The states "full_fuel" and "throttled" appear to be hazardous from the viewpoint of 
unchecked flow because the motor is on and the liquid is under pressure -- the only nozzle 
valve controls an issue in this case. Also, the state "ready" tends to be hazardous: when the 
nozzle is unhooked, the system transfers to the state "full_fuel" with flow enabled. Hence, 
the accepted fail-stop conception necessitates the detected error management in the form of 
transition to the state "blocked-error." To initiate such a transition for flow blocking, the 
error detection in the hazardous states is necessary. On the other hand, the state "blocked-
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idle" is safe because the input signal "release" can be masked out by the system that, when 
some failure is detected, performs the internal transition from "blocked-idle" to "blocked-
error." 
 

 

Fig. 1. Noise-tolerant impulse recognition automaton of length 8 

 
4.2 Incremental measurement for flow control 

The volume measurement and flow control represent the main functions of the hazardous 
states. The next applied application pattern, incremental measurement, means the 
recognition and counting of elementary volumes represented by rectangular impulses, 
which are generated by a photoelectric pulse generator. The maximal frequency of impulses 
and a pattern for their recognition depend on electro-magnetic interference characteristics. 
The lower-level application patterns are in this case a noise-tolerant impulse detector and a 
checking reversible counter. The first one represents a clock-timed impulse-recognition 
automaton that implements the periodic sampling of its input with values 0 and 1. This 
automaton with b states recognizes an impulse after b/2 (b>=4) samples with the value 1 
followed by b/2 samples with the value 0, possibly interleaved by induced error values, see 
an example timed-state sequence:  
 
(0, q1) 

inp=0
 →  ... 

inp=0
 →  (i, q1) 

inp=1
 →  (i+1, q2) 

inp=0
 →  ... 

inp=0
 →  (j, q2) ... 

 

   ... 
inp=1
 →  (k, qb/2+1) 

inp=1
 →  ... 

 

... 
inp=1
 →  (m, qb-1) 

inp=0
 →  (m+1, qb) 

inp=1
 →  ... 

inp=1
 →   (n, qb)  

inp=0/IMP
   →      (n+1, q1) 

 
 
i, j, k, m, n are integers representing discrete time instances in increasing order. 

 
For the sake of fault-detection requirements, the incremental detector and transfer path are 
doubled. Consequently, the second, identical noise-tolerant impulse detector appears 
necessary. 
The subsequent lower-level application pattern used provides a checking reversible counter, 
which starts with the value (h + l)/2 and increments or decrements that value according to 
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the "impulse detected" outputs from the first or the second recognition automaton. Overflow 
or underflow of the pre-set values of h or l indicates an error. Another counter that counts 
the recognized impulses from one of the recognition automata maintains the whole 
measured volume. The output of the letter automaton refines to two displays with local 
memories not only for the reason of robustness (they can be compared) but also for 
functional requirements (double-face stand). To guarantee the overall fault detection 
capability of the device, it is necessary also to consider checking the counter. This task can be 
maintained by an I/O watchdog application pattern that can compare input impulses from 
the photoelectric pulse generator and the changes of the total value; evidently, the 
appropriate automaton provides again reversible counting.  
 The noise-tolerant impulse detector was identified as a reusable design-pattern and its 
abstract specification written using TLA+ can be stored in a case library. This specification is 
shown in Fig. 2. The actions Count1 and Count0 capture the behaviour of the automaton at 
sampling times. Action Restart defines an output of the automaton, which is to pose the 
signal on impuls output as the signalization of successful impulse detection. 
 

 
Fig. 2.Abstract  TLA specification of noise-tolerant impulse recognition automaton 

 
4.3 Fault Maintenance Concepts 
The  methods  used a ccomplish  the  fault  management  in the  form of  (a)  hazardous state  
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reachability control and (b) hazardous state maintenance. In safe states, the lift cabins are 
fixed at any floors. The system is allowed to reach any hazardous state when all relevant 
processors successfully passed the start-up checks of inputs and monitored outputs and of 
appropriate communication status. The hazardous state maintenance includes operational 
checks and, for shaft controller, the fail-stop support by two watchdog processors 
performing consistency checking for both execution processors. To comply with safety-
critical conception, all critical inputs and monitored outputs are doubled and compared; 
when the relevant signals differ, the respective lift is either forced (in case of need with the 
help of an substitute drive if the shaft controller is disconnected) to reach the nearest floor 
and to stay blocked, or (in the case of maintenance or fire brigade support) its services are 
partially restricted. The basic safety hard core includes mechanical, emergency brakes. 
Because permanent blocking or too frequently repeated blocking is inappropriate, the final 
implementation must employ also fault avoidance techniques. The other reason for the fault 
avoidance application stems from the fact that only approximated fail-stop implementation 
is possible. Moreover, the above described configurations create only skeleton carrying 
common fault-tolerant techniques see e.g. (Maxion et al., 1987). In short, while auxiliary 
hardware components maintain supply-voltage levels, input signals filtering, and timing, 
the software techniques, namely time redundancy or skip-frame strategy, deal with non-
critical inputs and outputs. 

 
5. Multiple Lift Control System 
 

The second case study deals with the multiple lift control system based on a dedicated 
multiprocessor architecture (for more details see Sveda, 1997). An incremental measurement 
device for position evaluation, and position and speed control of a lift cabin in a lift shaft can 
demonstrate reusability. The applied application pattern, incremental measurement, means 
in this case the recognition and counting of rectangular impulses that are generated by an 
electromagnetic or photoelectric sensor/impulse generator, which is fixed on the bottom of 
the lift cabin and which passes equidistant position marks while moving along the shaft. 
That device communicates with its environment through interfaces with impulse generator 
and drive controller. So, the first input, I, provides the values 0 or 1 that are altered with 
frequency equivalent to the cabin speed. The second input, D, provides the values "up," 
"down," or "idle." The output, P, provides the actual absolute position of the cabin in the 
shaft. 
 

5.1 Two-level structure for lift control 
The next employed application pattern is the two-level structure: the higher level behaves as 
an event-driven component, which behavior is roughly described by the state sequence 
 
initialization  →  position_indication  →  fault_indication 
 

and the lower level, which behaves as a set of real-time interconnected components. The 
specification of the lower level can be developed by refining the higher level state 
"position_indication" into three communicating lower level automata: two noise-tolerant 
impulse detectors and one checking reversible counter. 
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5.2 Incremental measurement for position and speed control 
Intuitively, the first automaton models the noise-tolerant impulse detector in the same 
manner as in previous case, see the following timed-state sequence: 
 
(0, q1) 

inp=0
 →  ... 

inp=0
 →  (i, q1) 

inp=1
 →  (i+1, q2) 

inp=0
 →  ... 

inp=0
 →  (j, q2) ... 

 

   ... 
inp=1
 →  (k, qb/2+1) 

inp=1
 →  ... 

 

... 
inp=1
 →  (m, qb-1) 

inp=0
 →  (m+1, qb) 

inp=1
 →  ... 

inp=1
 →   (n, qb)  

inp=0/IMP
   →      (n+1, q1) 

 
i, j, k, m, n are integers representing discrete time instances in increasing order. 

 
The information about a detected impulse is sent to the counting automaton that can also 
access the indication of the cabin movement direction through the input D. For the sake of 
fault-detection requirements, the impulse generator and the impulse transfer path are 
doubled. Consequently, a second, identical noise-tolerant impulse detector appears 
necessary. The subsequent application pattern is the checking reversible counter, which 
starts with the value (h + l)/2 and increments or decrements the value according to the 
“impulse detected” outputs from the first or second recognition automaton. Overflow or 
underflow of the preset values of h or l indicates an error. This detection process sends a 
message about a detected impulse and the current direction to the counting automaton, 
which maintains the actual position in the shaft. To check the counter, an I/O watchdog 
application pattern employs again a reversible counter that can compare the impulses from 
the sensor/impulse generator and the changes of the total value. 
The reuse of the noise-tolerant impulse detector is desirable. To do this, suitable patterns 
stored in a case library need to be identified. The method for identification of candidate 
patterns is based on the behavioural similarity by means of inclusion of a state sequence in 
models of stored specifications. The TLA tools can be used for formal checking whether a 
design pattern stored in a case library contains a state sequence that describes the new 
design. The new TLA module Query (see Fig. 3) is generated for the purpose of checking 
whether the design pattern from the previous case study can be reused in the multiple lift 
control system. Note that the formula is negated in order to get an example of concrete state-
sequence in a model of matched specification. The state-sequence is shown in Fig. 4. It has 
25 unique states and describes the behaviour that conforms to the required state-sequence 
defining the intended behaviour of noise-tolerant impulse detector for lift control system. In 
the reuse scenario, the required size of the new automaton is 4. The stored design pattern in 
a case library can be parameterized; hence the model-checking procedure instantiates the 
constant B = 4, which is defined in the accompanying configuration file. 
 

 
Fig. 3. TLA Module Query containing sought-after timed-state sequence   
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Fig. 4. A trace found by the TLC for state-sequence specified in Query module 

 
5.3 Lift fault management 
The approach used accomplishes a consequent application pattern, fault management based 
on fail-stop behavior approximations, both in the form of (a) hazardous state reachability 
control and (b) hazardous state maintenance. In safe states, the lift cabins are fixed at any 
floors. The system is allowed to reach any hazardous state when all relevant processors have 
successfully passed the start-up checks of inputs and monitored outputs and of appropriate 
communication status. The hazardous state maintenance includes operational checks and 
consistency checking for execution processors. To comply with safety-critical conception, all 
critical inputs and monitored outputs are doubled and compared. When the relevant signals 
differ, the respective lift is either forced (with the help of a substitute drive if the shaft 
controller is disconnected) to reach the nearest floor and to stay blocked. 
The basic safety hard core includes mechanical, emergency brakes. Again, more detailed 
specification should reflect not only safety but also functionality with fault-tolerance 
support: also blocked lift is safe but useless.  Hence, the above described configurations 
create only skeleton carrying common fault-tolerant techniques. 
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6. Application Patterns Reuse 
 

The two case studies presented above demonstrate the possibility to reuse effectively 
substantial parts of the design dealing with petrol pumping station technology for a lift 
control technology project. While both cases belong to embedded control systems, their 
application domains and their technology principles differ: volume measurement and 
dosage control seems not too close to position measurement and control. Evidently, the 
similarity is observable by employment of application patterns hierarchy, see Table 1. 
 

fault management based on fail-stop behavior approximations 

two-level (event-driven/real-time) structure 

incremental measurement 

noise-tolerant impulse detector   checking reversible counter /O watchdog 

Table 1.  Application patterns hierarchy. 

 
The reused upper-layer application patterns presented include the automata-based 
descriptions of incremental measurement, two-level (event-driven/real-time) structure, and 
fault management stemming from fail-stop behavior approximations. The reused lower-
layer application patterns are exemplified by the automata-based descriptions of noise-
tolerant impulse detector, checking reversible counter, and I/O watchdog.  
Clearly, while all introduced application patterns correspond to design patterns in the 
above-explained interpretation, the upper-layer application patterns can be related also to 
frameworks. Moreover, the presented collection of application patterns creates a base for a 
pattern language supporting reuse-oriented design process for real-time embedded systems. 

 
7. Knowledge-Based Support 
 

Industrial scale reusability requires a knowledge-based support, e.g. by case-based 
reasoning (see Kolodner, 1993), which differs from other rather traditional methods of 
Artificial Intelligence relying on case history. For a new problem, the case-based reasoning 
strives for a similar old solution. This old solution is chosen according to the correspondence 
of a new problem to some old problem that was successfully solved by this approach. 
Hence, previous significant cases are gathered and saved in a case library. Case-based 
reasoning stems from remembering a similar situation that worked in past. For software 
reuse, case-based reasoning utilization has been studied from several viewpoints as 
discussed e.g. by Henninger (1998), and by Soundarajan and Fridella (1998). 
 

7.1 Case-Based Reasoning 
The case-based reasoning method contains (1) elicitation, which means collecting those 
cases, and (2) implementation, which represents identification of important features for the 
case description consisting of values of those features. A case-based reasoning system can 
only be as good as its case library: only successful and sensibly selected old cases should be 

www.intechopen.com



Pattern-driven Reuse of Behavioral Specifications in Embedded Control  System Design 

 

161 

stored in the case library. The description of a case should comprise the corresponding 
problem, solution of the problem, and any other information describing the context for 
which the solution can be reused. A feature-oriented approach is usually used for the case 
description. 
Case library serves as the knowledge base of a case-based reasoning system. The system 
acquires knowledge from old cases while learning can be achieved accumulating new cases. 
While solving a new case, the most similar old case is retrieved from the case library. The 
suggested solution of the new case is generated in conformity with this retrieved old case. 
Search for the similar old case from the case library represents important operation of case-
based reasoning paradigm. 

 
7.2 Backing Techniques 
Case-based reasoning relies on the idea that situations are mostly repeating during the life 
cycle of an applied system. Further, after some period, the most frequent situations can be 
identified and documented in the case library. So, the case library can usually cover 
common situations. However, it is impossible to start with case-based reasoning from the 
very beginning with an empty case library. 
When relying on the case-based reasoning exclusively, also the opposite problem can be 
encountered: after some period the case library can become huge and very semi-redundant. 
Majority of registered cases represents clusters of very similar situations. Despite careful 
evaluation of cases before saving them in the case library, it is difficult to avoid this 
problem.     
In an effort to solve these two problems, the case-base reasoning can be combined with some 
other paradigm to compensate these insufficiencies. Some level of rule-based support can 
partially cover these gaps with the help of rule-oriented knowledge; see (Sveda, Babka and 
Freeburn 1997). Rule-based reasoning should augment the case-based reasoning in the 
following situations: 
  

• No suitable old solution can be found for a current situation in the case library and 
engineer hesitates about his own solution. So, rule-based module is activated. For a 
very restricted class of tasks, the rule-based module is capable to suggest its own 
solution. Once generated by this part of the framework, such a solution is then 
evaluated and tested more carefully. However, if the evaluation is positive, this 
case is later saved in the case library covering one of the gaps of the case-based 
module.  

• Situations are similar but rarely identical. To fit closer the real situation, adaptation 
of the retrieved case is needed. The process of adaptation can be controlled by the 
rule-based paradigm, using adaptation procedures and heuristics in the form of 
implication. Sensibly chosen meta-rules can substantially improve the effectiveness 
of the system.   

  
 The problem of adaptation is quite serious when a cluster of similar cases is replaced by one 
representative only - to avoid a high level of redundancy of the case library. The level of 
similarity can be low for marginal cases of the cluster.  So, adaptation is more important 
here. 
Three main categories of rules can be found in the rule-based module: 

www.intechopen.com



Frontiers in Robotics, Automation and Control  

 

162 

 
• Several general heuristics can contribute to the optimal solution search of a very 

wide class of tasks. 
• However, the dominant part of the knowledge support is based on a domain-

specific rule. 
• For a higher efficiency, metarules are also attached to the module. This “knowledge 

about knowledge” can considerably contribute to a smooth reasoning process. 
 
While involvement of an expert is relatively low for case-based reasoning module, the rules 
are mainly based on expert’s knowledge. However, some pieces of knowledge can also be 
obtained by data mining. 

 
7.3 Similarity measurement of state-based specifications 
Retrieval schemes proposed in the literature can be classed based upon the technique used 
to index cases during the search process (Atkinson, 1998): (a) classification-based schemes, 
which include keyword or feature-based controlled vocabularies; (b) structural schemes, 
which include signature or structural characteristics matching; and (c) behavioral schemes; 
which seek relevant cases by comparing input and output spaces of components. 
The problem to be solved arises how to measure the similarity of state-based specifications 
for retrieval. Incidentally, similarity measurements for relational specifications have been 
resolved by Jilani, et al. (2001). The primary approach to the current application includes 
some equivalents of abstract data type signatures, belonging to structural schemes, and 
keywords, belonging to classification schemes. While the first alternative means for this 
purpose to quantify the similarity by the topological characteristics of associated finite 
automata state-transition graphs, such as number and placement of loops, the second one is 
based on a properly selected set of keywords with subsets identifying individual patterns. 
The current research task of our group focuses on experiments enabling to compare those 
alternatives. 

 
8. Conclusions 
 

The book chapter stems from the paper (Sveda, Vrba and Rysavy, 2007) and complements it 
by TLA specifications. The original contribution consists in proposal how to represent a 
system’s formal specification as an application pattern structure of specification fragments. 
Next contribution deals with the approach how to measure similarity of formal 
specifications for retrieval in frame of case-based reasoning support. The above-presented 
case studies, which demonstrate the possibility to effectively reuse concrete application 
pattern structures, have been excerpted from two realized design cases.  
The application patterns, originally introduced as “configurations” in the design project of 
petrol pumping station control technology based on multiple microcontrollers (Sveda, 1996), 
were effectively -- but without any dedicated development support -- reused for the project 
of lift control technology (Sveda, 1997). The notion of application pattern appeared for the 
first time in (Sveda, 2000) and was developed in (Sveda, 2006). By the way, the first 
experience of the authors with case-based reasoning support to knowledge preserving 
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development of an industrial application was published in (Sveda, Babka and Freeburn, 
1997). 
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