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Abstract

Insect cells can be used for the efficient production of heterologous proteins. The
baculovirus expression vector system (BEVS) inSpodoptera frugiperdacells and the stable
transformation of Drosophila melanogasterS2 cells are widely used for this purpose.
Whereas BEVS is a transient expression system for rapid protein production, stableD.
melanogastercell lines are compatible with more complex processes modes. This chapter
describes the setup of both systems, including steps for the generation of expression
vectors and comprehensive optimization approaches. The genetic elements available in
each system are described, as well as the use of different cloning and transfection
methods and advanced process monitoring to achieve robust protein expression in
larger-scale bioreactors.

Keywords: heterologous protein expression, BEVS, stably transformedDrosophila
melanogasterS2 cells, recombinant protein expression, insect cell

1. Introduction

The cultivation of recombinant insect cell lines has been the subject of intense research since the
1980s and also allows the industrial production of recombinant proteins, vaccines and insecti-
cides [1–4]. Since the first insect cell line was isolated in 1963, more than 500 different cell lines
have become available [5, 6]. The most common expression systems are based on cell lines
derived from Spodoptera frugiperda(Sf-9 and Sf-21),Trichoplusia ni(BTI-TN-5B1-4, marketed as
High Five ™) and Drosophila melanogaster(S2). TheS. frugiperdaand T. ni cell lines are used with
the baculovirus expression vector system (BEVS) [7], which is the gold standard for protein
production in insect cells. More recently, stably transformed DrosophilaS2 cell lines have been
used to express a wide variety of proteins [8]. In all cases, it is necessary to optimize protein
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expression as well as the bioprocess conditions to achieve a robust and efficient upstream
process. This includes the selection of suitable genetic elements, aspects of glyco-engineering,
comprehensive screening for highly productive cell lines, appropriate aeration and mixing
strategies and the selection of a robust process mode. Online analytical methods can be used
to gain fundamental insights into the physiological state of the cells during the production
process, with dielectric spectroscopy and online optical density measurements providing good
results. In this chapter, we provide comprehensive, interdisciplinary guidance for the optimi-
zation of each process step and the upstream process as a whole.

2. Optimizing protein expression at the cellular level

2.1. Engineering the glycosylation profiles of insect cells

Many therapeutic proteins require a specific glycosylation pattern, so this aspect is a major
issue when using insect cell lines for protein production. Generally, cell lines from S. frugiperda,
T. ni and D. melanogastercan synthesize N-linked glycans. However, insect cells form shorter
and less complex N-glycan structures than mammalian cells (Figure 1).

At least in some part, the alterations in the glycan patterns are of evolutionary origin. Studies
revealed mutations in some enzymes of the apparatus for the protein glycosylation (e.g. trans-
ferases), occurring during the evolutionary split of vertebrates from invertebrates, 500 million
years ago. This led to the future formation of distinct glycan patterns for the species [9].

In general, glyco-structures in insects thus formed in different patterns than in mammals.
However, the complexity of the glycans is altered over the developmental stages in the insect
[10], clearly hinting, that the glycans are involved in the development. The insect-derived cell
lines do not express the respective enzymes in quantity and show therefore less complex
glycosylation patterns [11].

The glycan structures of insect cells are mostly oligomannose or paucimannose forms with
core fucose structures but no terminal sialic acid residues [12, 13]. In addition to human-like
� 1,6-linked fucose, insect-derived proteins may also carry a � 1,3-linked fucose, which can
induce immunogenic and allergic responses in humans [14]. About 70% of therapeutic proteins
contain N-glycans and these structures can influence protein activity and tolerability, so the
inability of insect cells to synthesize human-like glycosylation profiles is a disadvantage [15].
Several strategies have therefore been developed to address the issue of incomplete or incom-
patible N-glycosylation in insect cell expression systems.

The truncated paucimannose structures in D. melanogasterS2 cells were found to originate
from an acetylglucosamidase (GlcNAcase) activity, which removes terminal N acetylglu-
cosamine (GlcNAc) residues. The GlcNAcase was suppressed [16] and the simultaneous
expression of a galactosyltransferase (GalT) resulted in more complex but still unsialylated
and heterogeneous glycans [17].

The BVES can be improved by using genetically engineered host cells and/or baculoviruses
(Figure 1). Cell lines have been modified to express recombinant glucosaminyltransferases,
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galactosyltransferases and sialyltransferases. In the presence of the sialic acid precursor acetyl-
D-mannosamine, human-like glycans can be synthesized in these cells [13, 18]. In order to
reduce the metabolic burden, the cells can also be equipped with inducible promoters so that
the mammalian glycosylation machinery can easily be switched on and off [19]. Initial
attempts to produce mammalian glycans in the BEVS required the co-infection of insect cells
with baculoviruses encoding the target protein and the enzymes required for glycosylation
[20]. The yields of protein were low due to the relatively small statistical likelihood of co-
infection, so alternative BEVSs have been developed such as the SweetBac® technique, in
which the glycan-generating enzymes are carried on a separate‘glyco-module ’. Although this
simultaneous expression reduces the yield compared to traditional insect expression systems,

Figure 1. N-glycan profiles in different expression hosts. Mammalian and insect glycans share a common precursor.
Mammalian cells (left branch) elaborate this precursor using N-acetylglucosaminyltransferase (I) and other enzymes. In
the middle branch, the native paucimannose glycans of insect cells are synthesized by N-acetylglucosaminidase. Insect
proteins typically contain both 1,3-linked and 1,6-linked core fucose. Genetically engineered insect cell lines (right branch)
can express� -1,6-mannosylglycoprotein 2-� -N-acetylglucosaminyltransferase (III), � -galactosyltrasferase 1 (VI) and� -
galactoside � -2,6-sialyltransferase. The symbols were used as previously defined [25]. The figure is based on earlier
publications [13, 18].
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the previously established cell line Tnao38 can achieve results comparable to transient expres-
sion in mammalian cells [21, 22]. Additionally, the synthesis of core fucose can be prevented by
using a baculovirus encoding an enzyme that diverts the precursor molecule into other path-
ways [23].

The ability of insect cells to synthesize O-linked glycan structures has not been explored in
detail. Insect O-glycosylation profiles are less diverse than those produced by mammals, but
the precise nature of these structures depends on the cell line and culture medium [24].

2.2. Transient expression using BEVS

2.2.1. General procedure for recombinant protein expression using BEVS

BEVS is based on the use of insect viruses known as baculoviruses (family baculoviridae) that
are rod-shaped dsDNA viruses that infect lepidopteran species. The best characterized
baculovirus is Autographa californicamultiple nucleopolyhedrovirus ( AcMNPV). Its life cycle
comprises two phases leading to different phenotypes [26]. Type 1 is known as a budded virus,
which is enveloped with parts of the host cell membrane. After its release from the host cell
between the early and late phases of the infection, the budded virus can spread and infect
neighbouring cells. Type 2 is known as the occlusion-derived virus and is produced in the very
late infection phase when the viral protein polyhedrin accumulates in the host cell and forms
so-called occlusion bodies. Polyhedrin expression is controlled by the strongest viral promoter,
the polh promoter. The promoters used for heterologous gene expression with BEVS are
usually viral promoters, and these can be classed as early, late and very late promoters
according to the timing of their activity post-infection. Early promoters are active directly after
infection because they only require the host cell RNA polymerase. Early promoters drive the
expression of genes encoding viral transcription factors and polymerases, which are in turn
necessary for the expression of late genes. Very late genes, like polyhedrin, are even more
active than the late genes, and are necessary for virus packaging. Thepolhpromoter is the most
widely used in BEVS because of its very high activity and due to the fact that occlusion body
formation (and thus polyhedrin itself) is not necessary for baculovirus propagation in cell
culture.

Recombinant protein expression using BEVS involves five different states, which are summa-
rized in Figure 2 and explained in more detail in the following sections. Many different
products used in (veterinary) medicine have been produced using BEVS and selected exam-
ples are listed in Table 1.

2.2.1.1. Cloning the transfer vector

In the first step, the gene of interest (GOI) must be integrated into a transfer vector. This can be
achieved using classic insertion-ligation technology, or state-of-the-art techniques such as
golden gate cloning. Depending on which kit is used to generate the recombinant baculovirus,
different transfer vectors are provided by the manufacturers. The most important differences
among these vectors are the promoter system, the protein tag and the secretion signal. More
information about the different kits and genetic elements can be found in Section 2.2.2.
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Figure 2. The process chain for recombinant protein production using BEVS.

Application Product name Company Stage References

For human use

Cervical cancer CERVARIX® GSK Approved [27]

Prostate cancer PROVENGE® Dendreon Approved [28]

Influenza FluBlok ® Protein Sciences Approved [29, 30]

Influenza A/H5N1 Virus-like particle Novavax Phase I (NCT01596725) [31]

For veterinary use

Procrine circovirus 2 (PCV2) Porcilis® PCV Merck Approved [32]

PCV2 CircoFLEX® Boehringer Ingelheim Approved [33]

Swine fever Porcilis Pesti® Merck Approved [34]

Table 1. Selected human and veterinary vaccines produced using BEVS.
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2.2.1.2. Generation of a recombinant bacmid

When the transfer vector is ready, the desired parts need to be integrated into the baculovirus
genome, resulting in a recombinant bacmid. Several commercial kits are available for this step,
including the Bac-to-Bac® Baculovirus Expression System (Thermo Fisher Scientific), flashBAC
(Oxford Expression Technologies), the BaculoDirect™ Baculovirus Expression System
(Thermo Fisher Scientific) and BaculoGold™ (BD Biosciences).

2.2.1.3. Virus production

The recombinant bacmid DNA is then transfected into insect cells (Sf9, Sf21 or HighFive™) for
virus production. The cells are usually transfected in a six-well plate (2 mL culture volume) to
prepare the initial virus stock (P1 stock), which typically has a titre of 10 3–105 plaque forming
units (pfu)/mL. Transfection can be achieved using the chemical and physical methods
described in the following sections.

2.2.1.3.1. Calcium phosphate–DNA co-precipitation

One of the oldest transfection methods is calcium phosphate-DNA co-precipitation [35] which
was adapted for insect cell lines in the 1980s [36]. Mixing calcium chloride with a phosphate-
buffered DNA-containing solution results in the formation of a fine calcium phosphate/DNA
co-precipitate that binds to the cell surface and penetrates the cells by endocytosis.

2.2.1.3.2. Lipid-mediated and polymer-mediated transfection

In the late 1980s, a transfection method was developed based on the synthetic positively charged
lipid N-[1-(2, 3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA). The cationic
head groups of DOTMA interact with the anionic phosphate backbone of DNA to form a
complex can bind to the cell membrane and probably taken up by endocytosis [37]. Many
different lipid formulations are available to achieve highly efficient transduction, including
BaculoPORTER (Biocat), Cellfectin, Cellfectin II and Lipofectin (all Thermo Fisher Scientific).

Various non-lipid transfection reagents can also form complexes with DNA, including
baculoFECTIN II and flashFECTIN (Oxford Expression Technologies), FuGENE 6 (Promega),
GeneJuice® (Merck Millipore) and TransIT®-Insect (Mirus Bioscience).

2.2.1.3.3. Electroporation

Electroporation is a convenient and efficient transfection method, but specialized equipment is
required [38]. It is based on a short electrical pulse at an optimal voltage (specific for each cell
line) to from transient pores in the plasma membrane. This in turn facilitates the intake of small
molecules such as DNA, RNA or proteins [39].

2.2.1.4. Amplification

Following the generation of the P1 virus stock, the virus needs to be amplified to increase the
titre and culture volume. The titre of the P2 stock is typically � 108 pfu/mL. Insect cells are
cultivated in shaker flasks with a culture volume of 50 mL. For industrial applications, virus
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stocks with an even higher volume are necessary, so P3 stocks are generated using bioreactors.
In the authors’ laboratory, a low multiplicity of infection (MOI) of 0.01 pfu/mL and a cell
density of 1 · 106 cells/mL are used for virus amplification.

2.2.1.5. Virus titre determination

The titre of infectious virus particles must be determined before the viruses can be used for
protein expression. Two methods have been established for this purpose, namely the plaque
assay and end-point dilution.

2.2.1.5.1. Plaque assay

The plaque assay determines the number of plaque-forming units, each of which is equivalent
to a single infectious particle [40]. The infection of adherent insect cells with a highly diluted
virus solution leads to plaque formation in the cell monolayer due to cell lysis caused by one
infective virus particle. With an agarose overlay virus spreading is circumvented. Using neu-
tral red, viable cells can be stained and white plaques appear when a cell has been lysed due to
infection.

2.2.1.5.2. End-point dilution

End-point dilution is used to determine the infectious dose that leads to the infection of 50% of
the cells, known as the 50% tissue culture infective dose (TCID50) [40]. Cultured cells are
infected with different virus concentrations and the number of infected and non-infected
cultures is counted. For accurate titre determinations, 12 replicates of eight virus dilutions are
analysed in the authors’ laboratory. The readout can be conducted at 5 or 7 days post-infection.
To facilitate evaluation, every baculovirus constructed and prepared in the authors ’ laboratory
carries a green fluorescent protein (GFP) marker cassette driven by the OpIE1 promoter.

2.2.1.5.3. Comparison of plaque assay and end-point dilution

When choosing a titration method, different points need to be considered. Generally, the
plaque assay is performed in six-well plates resulting in a high cell concentration needed to
seed the cells confluent. Due to the plate format, only a few virus dilutions can be analysed and
a low number of replicates are possible using one six-well plate resulting in the need of
experienced experimenters knowing the suitable virus dilutions. In comparison to that, the
end-point dilution method can be done in 96-well plates resulting in more virus dilutions and
replicates, which can be analysed using one plate. Moreover, the cells can be seeded sub-
confluent as they are not covered with agarose, which limits the cell growth. For the titre
evaluation using the end-point dilution, it is important to remember that genomic integrations
of marker proteins into the viral genome simplify the evaluation.

2.2.1.6. Protein expression

The protein expression step can be divided into two stages: cell expansion and infection. In the
first step, the bioreactor is inoculated with a low cell concentration, and at the desired time of
infection (TOI), the baculovirus stock is added to the cell suspension.
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Industrial baculovirus-based processes use a volume of 10–100 m3 [41]. Because of this size,
the MOI strongly influences the virus volume required for one production cycle. Ideally the
baculovirus stocks last for the whole process lifetime. A MOI > 1 statistically ensures the
infection of all insect cells immediately after virus addition (see chapter 2.2.3). Using a lower
MOI results in a two-stage infection process. In the first phase, only a proportion of cells are
infected. These cells start to produce the recombinant protein and also produce new virus
particles. In the second infection phase, these new virus particles infect further cells (Figure 3).
A second effect of a low MOI is that the uninfected of the first infection phase continue to
proliferate, resulting in a higher cell density at the start of the second infection phase.

2.2.1.7. Protein purification

The final step of the BEVS process is protein purification. Depending on the secretion signal
(see Section 2.2.2.4), tag and characteristics such as protein size and pI, different purification
methods can be used, many based on various forms of chromatography. Detailed coverage of
this topic is beyond the scope of this chapter and the reader is referred to previous review
articles [42, 43].

2.2.2. Historical overview and application of current BEVS kits

The BEVS patented by Max Summers and Gale Smith in 1983 (US Patent 4,745,051) used
homologous recombination to integrate the GOI into a polyhedrin locus of the baculovirus
genome. As stated above, polyhedrin is not essential for virus replication in cultured cells
because its function is to form the occlusion bodies that protect the virus against UV light and
high temperatures during the natural infection cycle. The original recombination-based
method required two crossovers to integrate the GOI, which occurred at a low frequency

Figure 3. A comparison of BEVS processes with low and high MOI, respectively. The low MOI process is divided into two
phases, whereas the high MOI process has only one phase.
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(~0.1%). This drawback was addressed by inserting three BsuI36 restriction sites and alacZ
cassette into the baculovirus genome [44]. Digestion with Bsu36I linearized the virus DNA
(called BacPAK6) and co-transfection of the linearized virus DNA and transfer plasmid was
followed by homologous recombination to restore the circularity of the virus DNA, leading to
the replication of recombinant viruses. BacPAK6 was optimized by deleting the chitinase gene
(chiA) that inhibits the secretory pathway in insects, resulting in higher protein concentrations
when the product is membrane targeted or secreted. This kit is marketed by Oxford Expression
Technologies as BacPAK6-Sec+.

To enable the replication of baculovirus DNA in bacteria, a bacterial artificial chromosome
(BAC) was integrated into BacPAK6 to produce a bacmid vector. This was initially marketed
by Oxford Expression Technologies as the flashBAC™ system (Patent no. EP1144666). After
homologous recombination with the transfer plasmid, the BAC is replaced by the GOI, the
essential ORF 1629 is restored and the GOI is expressed under the control of thepolhpromoter.
Variants of the flashBAC system are available in the flashBAC GOLD, flashBAC ULTRA and
flashBAC PRIME kits. If less protease activity is required, the flashBAC GOLD system is most
suitable because thev-cathgene is deleted in addition to chiA. The flashBAC ULTRA system
improves the protein yield and quality by deleting the p10, p26 and p74 genes in addition to v-
cathand chiA. The deletion of p10 increases thepolh promoter activity, the function of p26 is
unknown but deletion does not inhibit viral replication and p74 is only required for virus
attachment and fusion in midgut cells in vivo so its deletion improves biosafety [45]. In contrast
to the kits described above, flashBAC PRIME does not carry any genetic modifications in the
viral backbone resulting in cell lysis due to infection, facilitating the release and subsequent
purification of more complex products such as virus-like particles (VLPs) or proteins formed in
the cytoplasm or nucleus.

BD Biosciences markets linearized baculovirus DNA kits as BaculoGold™ and BaculoGold™
Bright. The manual that comes with each kit states that an essential gene is deleted (the gene is
not specified), and BaculoGold™ Bright also carries a GFP marker gene allowing the detection
of infected insect cells by fluorescence analysis. Another variant is the vEHuni baculovirus
DNA, which features a D. melanogasterhsp70 promoter and a multiple cloning site with two
Bsu36I sites integrated into the non-essential ecdysteroid UDP-glucosyltransferase (egt) gene,
allowing the expression of diverse products and the production of baculovirus expression
libraries [46]. Similarly, the vECuni baculovirus DNA carries a hybrid promoter consisting of
PcapminXIV and polhelements.

Thermo Fisher Scientific distributes the BaculoDirect™ kit that incorporates Gateway ® cloning
technology. Following the integration of the GOI into the Gateway ® Entry Clone, in vitro LR
recombination leads to the integration of the GOI into the BaculoDirect™ DNA, replacing the
herpes simplex virus type 1 thymidine kinase negative selection marker. When insect cells are
transfected with the recombinant vector and cultivated in the presence of ganciclovir, only
recombinant baculoviruses are produced [47]. The BaculoDirect™ DNA can be combined
with C-terminal or N-terminal V5 and His 6 tags. In the latter case, the tags are followed by a
tobacco etch virus (TEV) protease cleavage site. BaculoDirect™ DNA is also available with an
N-terminal glutathione-S-transferase (GST) fusion tag.
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Recombinant baculoviruses can also be generated using transposon activity which is marketed
as the Bac-to-Bac® system (Thermo Fisher Scientific). The baculovirus DNA in this kit also
contains an integrated BAC, an antibiotic resistance gene, alacZ cassette and an attachment
site for the bacterial transposon Tn7. The cloning and amplification of recombinant viral DNA
is therefore carried out in Escherichia coli. The corresponding transfer plasmid consists of the
GOI flanked by two mini-transposon sites (Tn 7R and Tn7L). The E. colistrain provided in the
kit (DH10Bac) carries a helper plasmid providing all necessary transposon system elements.
Following the transformation of the DH10Bac strain, clones carrying recombinant bacmid can
be identified by blue/white screening and PCR analysis (The different kits discussed (see also
Table 2) above are compatible…) [205].

The different kits discussed above are compatible with different transfer plasmids that are
available from the same suppliers. Because most baculovirus DNA modifications are integrated
at the polh locus by homologous recombination, common transfer plasmids facilitate gene
expression under polh promoter control. Some transfer plasmids designed by BD Biosciences
and Thermo Fisher Scientific also incorporate more than one promoter to allow multiple protein
expression from the same recombinant virus. It is also possible to integrate the promoter into the
transfer plasmid together with the GOI. Some of the commercially available transfer plasmids
also include protein tags (Section 2.2.2.2) to facilitate protein purification and detection. If the tag
is located upstream of the GOI, a protease cleavage site is integrated (Section 2.2.2.3). Secretion
signals may also be integrated into the transfer plasmids (Section 2.2.2.4).

2.2.2.1. Promoters suitable for BEVS

The AcMNPV-derived immediate early (IE-1) promoter is used in several commercially available
kits. The activity of this promoter is rather low but protein expression starts immediately after
infection, allowing more time for post-translational modifications that are necessary for the
function of many complex proteins. This promoter can also be used for transient expression
because it is active in the absence of other viral factors. To enhance recombinant protein expres-
sion, the IE-1 promoter can be combined with the homologous region 5 (hr5) enhancer [48].

The late protein p6.9, also known as basic protein, core protein or VP12 [40], is essential for the
production of infectious baculoviruses because it mediates viral DNA condensation and pack-
aging [49]. The expression of enhanced GFP under the control of thep6.9promoter could be
detected as early as 6 hours post-infection, therefore also allowing more time for post-
translational modifications than the very-late promoters.

The very-late p10and polhgenes produce the very-late 10 kDa protein and polyhedrin, respec-
tively. These are highly active promoters and are used in many BEVS kits, but they depend on
proteins translated in earlier phases of the infection for their activity. The activity of the polh
promoter can be increased even further if p10 expression is abolished [50].

2.2.2.2. Purification tags used in BEVS

Protein tags can be used to simplify the detection and purification of recombinant proteins
produced using BEVS. Common tags include His6 and GST. The His6 tag comprises six
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Kit name Main component Integration
site

Special features Manufacturer

BacPAK6 Linearized
baculovirus DNA

polhlocus Bsu36I restriction sites within ORF 603, ORF
1629 (essential gene) andlacZ cassette

Oxford Expression
Technologies

BacPAK6-Sec+ Linearized
baculovirus DNA

polhlocus Deletion of chitinase gene (chiA) !
expression of membrane targeted and
secreted proteins

Oxford Expression
Technologies

flashBAC ™ Linearized
baculovirus DNA

polhlocus Deletion of chitinase gene (chiA), integration
of BAC

Oxford Expression
Technologies

flashBAC
GOLD ™

Linearized
baculovirus DNA

polhlocus Additional deletion of cathepsin protease
(v-cath) ! less protease activity

Oxford Expression
Technologies

flashBAC
ULTRA ™

Linearized
baculovirus DNA

polhlocus Deletion of chiA, v-cath, p10, p26and p74!
improved yield and quality, expression
difficult proteins

Oxford Expression
Technologies

flashBAC
PRIME™

Linearized
baculovirus DNA

polhlocus No gene deletion in viral backbone Oxford Expression
Technologies

BaculoDirect Linearized
baculovirus DNA

polhlocus Negative selection of non-recombinant
baculoviruses using thymidine kinase

Thermo Fisher
Scientific

BaculoDirect™ C
term linear DNA

polhlocus C-terminal V5 and His6 tags Thermo Fisher
Scientific

BaculoDirect™ N
term linear DNA

polhlocus Tobacco etch virus (TEV) cleavage site, N-
terminal V5 and His 6 tags

Thermo Fisher
Scientific

BaculoDirect ™
GST Gateway

Linearized
baculovirus DNA

polhlocus N-terminal GST tag Thermo Fisher
Scientific

BaculoGold ™ Linearized
baculovirus DNA

polhlocus Positive survival selection for recombinant
baculovirus

BD Biosciences

BD BaculoGold
Bright linearized
baculovirus DNA

polhlocus BD Biosciences

AcRP23.lacZ
linearized
baculovirus DNA

polhlocus Intact lacZ gene after integration of GOI
behind polhpromoter

BD Biosciences

AcUW1.lacZ
linearized
baculovirus DNA

p10locus Intact lacZ gene after integration of GOI
behind p10promoter

BD Biosciences

vEHuni baculovirus
DNA

egtlocus hsp70promoter BD Biosciences

vECuni Baculovirus
DNA

egtlocus PcapminXIV hybrid late/very late polyhedrin
promoter

BD Biosciences

Bac-to-Bac® polhlocus Site-specific transposition used to integrate
genes from transfer vector into bacmid DNA
using E. coliDH10Bac cells

Thermo Fisher
Scientific

Abbreviations: polh= polyhedrin; egt= ecdysteroid UDP-glucosyltransferase.

Table 2. Commercial kits for the production of recombinant baculoviruses.
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histidine residues and can be fused to either the N-terminus or C-terminus of proteins. This tag
facilitates protein purification using nickel or cobalt ions or anti-histidine antibodies
immobilized on a chromatography resin [51]. GST is a 26 kDa protein which is highly soluble
and folds rapidly after translation. The tag is often used to increase protein solubility in
prokaryotes. The affinity between this enzyme and its substrate means that immobilized
glutathione can also be used for protein purification by affinity chromatography.

2.2.2.3. Common cleavage sites in BEVS

The purification tag is often removed from the recombinant protein after purification because
its size and unique chemical properties can interfere with protein functions. For this purpose, a
TEV protease cleavage site is often placed between the tag and the mature recombinant
protein, allowing the tag to be released in vitro [52, 53]. Transfer vectors containing a TEV site
are marketed by Thermo Fisher Scientific. Alternatively, transfer plasmids with thrombin
cleavage sites are marketed by BD Biosciences and Oxford Expression Technologies.

2.2.2.4. Lead sequences to enhance protein secretion in BEVS

To improve the secretion of recombinant proteins produced in insect cells, secretion signals
consisting of 15–30 amino acids can be fused to the N-terminus. Common secretion signals
include those native to honeybee melittin (HBM) or the baculovirus envelope surface glyco-
protein 67 (gp67). Transfer plasmids containing these secretion signals are available from BD
Biosciences and LifeSensors. Further, signal peptides that enhance protein secretion have also
been described [54].

2.2.3. Enhancing protein yields by optimizing the time and multiplicity of infection

The yields of recombinant proteins produced using BEVS can be enhanced by optimizing
parameters such as the inoculum cell concentration, TOI, MOI and time of harvest. Both MOI
and TOI are related to the cell concentration and therefore show significant correlation. The
effect of low and high MOI on protein expression has been addressed in multiple experiments
[55–59] and simulations [60–63]. The infection of a cell by a virus particle can be modelled
using a Poisson distribution [61, 64]. The probability that a cell will absorb an infectious particle
is therefore given in Equation 1, with n representing the number of absorbed baculovirus
particles:

p ðn, MOI Þ ¼
MOI n � e� MOI

n!
ð1Þ

As shown in Equation 2, the proportion of uninfected cells can be estimated when n = 0. The
proportion of cells infected with at least one virus particle can then be estimated by subtracting
this value from 100% (Equation 3).

Funinf ected n¼0 ðMOI Þ ¼e� MOI ð2Þ

Finf ected with n� 1 ðMOI Þ ¼1 � e� MOI ð3Þ
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The simplified Poisson approach shown in Figure 4 indicates that even with an MOI of 1,
approximately 37% of the cells remain uninfected. To guarantee the simultaneous infection of
all cells, the MOI should be 5 (99.326% infected cells) or 10 (99.995% infected cells).

As described in Section 2.2.1.6, the use of a low MOI for industrial processes has several
benefits. A low MOI is easier to achieve and requires smaller volumes of virus stock, which is
advantageous in large-scale cell cultures [56, 57]. Fewer virus amplification steps are required
thus limiting the negative effects of passaging, such as the increasing proportion of defective
viruses after each round of amplification [58]. Infection with a low MOI also results in the
proliferation of cells not infected during primary infection, increasing the number of cells
available for secondary infection and thus the number of cells producing the recombinant
protein [58, 65]. On the other hand, the need for secondary infection also prolongs the process,
but this drawback is outweighed by the advantages listed above. The final protein yield is not
necessarily lower when starting with a low MOI compared to a high MOI [41, 62, 63, 66]. The
early or mid-exponential phase is the optimal TOI when using a low MOI [56, 60, 61] because
infection during the late exponential phase can lead to substrate limitation [67].

2.2.4. Virus purification and concentration methods

For laboratory-scale processes, centrifugation as a clarification step can produce virus stocks of
sufficient purity and quantity. However, a virus concentration step is necessary for larger-scale
processes, or for processes featuring a high MOI or high cell density. Very pure virus stocks are
required for pharmaceutical applications such as the manufacture of vaccines [68] or the use of
baculovirus vectors for in vivo gene therapy [69, 70], and it is particularly important to reduce
host cell proteins and DNA to acceptable levels [71].

If the objective is to purify active virus particles with minimal loss, then the purification
method must consider the stability of the virus. Baculovirus stability/activity has been tested
against key parameters such as temperature, shear stress, ionic conductivity and pH. The virus
is sensitive to high temperatures, i.e. it can be stored at 4� C for several months but higher

Figure 4. a) The impact of MOI on the number of absorbed virus particles per cell, according to the Poission model. b) The
proportion of cells infected with at least one virus particle at different MOI values.
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temperatures (especially above 40� C) induce a rapid decline in activity. The virus is insensitive
to shear forces in a peristaltic pump and is stable over the pH range 6–8. The virus is also stable
within the conductivity range 8 –15 mS/cm (Figure 5). However, its activity decreases rapidly
when the conductivity falls below 8 mS/cm and higher conductivities up to 80 mS/cm cause an
immediate 10-fold loss of infectivity rising to more than 1000-fold if the conditions are
prolonged, e.g. for 24 h [72, 73]. This suggests that the virus is sensitive to osmotic pressure
but shows that high-conductivity environments up to 80 mS/cm can be tolerated briefly
without total loss of activity.

The stability of the virus against shear forces allows it to be concentrated by tangential
filtration. Polyethersulfone membranes with cut-offs in the range 100-1,000 kDa can be used
to achieve a 20-fold concentration of virus particles at an average of 0.15 bar transmembrane
pressure and 25 � C, but there is a considerable loss of flux due to fouling [74]. For medical
applications, virus concentration alone does not meet the requirement to reduce the levels of
host cell protein and DNA. These contaminants can be removed using ion exchange mem-
branes, e.g. a polyethersulfone membrane with quaternary ammonium ligands achieved a
three-fold concentration of virus particles while simultaneously reducing host cell DNA levels
by nearly 90% and reducing host cell protein levels below the limit of detection [73]. Figure 6
shows the virus and protein concentrations at each step of the purification process: adsorption
of the viral particle to the column, washing and elution [73].

Another alternative method is monolithic anion exchange chromatography, which can achieve
a 50-fold virus concentration while reducing the amount of host cell protein and host cell DNA

Figure 5. Infectivity of baculovirus particles under conditions of differing conductivity [73].
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by 90 and 60%, respectively [75]. The most suitable method is therefore a matter of the required
purity, process duration and scale.

2.3. Stable protein expression in D. melanogaster S2 cells

Although the BEVS platform is highly versatile and probably the most popular insect-based
expression system, it is not the best choice for all products. Factors such as protein complexity,
post-translational modifications and process mode must be considered during process devel-
opment [70]. Recent studies show that recombinantD. melanogasterS2 cells (rS2 cells) can be
used as an alternative and equally powerful expression platform [76, 77]. This system is based
on an embryonic D. melanogastercell line derived in 1972 [78]. Stable transformation of S2 cells
with plasmid vectors facilitates the production of heterologous proteins. Since the 1980s, this
system has been steadily refined and is now incorporated into commercial packages such as
the DES® system (Thermo Fisher Scientific) and the ExpreS2 platform (ExpreS2ion Biotechnol-
ogies). The general procedure used to generate stable rS2 cell lines is the same for all packages
and is summarized in Figure 7. A plasmid carrying the GOI is used to transfect S2 cells, and
stable transformants that have integrated the expression construct are propagated under selec-
tion to yield a stable cell line. This line can be used for the isolation of a highly productive clone.
Depending on the amount of protein required and the time available, several starting points
can be used for protein production. For high-throughput screening or when small amounts of

Figure 6. Steps in the purification of AcMNPV using membrane chromatography, showing the virus titer and host cell
protein concentration [73].
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protein are sufficient, transient expression may produce enough and the selection of cell lines is
unnecessary [79]. If higher protein yields are required, stable cell lines can be established [80]
and even single cell cloning may be necessary [81]. Although protein production in stable cell
lines usually takes longer than the BEVS platform, the rS2 system retains some flexibility.

Figure 7. Overview of the general procedure to produce stably transformed D. melanogasterS2 cell lines for recombinant
protein expression. Protein expression can be initiated at different points, starting with transient expression immediately
after transfection followed by stable expression in a polyclonal cell line and finally the selection of a highly productive
monoclonal cell line.
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Stable rS2 cell lines are recommended for protein expression when the following aspects are
important for the production process [76, 82]:

• Both, stable rS2 cells and BEVS share the advantage of minimal risk of contamination with
human viruses because most human viruses cannot replicate in insect cells. This is partic-
ularly important for the production of pharmaceutical proteins intended for administra-
tion to humans.

• Stable rS2 cells are ideal when bacterial expression systems yield an inactive protein
[83, 84] and where even BEVS is not efficient [84–86].

• Because of the non-lytic and stable nature of protein production, different bioprocessing
modes such as batch or fed-batch cultures [87], chemostat cultures [88] and perfusion
cultures [81] can be used. Perfusion mode in particularly achieves high protein yields [81]1.

• Stable rS2 cells can grow to considerably higher cell densities than other insect cell lines
(20–70 · 106 cells/mL) and are robust concerning their hydrodynamic environment due to
their small size (6–10 µm).

• No cell lysis occurs, so less host cell protein is released and the recombinant target protein
is protected from proteolytic degradation. Therefore process-integrated product recovery
is also conceivable.

• Stable rS2 cells also achieve high batch-to batch reproducibility between manufacturing
runs, and generate a homogeneous glycan profile.

Several rS2-derived products have already entered clinical development, confirming that rS2
cells are not only used routinely in research but also for the commercial production of high
value pharmaceutical proteins (Table 3).

2.3.1. Plasmids used to generate stable cell lines for recombinant protein expression

Stable rS2 cell lines are produced by transformation with suitable plasmid vectors carrying the
GOI in an expression cassette and a selectable marker. Five general strategies have been
developed, as summarized in Figure 8.

Classically, separate expression and selection cassettes with their own promoters can be com-
bined in a single plasmid [97, 98] (Figure 8b). Alternatively, both features can be placed in one
expression cassette, separated by an internal ribosome entry site (IRES) or a 2A-like sequence
(T2A), resulting in bicistronic vectors with heterologous protein production and antibiotic

1Definitions: A batch process is cell growth and protein production in a fix amount of growth medium. The fed-batch
operation augments a batch processes by continuous or intermittent addition of growth medium to prevent nutrient
depletion and to increase cell density and productivity. Chemostat processes involve the continuous replacement of
culture medium including a withdrawal of medium with cells and product. This mode of operation is more suitable for
kinetic studies rather than protein production. Perfusion is the continuous replacement of culture medium with an
additional cell retention system. This mode of operation prevents nutrient depletion and cell drainage while maintaining
a constant reaction volume. It allows high cell densities and product titers.
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resistance under the control of the same (constitutive) promoter [99, 100] (Figure 8c). However,
the most common approach is the use of two separate plasmids, the first containing the
expression cassette and the second containing the selectable marker (Figure 8a). This exploits
the ability of dipteran cell lines to recombine different plasmids in long tandem arrays
[82, 101]. The transfection or co-transfection of S2 cells with such plasmids followed by
selection generally leads to the integration of multiple plasmid copies into the genome
[102, 82]. The co-transfection of two plasmids using the calcium phosphate precipitation
method (Section 2.2.1) can result in the integration of up to 4000 copies per S2 cell [82, 102].
The ratio of integrated plasmid sequences is similar to their proportions in the transfection
mixture. When using two separate plasmids, it is therefore advisable to increase the initial ratio
in favor of the expression plasmid. The commercial DES® system recommends a 1:19 ratio of
selection plasmid to expression plasmid, but ratios ranging from 1:1 to 1:100 have been

Figure 8. The different plasmid sets that can be used to generate stable rS2 cell lines.

Proteins in clinical development

Recombinant placental malaria vaccine Phase I [76, 89, 90]

West Nile virus vaccine Phase I [76, 91]

HER-2 protein AutoVac™ (breast cancer) Phase II [76]

Proteins for research and process development

HIV-1 VLP and soluble HIV gp120 VLP [92]

Arabidopsis thalianasterol glycosyltransferase Enzyme [93]

Psalmotoxin 1 Small peptide toxin [83]

M2 muscarinic and glucagon receptor G-protein-coupled receptor [94]

Atlantic salmon serum C-type lectin Lectin [95]

Monoclonal antibody against H5N1 influenza hemagglutinin Antibody [81]

Enhanced green fluorescent protein (eGFP) Fluorescent marker protein [96]

Table 3. A selection of proteins produced in rS2 cells.
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successful [82, 103, 104]. The random integration of multiple plasmids generates heteroge-
neous cell populations and it is possible that rearrangements occur within the integrated array
[102]. Nevertheless, this system can achieve high protein yields of 5–100 mg/L.

In contrast to the random transgene arrays described above, transposable elements can be
used to insert a single copy of the GOI and selectable marker into the S2 cell genome
(Figure 8d) [105, 106]. For this purpose, the expression construct and selectable marker are
flanked by transposase recognition sites, i.e.Minos inverted repeats [107] or P elementterminal
repeats [108, 109]. Co transfection together with a helper plasmid encoding the corresponding
transposase causes the GOI and marker to be inserted at a more or less random site.
Transposition-mediated insertion events can occur more than once in the same genome, but
the mutagenic nature of each insertion generally limits the number of integration events to
between one and 10 copies [82]. This method is cumbersome because it is necessary to map the
transposon insertion site and identify clones with single-copy insertions, and the low copy
number limits the yield of recombinant protein. This method is more suitable when the goal is
functional analysis rather than protein production, and can be very useful when combined
with the technique of recombinase mediated cassette exchange (RMCE) as shown inFigure 8e.
Two recent reports describe an RMCE system forD. melanogastercell-lines based on integrase
� C31 and its recognition sitesattP and attB [108–110]. In this system, a single docking cassette
flanked by the first recognition site ( attP) is stably integrated into the genome by transposition.
A second helper plasmid is then used to transiently express the integrase. The subsequent
introduction of a plasmid with an expression cassette flanked by the corresponding recogni-
tion site (attB) promotes cassette exchange. Based on one parental cell line containing the
docking cassette, different comparable clones can easily be generated, which is particular
helpful in comparative studies (e.g. for promoter screening).

Although the classification of different plasmid types can simplify the principles underlying
the generation of rS2 cells, it is not a fixed dogma. For example, the bicistronic system can be
used to express two different proteins of interest, while co-transfection with a second plasmid
provides the selection cassette [100]. Furthermore, co-transfection is not restricted to two
plasmids. Indeed, up to four different proteins have been expressed simultaneously by co
transfecting S2 cells with multiple vectors [111]. Finally, rS2 cells can be even combined with
BEVS. Although baculoviruses cannot replicate in S2 cells, infection achieves successful pro-
tein production from the non-replicating vector [112 –115]. Accordingly, rS2 cells appear to be a
powerful and versatile tool for protein expression. Detailed protocols and more background
information on the different techniques have been published [116–118, 82].

2.3.1.1. Genetic elements in the expression cassette

As described above, the expression plasmid contains various features required for protein
production and the best combinations must be assessed for each process.

2.3.1.1.1. Promoter systems for rS2 cells

Several constitutive and inducible promoters have been used for the production of recombi-
nant proteins in rS2 cells (Table 4). Strong constitutive promoters are generally favored for
transient expression, because the protein must be expressed immediately after transfection.
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Inducible promoters can be more suitable in stable rS2 cell lines, particularly if the overexpressed
protein is toxic to the host cell. Inducible promoters allow the decoupling of cell proliferation
and protein expression, which can be appropriate for advanced process designs (i.e. two-step
processes). The most widely used promoters in rS2 cells are the constitutive actin 5C (Ac5)
promoter [119] and the copper-inducible metallothionein (Mt) promoter [120]. Other constitu-
tive promoters, such as thecopialong terminal repeat (LTR) promoter, can be used for the GOI
but are usually paired with the resistance marker gene. The inducible hsp70promoter can also
be used, but unlike the preferred Mt promoter it has a relatively high basal activity, and the
heat shock required for induction can also induce endogenous heat-shock genes causing
changes in gene expression and cell behavior that inhibit protein production [121]. Even so,
the Mt promoter is usually induced with CuSO 4 or CdCl2, both of which are cytotoxic at high
concentrations [122] and Cd2+ also activates endogenous heat-shock promoters. Efficient pro-
tein production therefore requires a balance between promoter induction and toxicity, which

Promoter Comments Example plasmids
(source)

References

D. melanogasteractin 5C (Ac5) Strong constitutive pAc5.1/V5-His
(Thermo Fisher Scientific)
pUC-actGFP
(DGRC 1219)

[119]

D. melanogaster
metallothionein ( Mt )

Strong inducible, induced by divalent
metal ions such as Cu2+ and Cd2+

pMT/Bip/V5-His
(Thermo Fisher Scientific)
pJACKS
(-)

[120]
[125]

D. melanogasterheat shock
protein 70 (hsp70)

Strong inducible with some basal
activity, induced by heat shock (i.e. 30
min at 37� C) and also by Cd2+

pHSPCat1
(-)
pHFHW
(i.e. DGRC 1121)

[126]

D. melanogaster copiaLTR Strong constitutive, from copia
retrotransposon; used in many
selection cassettes

pCoBlast
(Thermo Fisher Scientific)
copia-CAT1
(-)

[127]
[126]

D. melanogasterDS47 Moderate constitutive pDS47/V5-His
(Thermo Fisher Scientific)

[128]

OpIE1 or OpIE2 Constitutive, derived from Orgyia
pseudotsugatamultiple
nucleopolyhedrovirus OpMNPV

PIZT/V5-His
(Thermo Fisher Scientific)

[48, 129, 130]

D. melanogasteradh; � 1-
tubulin; PGK; CMV; EF1A;
UBC; CAGG

Promoters with (lower) activity, not
used routinely

[127, 131]

SV40 early; fibroin; herpes
simplex virus thymidine
kinase; Rous sarcoma virus
LTR

These promoters are inactive inD.
melanogastercell lines

[106, 117, 127, 132]

Table 4. Promoter systems used inD. melanogasterS2 cells.
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varies according to the exact experimental conditions between 200 and 1000 µM for CuSO4
[95, 96, 123] and between 1 and 10 µM for CdCl2 [95, 92, 85]. The addition of other divalent
ions such as Zn2+ can improve protein production [85]. To rationalize all the different factors
that affect protein expression (inducer concentration, time of induction, culture medium), a
structured approach such as statistically designed experiments (DoE) may yield valuable
information. As a future prospect, the doxycycline-inducible TRE promoter may also be useful
because it can achieve good yields inD. melanogasterrS2 cells, although it has not yet been used
widely [124].

2.3.1.1.2. Kozak sequence

The Kozak consensus sequence is required for the efficient initiation of translation. It is impor-
tant to note that D. melanogasterhas a different Kozak consensus sequence (cAAaATG) com-
pared to vertebrates [133].

2.3.1.1.3. Signal peptides

Signal peptides are used to mediate protein trafficking, initiate proper folding or to ensure
protein secretion to the supernatant. The signal peptides are cleaved off during or after
translation. The most common signal peptide used in S2 cells isD. melanogasterBIP (homolo-
gous to the mammalian immunoglobulin heavy chain chaperone binding protein), which
causes proteins to be secreted into the supernatant [134]. Signal peptides from human tissue
plasminogen activator (tPa) [135] and from Galleria mellonellagloverin (GmGlv) also work in
rS2 cells [136]. The proper folding of a dopamine receptor and its insertion into the cell
membrane has been achieved using an influenza virus hemagglutinin signal sequence [125].

2.3.1.1.4. Fusions tags for protein detection and purification

As discussed above, fusion tags for protein detection and purification can be attached to either
the C-terminus or N-terminus of a protein, with or without an additional protease cleavage site
(e.g. enterokinase or thrombin). DES® plasmids usually contain a His 6 tag and a V5 epitope tag
[93, 96, 100, 137]. The His6 tag can be detected with an antibody, and purification can be
achieved with the same antibody or by immobilized metal ion affinity chromatography
(IMAC) [138, 136]. Other frequently used tags in the rS2 system include the BioEase™ tag
(Thermo Fisher Scientific), the FLAG® and hemagglutinin epitope tags [139], the Myc tag
[111)] and the S-tag™ [125].

2.3.1.1.5. Polyadenylation signals

As usual for eukaryotic organisms, mRNA must be polyadenylated in rS2 cells to maintain
stability and support efficient protein synthesis [120, 132]. The late SV40 polyA signal (from
simian virus 40) achieved the best performance, indicating that the polyadenylation mecha-
nism is conserved between mammalian and insect cells. The early SV40 polyA signal and the
polyA signals from D. melanogastermetallothionein (Mt) and alcohol dehydrogenase (adh)
were also functional in rS2 cells.
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2.3.1.2. Antibiotic selection markers

Several selection systems have been tested in rS2 cells as summarized inTable 5. Each system
comprises a cytotoxic agent and a corresponding marker that confers resistance. The marker
may encode an enzyme that catalyses the transformation of a selective agent into a harmless
product, e.g. blasticidin and hygromycin resistance. Alternatively, the marker may encode a
mutated enzyme that replaces an endogenous enzyme inhibited by the cytotoxic agent, e.g.� -
amanitin and methotrexate resistance. Only cells that have integrated the selection cassette can
survive and proliferate in the presence of the selective agent. The most appropriate selection
system depends on time, cost and risk. For example,� -amanitin is fast and efficient but
expensive and highly toxic to humans, making it less suitable for large-scale processes and
pharmaceutical products. Blasticidin and puromycin are more expensive than hygromycin but
also work faster. A high rate of spontaneous resistance has been reported for G418. It is always
advisable to generate a kill curve in order to determine the 50% lethal dose (LD50) as a starting
point for the optimization of the selection protocol, because factors such as the presence of fetal

Selective agent (resistance marker) Working concentration of the
antibiotic

Plasmids (source) References

Blasticidin S*
(blasticidin-S deaminase -bsd)

25 µg/mL, range: 5–100 µg/mL pCoBlasta

(Thermo Fisher Scientific)
[140]

Hygromycin B*
(hygromycin-B-phosphotransferase -hph)

300 µg/mL, range: 100–1000 µg/mL pCoHygro a

(Thermo Fisher Scientific)
pUC-HygroMT b

(DGRC 1059)

[103]
[141]

Puromycin
(puromycin N-acetyltransferase)

15–30 µg/mL, range: 2–30 µg/mL pCoPuroa

(RDB 08531)
pMT-PUROb

(RDB 08532)

[142]
[97]

Methotrexate
(resistant dihydrofolate reductase DHFR)

0.1 µg/ml, range 0.1–4 µg/mL p8HCO a

(DGRC 1003)
pHGCOa

(-)

[143]
[144]

� -Amanitin
(mutated RNA polymerase II)

5–10 µg/mL pPC4d

(DGRC 1217)
[145]

Geneticin (G418)
(neo-aminoglycoside phosphotransferase
type II)

1000 µg/ml pUChsneoa,d

(-)
pAc5-STABLE1-Neoc

(Addgene 32425)

[106]
[99]

Zeocin™
(Streptoalloteichus hindustanus ble)

75 µg/mL PIZT/V5-His b

(Thermo Fisher Scientific)
[129]

Commonly used selective agents are indicated with an asterisk. Plasmids are available from the Drosophila Genomics
Resource Center (DGRC), Riken Bioresource Center DNA Bank (RDB), Addgene and Thermo Fisher Scientific. Lower case
letters indicate delivery methods: aco-transfection,btransfection with a single plasmid containing selection and expression
cassettes,ctransfection with a single bicistronic plasmid, dP-mediated transformation.

Table 5. Selection systems used for the development of rS2 cell.
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bovine serum (FBS) and the overall medium composition can influence the potency of these
selective agents.

2.3.1.3. Transfection methods for S2 cell lines

Several strategies for the transfection of insect cells were described in Section 2.2.1.3. All of
these methods are appropriate for the production of stable rS2 cell lines, but it is important to
consider that transfection causes stress to the cells and a recovery period may be necessary
before selection commences.

2.3.1.3.1. Calcium phosphate–DNA co-precipitation

As described above for Sf cells, calcium phosphate-DNA co-precipitation was also one of the
first methods used to generate rS2 cells [117] and was used extensively in the past [83].
However, the limitations of this technique include the need of a fixed amount of ~20 µg DNA
per mL precipitate [38]. Calcium phosphate-DNA co-precipitation has therefore been largely
replaced by more flexible techniques that achieve greater reproducibility [102].

2.3.1.3.2. Electroporation

Electroporation is a convenient method for the transfection of S2 cells [38] that can achieve
efficiencies comparable to calcium phosphate–DNA co-precipitation [102]. This method also
allows the uptake of DNA over a very large concentration range, making it useful for the
transposon-mediated generation of cells with single-copy inserts [102].

2.3.1.3.3. Lipid-based systems

Several cationic lipid reagents achieve the efficient transfection of S2 cells, including the
Thermo Fisher Scientific products Cellfectin [96, 146], Cellfectin II [147] and Lipofectin [148],
as well as DOTAP-Liposomes [149] and DDAB [150].

2.3.1.3.4. Other transfection reagents

Specialized proprietary formulations for S2 cells have recently been introduced, including the
TransIT®-Insect transfection reagent (Mirus Bioscience), which is used routinely in the authors’
laboratory. Other non-lipid transfection reagents have been used successfully with rS2 cells
including FuGene 6 (Roche Molecular Biochemical) [38], Effectene (Qiagen) [99] JetPEI
(PolyPlus-transfection) [151] and DEAE dextran [117].

2.3.1.4. Case study for the development of a polyclonal rS2 cell line

To illustrate the generation of a stable rS2 cell line, this section describes the expression of the
reporter protein GFP and its time resolved detection during cell line establishment.
TransIT®-Insect-based transfection was carried out using a single plasmid with an expression
cassette containing intracellular GFP under the control of the Ac5 promoter and a selection
cassette containing hygromycin phosphotransferase driven by the copiaLTR promoter. After
transfection, the cells were allowed to recover for 3 days before 300 µg/mL hygromycin was
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added to the medium and renewed at each sub-culture interval. Figure 9 shows the GFP
expression profile monitored by flow cytometry. Within the first 10 days, most of the non-
transfected cells died and only low levels of GFP were detected. After 20 days under selection,
the cell population became increasingly GFP-positive, and a population producing high levels
of GFP was established within 30 days. Further sub-culturing revealed the existence of differ-
ent sub-populations with varying GFP expression profiles and different growth properties. By
day 77, a population characterized by moderate levels of GFP became prevalent, suggesting
that polyclonality is detrimental for long-term protein production. This can be overcome by
single cell cloning, as discussed in the next section.

2.3.2. Single cell cloning for enhanced protein yields

Once a stable cell line is established, it can be used as a straightforward basis for subsequent
up-scaling and protein expression even at the bioreactor scale. However, the expression profile
within the polyclonal cell population is heterogeneous. Furthermore, high-copy-number trans-
genic loci confer an additional metabolic burden that may inhibit cell growth. Long-term
subculturing therefore enriches subpopulations that have lost copies of the transgene, and
protein expression declines [152] as illustrated with eGFP inFigure 9. As well as maintaining
the cells under selection pressure, single cell cloning is necessary to minimize these effects and
should commence before the highly-productive cells become overpopulated by their less-
productive peers [118, 152]. However, the productive cells should only be chosen once they

Figure 9. Time course showing the establishment of a stable rS2 cell line expressing GFP under the control of the
constitutive Ac5 promoter. GFP activity was recorded by flow cytometry. The transfected cell population maintained
under selection pressure with 300 µg/mL hygromycin (green) was compared to a non-transfected control (gray).
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have recovered from the stress of transfection because the success of a single cell cloning is
highly dependent on clones that proliferate well.

Another important consideration is that rS2 cells grow very slowly at low densities and may
arrest completely if seeded at less than 5· 105 cells/mL [77, 116]. This reflects the demand for
autocrine growth factors, which accumulate to sufficient levels only at high cell densities [77].
For example, the adenosine deaminase-related growth factor (ADGF) family is known to
promote the growth of S2 cells [153, 154] but no studies have yet shown that ADGF alone can
stimulate growth at very low cell densities. Augmenting the culture with conditioned medium
or heat inactivated FBS can improve proliferation, but is also not sufficient to stimulate prop-
agation of single cells. Feeder cells are therefore required to facilitate the proliferation of a
single rS2 cell. There are two traditional cloning methods: cloning in soft agar and cloning by
dilution. Both make use of non-transfected feeder cells, which are exposed to a� or X ray
source (e.g. 24 kR per 50 cm� T-flask) before co-culture [82]. Irradiated feeder cells do not
divide, but remain able to secrete growth-promoting substances and provide an additional
source of nutrients when they die [116]. Cloning in soft agar requires the mixing of concen-
trated feeder cells (1–2 · 106 cells/mL) with much more dilute selected transformants (~25
cells/mL) in soft agar, which is then poured into a Petri dish. The cells grow in this semi-solid
support and form colonies in the agar within 2 weeks. Cloning by dilution requires the mixing
of feeder cells and transformants in such a way that approximately one clone per well can be
seeded in a microtiter plate. The corresponding protocols have been described in detail
[82, 38, 117, 118]. Both methods have been used successfully with rS2 cells for a long time, but
their major drawback is the need for X-ray or � sources which are not readily available
routinely in cell culture laboratories. It is also necessary to ensure that the feeder cells are
permanently unable to divide yet still survive at least 1 week post-irradiation to condition the
medium during the early growth of the clones [117]. Robustness against ionizing radiation is
cell line-dependent, so parameters such as radiation dose and distance from source must be
empirically standardized to achieve the requirements described above. As an alternative to
irradiation, feeder cells can be treated with mitomycin C to chemically block mitosis, but this
method must fulfil the same requirements and empirical testing is still necessary [117].

A modified version of the limiting dilution protocol was recently reported that does not use
radiation and therefore simplifies the cloning workflow [81, 95]. The method is based on the
co-cultivation of single transformants with living, non-transfected feeder cells followed by
antibiotic selection of the clones. Because the procedure is not yet well established, the steps
in the protocol are summarized below:

• Seeding of approximately one transformant per well in 100 µL medium, containing 5 ·
105 non-transfected, living feeder cells/mL.

• Co-cultivation for 1 –3 days allows all cells to proliferate and ensures proper conditioning
of the medium.

• Adding the antibiotic (e.g. 15–25 µg/mL blasticidin or 100–1000 µg/mL hygromycin) to
initiate the selection phase. Feeder cells will slowly decay, while colonies from antibiotic
resistant clones will expand during the next 2 weeks. If necessary, medium can be added
to renew the antibiotic and avoid desiccation.
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• Checking colony growth using a microscope: wells with multiple colonies should be
discarded because they are not monoclonal (Figure 10).

• Picking colonies and successively expanding them in 48-, 24-, 12- and 6-well plates,
followed by cultivation in T-flasks or shake flasks until cryopreservation in freezing
medium containing 50% spent medium and 7.5–10% dimethylsulfoxide (DSMO).

For all methods, a negative control that only contains feeder cells is advisable. Feeder cells that
have been irradiated, blocked with mitomycin C or treated with other antibiotics should show
no evidence of proliferation after 2 weeks, otherwise the inactivation will not be successful and
contamination of the single cell pool with less productive cells will remain possible (The
method is based on the co-cultivation of single transformants with living, non-transfected
feeder cells followed by antibiotic selection of the clones(Figure 11)).

To avoid extensive work during scale up, producer screening should be started soon after
picking the single clones. The screening method depends on the expression strategy. If the
recombinant protein is expressed constitutively then the cell lines can be screened directly,

Figure 10. Phase contrast image of wells used for single cell cloning. Multiple colonies (left) and a single cell colony (right)
on a decaying layer of feeder cells.

Figure 11. Time course for the establishment of a monoclonal population using the limiting dilution method and co-
cultivation with non-transfected feeder cells under selection with 15 µg/mL blasticidin S.
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whereas inducible cell lines must first be sub-cultured in a medium containing the inducer. The
location of the target protein should also be considered, i.e. whether the protein accumulates in
the cell or is secreted to the medium. Methods to screen for specific proteins include flow
cytometry, fluorescence microscopy, western blot analysis, the enzyme linked immunosorbent
assay (ELISA) and specific functional assays, e.g. enzyme assays. For example,Figure 12
shows the comparison of an eGFP expressing parental polyclonal cell line and a highly pro-
ductive monoclonal cell line by fluorescence microscopy. Note that the polyclonal cell line only
contains a few highly productive cells, whereas the GFP fluorescence in the monoclonal cell
line is much higher because all the cells produce large amount of the product. This indicates
that a highly-productive cell line has been selected successfully. Although some authors report
that single cell cloning does not always achieve enhanced protein production [116], others
claim that the considerable effort is worthwhile [81, 95, 118, 155]. It is true that most clones do
not show enhanced protein expression, but this is unsurprising because the frequency of
highly-productive cells in the parental cell pool is usually low ( Figure 12). Consequently, the
likelihood of selecting a highly-productive cell reflects this initial ratio, and at least 500 –1000
wells (i.e. 5–10 96-well plates) should be used for cloning and subsequent screening.

3. Scale up of insect cell cultivation processes

3.1. Assessment of the cost-effectiveness

In order to produce recombinant proteins cost effectively, a satisfactory expression level has to
be achieved in one of several species available for recombinant protein expression. Suitable
hosts include bacteria (Escherichia coli), yeasts (such asPichia pastoris) and cell lines of mamma-
lian or insect origin. These expression systems differ in terms of complexity, space-time-yield
and the ability to support protein folding and posttranslational modification [156]. The system
of choice depends on the properties of the protein that is to be produced and insect cell lines

Figure 12. Fluorescence microscopy images of a parental polyclonal cell line (left) and a highly productive monoclonal
rS2 cell line (right), expressing an eGFP fusion protein under the control of the Mt promoter (induced with 900 µM CuSO 4

at 1· 106 cells/mL with viability > 97%). The images were captured using the same instrument settings 24 h post-
induction.
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are usually employed for the production of virus like particles and proteins that require
folding and posttranslational modification [1, 156]. Generally the competitiveness of insect cell
lines is demonstrated by the availability of different high value commercial products, such as
the vaccines FluBlok®, CERVARIX® and PROVENGE® (se chapters 2.2.1 and 2.3), which are
produced using baculovirus based systems. Furthermore a recent study showed that also
stable rS2 cells can compete with established systems. Concretely rS2 cells were more suitable
for the production of human coagulation factor IX than CHO cells [157] and also suitable to
produce high titers of a monoclonal antibody [81].

3.2. General considerations on process design

Insect and mammalian cell lines both originate from tissues of multi-cellular organisms and
therefore have comparable growth requirements, but insect cells offer some advantages in
terms of process design [1]. They grow rapidly at lower temperatures (doubling time of
approximately 24 h at 22–28� C) and tolerate higher levels of free amino acids and glucose
without switching to overflow metabolism [158 –160]. This allows the use of rich media,
incorporating the nutrients for complete batch processes. Although first-generation media
(e.g. Grace insect medium, TMH-FH and TC100) required complex additives such as FBS or
insect hemolymph [160], optimized protein-free media are now available, including Sf-900TM II
SFM (Thermo Fisher Scientific), ExCell® 420 (Sigma Aldrich) and Insect-XPressTM (Lonza).
Defined media offer better lot-to-lot reproducibility, as well as simplified qualification and
validation, and even contribute to higher protein titers. The optimal pH for insect cell lines is
slightly acidic (6.2–6.9) and is usually maintained by a phosphate buffer. Therefore no CO2

supply is required, unlike mammalian cell culture media which rely on the open bicarbonate
buffer system. For industrial scale up, insect cells can be adapted to grow in suspension
cultures, allowing the use of standard bioreactors resembling those typical for mammalian cell
culture [158]. Beyond research, where more diverse culture devices are used [3, 161], stirred
tank reactors (STRs) [87, 161] or wave bag reactors (e.g. GE Wave, AppliFlex or CultiBag)
[81, 162, 163] are more suitable for the large-scale cultivation of insect cells. Both systems are
scalable and are well established in the industry. Short reactor set-up times are important in
particular for high-turnover baculovirus-based processes, which last 4–7 days. These processes
are usually carried out in batch or fed-batch mode, because the virus-mediated lysis of the cells
imposes a time limit on each production cycle. In contrast, continuous or perfusion mode is
also compatible with stable rS2 cell lines. In each case, the main task of the bioreactor is to
provide optimal growth and production conditions. The main challenge is therefore to ensure
an adequate oxygen supply without generating destructive shear forces [164, 165].

3.3. Oxygen requirements of Sf and S2 cell lines

The essential nutrient oxygen must be delivered continuously because it is only sparingly
soluble in cell culture medium. During scale up, it is not possible to achieve the high ratio of
surface area to reaction volume, and in turn the high oxygen mass transfer through the
headspace, which are characteristics of small-scale cell culture systems. It is therefore neces-
sary to understand the oxygen requirements of the cultured cell line in detail in order to choose
an appropriate oxygenation strategy. The cell-specific oxygen consumption rate _qO2

is a key

�1�H�Z���,�Q�V�L�J�K�W�V���L�Q�W�R���&�H�O�O���&�X�O�W�X�U�H���7�H�F�K�Q�R�O�R�J�\����



parameter for the physiological state of the cells, which provides useful information for scale
up. It can be estimated by placing cells from a growing culture in a tightly sealed measurement
chamber containing air-saturated medium. Given that oxygen transfer is negligible under
these conditions, the saturation declines and a corresponding oxygen time course can be

recorded (Figure 13). From the known cell concentration X and the slope of the curve
� cO2

� t ,
the specific oxygen consumption rate _qO2

can be calculated according to Eq. (4). This method

can also be adapted to determine _qO2
directly in a bioreactor. In order to do this, the oxygen

supply must be closed and a sample must be withdrawn to determine the current cell concen-
tration.

_qO2
¼ �

1
X

�
� cO2

� t
ð4Þ

Table 6 summarizes specific oxygen consumption rates for the cell lines discussed in this
chapter. The data show that, _qO2

does not remain constant but is strongly dependent on the

physiological state of the cells. For example, the infection of Sf cells with baculovirus increases
the oxygen demand [166]. Furthermore, a wide range of _qO2

values has been reported for

different stable rS2 cell lines, indicating that the expressed recombinant protein also affects

Figure 13. Time courses showing the declining oxygen saturation in a measurement chamber containing different
concentrations of Sf 21 suspension cells in ExCell420 serum-free insect cell medium.
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the oxygen demand. In conclusion, _qO2
seems to be a function of cell status, overall medium

composition and the reactor set up. Therefore, it is advisable to verify the values reported in
the literature in each new experimental setting.

Knowing _qO2
and the current cell concentration X, the oxygen uptake rate (OUR) of the culture

can be calculated according to Eq. (5):

OUR ¼ _qO2
� X ð5Þ

Similarly, the ability of a bioreactor to supply oxygen is characterized by its oxygen transfer
rate (OTR), which is calculated according to Eq. (6):

OTR ¼ kLa� ðcO2
� � cO2Þ ð6Þ

The volumetric mass-transfer coefficient kLa is a reactor-specific constant that describes the
efficiency with which oxygen is transported to the medium under a given set of operating
parameters [174]. The valuescO2

� and cO2 are the maximum and actual oxygen concentration

Cell line _q [10� 12

mmol �Z� 1�min � 1]
Growth
phase

Cultivation
system

Infected Medium FCS % References

Sf 9 2.58 exp. Chamber no IPL-41 10 [167]

Sf 9 3.66 - STR yes IPL-41 10 [168]

Sf 9 6.50 - STR yes ICSF-WB 0 [168]

Sf 9 1.20–3.00 exp. STR no Sf-900 II 0 [169]

Sf 9 1.50–2.70 - STR yes Sf-900 II 0 [169]

Sf 9 5.50 exp. STR no Excell 401 0 [170]

Sf 9 10.0 - STR yes Excell 401 0 [170]

Sf 9 3.13–3.35 exp. Airlift no IPL-41 10 [171]

Sf 9 1.33 stat. Airlift no IPL-41 10 [171]

Sf 9 4.44 exp. STR no Sf-900II [172]

Sf 21 10.5 exp. Chamber no Excell 420 0 *

Sf 21 2.33 exp. Perfusion no IPL-41 5 [171]

S2 wt 1.5 exp. STR - ExCell
420

0 *

S2 wt 0.45 exp. STR - Sf-900 II 0 [172]

S2AcGPV 0.82 exp. STR - Sf-900 II 0 [172]

S2AcGPV 0.6–1.2 exp. Spinner - IPL 41 [173]

S2MtEGFP 0.8–1.5 exp. STR - Sf-900 II 0 [172]

*Authors ’ own data. Abbreviations: exp. = exponential growth phase; stat. = stationary phase.

Table 6. Specific oxygen consumption rates for different insect cell lines and cultivation conditions.
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in the medium, respectively. To ensure a sufficient oxygen supply, the OTR must be equivalent
to the OUR at the maximum cell density Xmax and the required kLa value of the cultivation
system can thus be calculated according to Eq. (7):

kLa required ¼
_qO2

� Xmax

cO2
� � cO2

set ð7Þ

Eq. (7) also reveals why oxygen supply is a major concern for both expression systems.
Whereas Sf cells show high specific oxygen consumption rates, S2 cells consume less oxygen
per cell, but grow to higher densities. Both situations lead to a considerable oxygen demand.
As a rule of thumb, the oxygen saturation in the medium cO2

set should not fall below 30% air
saturation during cultivation [175, 158]. In order to avoid limitations at late process stages, the
rate of oxygen transfer can be increased either by using highly efficient micro-porous spargers
[165] or by using pure oxygen for aeration. Even with pure oxygen, sufficient gas flow must be
maintained in order to strip out CO 2 that inhibits cell growth at higher concentrations. Increas-
ing the stirrer speed and gas flow are a second option for STRs, but caution should be exercised
because insect cells (especially infected and swollen Sf cells) are susceptible to shear damage.
To encounter the danger of shear related cell damage, insect media usually contain up to 0.1%
of the non-ionic block co-polymer Pluronic F68 as a shear force protecting agent [176]. Pluronic
F68 adheres to the cell surface and thus stabilizes the membrane. A detailed discussion on the
assessment of stirring and bubble related shear damage with its consequences for animal cell
culture process design has been published [164].

3.4. Characterization of STR oxygenation capabilities for insect cell culture

The kLa value for each reactor setup must be determined and compared with the calculated
value required to achieve sufficient oxygen transfer. The kLa can easily be determined using
standard methods such as the dynamic method or the sulphate method [177]. In combination
with a structured experimental design, appropriate settings for different cell lines are easy to
find. One way to structure the experiments is to use the response surface method (RSM). This
statistical method explores the relationship between a response variable (i.e. thekLavalue) and
different input variables (e.g. stirrer speed and aeration rate). Based on a set of designed
experiments, the RSM approximates the coherences between the variables using a polynomial
model [178]. The resulting model can then be used to predict the kLa value for each factor
combination so that further experiments are not required. Once a suitable model is established
and verified, optimal settings for new reactor set-ups can be deduced from a simple readout.

As an example, a respective model was determined for a water-filled 2-L bioreactor system
(working volume 1000 mL) equipped with a drilled pipe ring sparger and a pitched blade
impeller (3 · 45� , d/D = 0.57). According to the typical cultivation conditions for insect cells,
the temperature was set to 28� C. For RSM, the kLa values were determined by the dynamic
method using a central composite design (CCD) for aeration rate _vð0:01–0:09Þand stirrer speed
n ð80–260Þ. The resulting data were used to fit the significant terms of the general interaction
model as shown in Eq. (8):
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kLa ¼ � 0 þ � 1 _v þ � 2n þ � 12 _vn ð8Þ

The results can be visualized as a contour plot (Figure 14) that describes thekLa value as a
function of both input variables and thus provides a straightforward way to define the most
suitable bioreactor settings. However, information about homogenization is also important, so
it is advisable to use the same experimental design to establish models for mixing time.
Combining both models provides a comprehensive overview of the potential operating win-
dow for each process. The workflow described in this chapter is not limited to STRs but can
also be adapted for wave reactors easily, wherekLa and mixing time are functions of the
shaking frequency and angle.

4 Process monitoring

4.1. Process analytical technology as driving force for online monitoring

Complex recombinant proteins and vaccines are high-value products that are often intended
for medical use. Such products must comply with high quality standards and recently the
US Food and Drug Administration (FDA) released a guideline on process analytical technol-
ogy (PAT), thus encouraging manufacturers to ensure product quality by improving their
process understanding [179, 180]. This requires the measurement and control of critical process
parameters, such as cell growth in the case of insect cells producing recombinant proteins. The

Figure 14. Relationship between kLa, aeration rate and stirrer speed for a 2-L autoclaveable bioreactor filled with water
and operated under standard conditions for the cultivation of insect cells (28� C, 0.01–0.09 vvm, 80–260 rpm).
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dependency between cell growth and recombinant protein production exists because both pro-
cesses require efficient protein synthesis machinery [181]. Optimal cell viability and comparable
growth conditions during cultivation will ther efore improve batch-to-batch reproducibility. Table 7
lists online techniques that have been developed to estimate cell biomass, among which optical
probing and dielectric spectroscopy have proven to be robust and easy to use. The following
section therefore summarizes the principles of these two techniques and their application in insect
cell cultures.

4.2. Dielectric spectroscopy to determine viable cell density

Dielectric or impedance spectroscopy is a noninvasive technique that is widely used to charac-
terize materials in different research fields, including material testing, corrosion research and
biological engineering [188, 189]. Historically, the application of dielectric spectroscopy for the
characterization of cell suspension cultures dates back more than 150 years [190] and is now
well established as a routine method [191, 192] even in industrial-scale processes [193].
Comprehensive reviews of the theory and application of this method have been published
[194–199, 200].

The method involves exposing cell suspensions to an alternating current of low magnitude.
This stimulus results in a phase-shifted, frequency-dependent voltage response, which in turn
is recorded and used to calculate the dielectric properties of the material (Figure 15a). The
measurement is not that simple and modern devices make use of special bridge circuits,
network analysers and other advanced methods to calculate the real and imaginary part of

Method Measured bioprocess variable Direct or indirect
biomass quanti-
fication

Representative
commercial systems

References

Dielectric
spectroscopy

Permittivity and conductivity Direct viable cell density Aber Futura
Hamilton Incyte

[182]

Optical probing Turbidity or backscattered light Direct whole cell density
and particles

Exner ExCell 230

Hamilton Dencyte
Optek ASD
Mettler InPro8100
Finesse TrueCell
Cerexinc
Wedgewood BT65

[183]

2D Fluorescence
spectroscopy

Cellular fluorophores (NAD(P)H,
flavins and aromatic amino acids)

Indirect from metabolic
activity

Delta Light and
Optics BioView

[184]

Biocalorimetry Heat production from metabolic
activity

Indirect from metabolic
activity

Mettler Toledo eRC1 [185]

Off gas analysis Respiratory activity (OUR and CER) Indirect from respiratory
activity

Blue Sens CellinOne [186]

Soft sensors Different process parameters Indirect from
correlation/models

[187]

Table 7. Summary of online biomass monitoring techniques.
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the complex impedance Z or admittance Y. Nevertheless, these measurements yield the two
passive electrical properties of capacitanceC and conductance G as function of the applied
alternating current frequency. The capacitanceC describes the ability of the material to store
electrical charge, whereas the conductanceG describes its ability to pass an electrical charge.
Because these values depend on the electrode geometry, the relative permittivity� and the
conductivity � are generally used to describe these electrical properties in an electrode-
independent manner. The relationships are described in Eqs. (9) and (10), whereC is the
capacitance,� is the relative permittivity, � 0 is the permittivity of the vacuum (8.854 pF/m), G
is the conductance,� is the conductivity and z is the specific electrode constant (i.e. area/plate
distance for a parallel plate capacitor):

C ¼ � � � 0 � z ð9Þ

G ¼ � � z ð10Þ

To simplify the explanation of the observed dielectric phenomena when � is plotted against the
applied frequency f, the cell suspension can be modelled as being composed of two parts [196].
The first part is the conducting aqueous cell culture medium that surrounds the second part
(the cells), which are in turn composed of an insulating cell membrane and the conducting
cytoplasm. Whereas the medium and cytoplasm are simple electrolytes with a certain resis-
tance, the lipid cell membranes act as dielectric barriers and cells can therefore be regarded as
small spherical capacitors. Electrically charged ions accumulate at the membranes of living
cells in an alternating electric field, whereas leaking cells, cell debris, evolved gas bubbles,
micro-carriers and other media components are essentially invisible to this method [195]. Only
very high volume fractions of non-biomass materials close to the sensor may influence the
measurement as the cells are replaced by non-reactive materials [198]. The build-up of electri-
cal charge across the membranes is known as polarization and this occurs when the frequency
of the excitation field is in the range 0.1–10 MHz (the radio frequency band). At low frequen-
cies, the ions have sufficient time to reach the cell membrane, complete polarization takes place
and a high permittivity signal is produced. At high frequencies, ions do not have enough time
to move and they do not accumulate at the membranes before the electric field changes
direction thus forcing them in the opposite direction. In this case, only a low permittivity is
detected. This behaviour results in a sigmoid shaped � � logðf Þrelationship, the so called � -
dispersion (Figure 15b). The plateau value of the permittivity � max depends on the quantity of
polarizable cell membranes in the system. Hence,� � , the difference between � max and the
residual permittivity � � (resulting from the medium), is a good measure of cell density. In
1957, Schwan derived Equation 11 predicts� � for suspensions of ideal spherical cells [199].
The validity of the equation has been confirmed experimentally [189, 193].

� � ¼
9 � P � r � Cm

4 � � 0
with P ¼

4 � � � r3

3
� N ð11Þ

Here, P denotes the cell volume fraction (dimensionless),N denotes the cell density per unit
volume, r is the cell radius and Cm is the capacitance per membrane area. It is clear that� � is
actually measuring the cell volume fraction instead of cell density, because it depends on the
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cell radius. However, if the radius does not change throughout cultivation, � � is directly
proportional to the viable cell density. Technically, the value of � � can be determined either
by scanning the whole frequency range or by measuring at two distinct frequencies. Recording
a full � -dispersion spectrum is advantageous because it provides additional information. First,
the so-called critical frequency fc (Eq. (12)) represents the frequency at which one half of the
potential polarization is achieved. It reflects changes in the cell radius as well as the conduc-
tivity of the cytoplasm � c and the surrounding medium � m (Figure 15c).

f c ¼
1

2 � � � r � Cm � 1
� c

þ 1
2�� m

� � ð12Þ

Second, another variable known as the Cole-Cole� factor can be obtained by fitting the Cole-
Cole model to the measured spectrum [197, 201]. The� factor has a value between 0 and 1 and

Figure 15. (a) Schematic illustration of a capacitive sensor: only cells with intact plasma membranes are polarized,
whereas cell debris, gas bubbles and non-polarizable solid particles do not influence the measurement. (b) Schematic
illustration of the � -dispersion spectrum of the observed permittivity: at low frequencies, the duration of the shift in the
excitation field is sufficient to fully polarize the cells, whereas at high frequencies the rapid shift allows little polarization.
Increasing the cell number increases the number of polarizable cell membranes and consequently leads to an overall
increase in� � . (c) Theoretical comparison of three cell suspension cultures with equal biovolumes and conductivities, but
composed of cells with different cell sizes. With decreasing cell size, the critical frequency fc increases. (d) Theoretical
comparison of two cell suspension cultures with equal biovolumes and average cell size, but different cell size distribu-
tions. A wider distribution leads to a flattened � -distribution. Panels (b) and (c) are modified from Ref. [202].
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describes the steepness of the characteristic drop in� -dispersion. The � factor is assumed to
reflect the homogeneity of the cell population [194, 201] as shown inFigure 15d.

Dielectric spectroscopy has proven to be a valuable tool for the online monitoring of insect cell
cultures [195, 196, 203]. It is particularly useful for BEVS because the arrest of cell growth after
infection and the swelling and lysis of infected cells can be monitored in real-time. In the
context of insect cell cultures, dielectric spectroscopy was first used to monitor the growth of
uninfected and infected Sf9 cells [204]. This study revealed a linear correlation between relative
permittivity and viable cell density during the growth phase. However synchronous infection
with a recombinant baculovirus encoding � -galactosidase at a MOI of 10 resulted in growth
arrest, but permittivity increased further, indicating the successful detection of the infection-
related cell swelling. During the late process stages, cell lysis associated with a decrease in cell
viability and size was detected as a drop in the permittivity signal. In terms of process
intensification by the optimization of feeding and infection strategies, the same authors
reported the use of dielectric spectroscopy to monitor Sf9 and High FiveTM cells [205, 206]. In
both studies, physiological parameters correlated with the impedance signal. Interestingly a
peak in the CO2 evolution rate (CER) observed at high MOI correlated with a temporary
plateau in the permittivity signal. This was interpreted to represent the initial release of virus
particles into the medium. In contrast, no permittivity plateau was detected for infections with
a lower MOI (0.001). This behavior can be attributed to the fact that a lower MOI does not
cause the simultaneous infection of all cells, hence there is no steep response in the cellular
events caused by the infection, which are instead distributed throughout the cultivation pro-
cess resulting in the delayed CER response (205). Dielectric spectroscopy has also been used for
the optimization of a baculovirus-based production process for recombinant adeno-associated
virus (rAAV) vectors at the 40-L scale [207]. The permittivity signal was used to pinpoint the
optimal time of infection. An optimal time of harvest was also determined, because an increase
in cell diameter was correlated to the yield of rAAV. Well-established off line methods (Vi-Cell ®

and CASY®) have been used to correlate the permittivity signal with the viable and total cell
culture volume [208]. The authors observed an increase in the critical frequency fc which
coincided with the cell swelling after infection, but the influence of dynamic cell properties on
fc was not investigated.

Although there are only a few reports demonstrating the use of dielectric spectroscopy to
monitor stable insect cell lines, this method is used routinely with a wide variety of mammalian
cell lines [192, 195] and was proven to work with rS2 cells. In the production of an antimicrobial
protein with rS cells under control of the Mt promoter, the dielectric spectroscopy was used to
pinpoint the key transitional events of the process (induction and harvest) [209].

4.3. Optical density as a tool to determine absolute cell density

One of the most established methods for the online monitoring of cell suspension cultures is the
measurement of optical density (OD) and its popularity is already reflected by the widespread
availability of different commercial sensors (Table 7) [210]. Optical density probes exploit the
ability of suspended particles (in this case cells) to scatter light in all directions. As shown in
Figure 16, the scattering can be used in two main ways to derive information about cell density.
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Sensors of the first type (e.g. ExCell 230, Exner Process Equipment) measure the reduction in
light intensity during its transmission through the medium. The availability of different optical
path lengths for this type of sensor allows the analysis of samples containing a low density of
particles. Sensors of the second type (e.g. InPro8100, Mettler Toledo) instead detect light that is
backscattered at an angle of 180� . Both sensor types use near infrared (NIR) light in the range
780–1100 nm to avoid the signal being affected by changes in the medium colour [183].

In addition to their traditional use with microbial cells, online OD sensors have already been
used to monitor mammalian and insect cells [175]. Accordingly, the density of uninfected,
actively growing Sf9 cells has been shown to correlate well with the OD response, and the
correlation persists until 24 h post-infection with a recombinant Baculovirus [202]. However,
the OD signal becomes static or increases during cell lysis even though the viable cell number
declines [202] This is because cell debris and dead cells contribute to light scattering to the
same extent as viable cells, which is the major drawback of OD measurements: the method
determines the overall abundance of light-scattering particles but cannot distinguish between
cells and non-cellular particles nor between living and dead cells. Nevertheless, the method is
highly robust for the quantification of viable cells and is therefore especially suitable for
monitoring non-lytic expression systems such as rS2 cells [209]. Furthermore, some devices
allow the simultaneous determination of dielectric properties and OD (e.g. the combined
Hamilton Decyte and Incyte system). Combining both methods may improve process under-
standing because the ratio of OD and permittivity is an additional real-time parameter that can
be used for process monitoring and control.
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Figure 16. (a) Schematic illustration of an OD probe measuring light transmission. (b) Schematic illustration of an OD
probe based on the measurement of 180� backscattered light.
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