
���������������������������������������������������
�����

���	����������������������������������
�

����������������������������������
��������
	��������������������	��

���������������������•������������������������������������•�

•��������������������•�����••••����������•���

•������������������•�������

��������� �� � ��•���� ��� ����������������������•  ����•��������


������������ ��� ������ �� �� �� ������

•���������� �� �� ��� ����� �

���������������������

€�•������

���#�����0�#����,�2�#�!�&���.�#�,�A
�2�&�#���5�-�0�*�"�a�1���*�#���"�'�,�%���.�3� �*�'�1�&�#�0���-�$

���.�#�,�����!�!�#�1�1��� �-�-�)�1
���3�'�*�2��� �7���1�!�'�#�,�2�'�1�2�1�A���$�-�0���1�!�'�#�,�2�'�1�2�1

12.2%

136,000 170M

TOP 1%154

5,500



�&�K�D�S�W�H�U����

�'�X�F�W�L�O�H���%�H�K�D�Y�L�R�U���R�I���7�L�P�E�H�U���6�W�U�X�F�W�X�U�H�V���X�Q�G�H�U���6�W�U�R�Q�J

�'�\�Q�D�P�L�F���/�R�D�G�V

�0�D�U�L�D���&�U�L�V�W�L�Q�D���3�R�U�F�X

�$�G�G�L�W�L�R�Q�D�O���L�Q�I�R�U�P�D�W�L�R�Q���L�V���D�Y�D�L�O�D�E�O�H���D�W���W�K�H���H�Q�G���R�I���W�K�H���F�K�D�S�W�H�U

�K�W�W�S�������G�[���G�R�L���R�U�J����������������������������

Abstract

Due to their comparatively low mass that implies reduced horizontal dynamic loads
even during strong earthquakes, wood-made buildings might be a good choice in
seismic prone regions. To meet the modern design philosophy requirements, however,
such structures should be able to behave in a ductile way under exceptional events. By
presenting a brief review of the latest developments in the field, this chapter investigates
on when and to what extent historical and modern timber buildings may exhibit a
ductile and dissipative behavior. A special focus is given to the crucial role of connec-
tions and to the difficulties involved by their mechanical model when carrying out code-
based non-linear dynamic analyses. Although a ductile behavior is typically required
under strong earthquakes, it is to note that a well-designed ductile structure may also be
able to withstand other exceptional events as, for instance, tornadoes or blasts.

Keywords: ductile behavior, strong dynamic loads, timber structures, seismic perfor-
mance

1. Introduction

To be able to exhibit a ductile behavior is a bonus that a structure can exploit when exposed to
extreme and unpredictable actions like those applied by earthquakes, hurricanes, snowstorms,
fire or explosions. In fact, it would be uneconomical to design structures that withstand such
infrequent events still deforming in the elastic range. In addition to cost-effective reasons, a
significant advantage of the ductile behavior is the great amounts of input energy that can be
dissipated during the plastic motion, considerably higher than what could be dissipated in the
elastic range. Further advantages are the beneficial redistribution of stress within statically
undetermined systems and the warning that large deformations may give to inhabitants in
case of exceptional loads. Aimed by these reasons, the seismic codes of practice typically
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require that buildings survive earthquakes of moderate severity deforming in the elastic range
whilst they behave in a dissipative ductile way, even getting damaged severely but without
collapsing, during strong seismic events. Local curvature ductility and strength hierarchy
requirements ensure such extreme performance of buildings with the final goal of life safety.

Based on this well-established design philosophy, a lot of experimental data, numerical pro-
cedures and code provisions are in fact available to design earthquake-resistant buildings
made by steel or reinforced concrete [1–3]. On the contrary, a lack of sufficient research results
and detailed code requirements still affect the design of wood structures in high seismicity
areas, despite the growing interest in natural and renewable materials. Light weight as they
typically are timber structures might possibly resist earthquakes better than other kind of
structures. Being proportional to the building masses, in fact, the horizontal loads acting on
light structures during a given earthquake are lower than those acting on heavier structures, so
that reducing the building active mass may be even a strategy for seismic stress control [4, 5].

On the other hand, to meet the modern design philosophy, timber structures are expected to
exhibit a ductile and dissipative behavior —besides adequate strength and stiffness—under
strong earthquakes. Ductility is in fact the capability to undergo large inelastic displacements
without significant reduction in strength. On the other hand, high values of ductility usually
imply large amount of energy dissipated during the dynamic motion, being the energy dissi-
pated in each cycle related to the hysteresis area of the load-displacement diagram.

With the aim of investigating on the dynamic behavior of timber structures under extreme
conditions, this survey focuses on the post-elastic behavior of wood constructions. The chapter
is composed of two main parts. The first one deals with the ductile behavior of historical
buildings (Section 2). A brief review on the performance of existing wood-made buildings
under past events is presented in Section 2.1 while experimental data on the ductile and
dissipative behavior of ancient timber buildings, as available from the literature, are provided
in Section 2.2. The remarks listed in Section 2.3 close the first part of the chapter. The second
part refers to the ductile and dissipative behavior of modern timber constructions (Section 3).
The key role of metallic connections is addressed in Section 3.1, whereas some practical aspects
to be taken into account before carrying out a code-based non-linear dynamic analysis of a
timber structure are highlighted in Section 3.2. Some brief conclusive notes are provided in
section 3.3.

2. Ductile and dissipative behavior of ancient timber buildings

Until the advent of reinforced concrete, wood buildings have been popular for centuries in
many seismic areas like China, Japan, Greece, Turkey and Balkan countries. In other geograph-
ical areas prone to earthquakes or tornados (North America), wood-frame single-family
houses and low-rise multi-family dwellings never stopped to be built since colonial times.
Timber constructions are today still very common in countries where wood is in good supply
(USA, Canada, North Europe and New Zealand), but a growing interest is developing even in
regions where adobe and masonry have been the most typical construction materials for
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centuries (e.g. Mediterranean countries). Assessing the performance of timber structures dur-
ing past severe natural events may be thus of great interest not only to preserve the architec-
tural heritage but also to improve the design of new buildings.

2.1. Performance of timber buildings during past natural events

Somehow unexpected, the finding that many ancient wooden constructions remained nearly
intact after strong earthquakes, whilst modern reinforced concrete buildings collapsed, as
emblematically shown in Figure 1, gave new impetus to build timber constructions even in
seismic regions. Several authors documented, in fact, a generally good performance of timber
buildings during natural events as earthquakes, hurricanes, tornadoes and snowstorms [6–12].

Actually, most of the existing timber constructions were built according to conventional guide-
lines based on the empirical knowledge of the past while only the more recent ones (a little
part) are engineered structures meeting modern anti-seismic standards. Mainly based on
inspections made after natural disasters, best-practice rules were suggested—although not
always applied—in the past [13]. It may be interesting to mention that the first European anti-
seismic recommendations, which were enacted in 1783, after a devastating earthquake struck
Calabria and Sicily (at that time belonging to the Borbone Kingdom), prescribed to strengthen
buildings by means of wood frames in filled in the masonry walls. The timber frames were
recommended to be suitably connected to each other’s, to the ground and to the floors, see
Figure 2 [14]. Even more interesting is the fact that such an aseismic system (adopted in Italy
till the twentieth century and referred to as “ casa baraccata” ), had actually been borrowed from
the traditional little wooden single-story houses (called baracche) which were usually built near
to the palaces of nobles to be used as earthquake-proof shelters [15–17]. Although not written,
aseismic recommendations similar to—and most likely inspiring —the Borbone’s ones were
adopted in Lisbon a few years before, after the catastrophic earthquake and the ensuing
tsunami that struck the town in 1755. Based on the knowledge collected from survived build-
ings, the Pombalinoconstructive system (imposed by the Prime Minister Marquis of Pombal)
consisted in fact of a three-dimensional timber structure (called gaioladue to its cage-like
structure) included in the masonry walls above the first floor of the building, see Figure 3
[18–20].

Figure 1. Different damaged conditions of traditional wooden and reinforced concrete buildings after the 1999 Duzce
earthquake. Image taken from [6].
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Due to the different role given to the timber structure, the “ Borbone” and the “ Pombalino”
constructive systems were quite dissimilar in their mechanical behavior, as discussed in Ref.
[16]. Both of them are, however, examples of ancient timber-framed buildings. Although the
concept of structural ductility was still very far to be introduced in building design, the role of
timber frames in traditional constructions was in fact that of withstanding lateral loads by
allowing large —and usually inelastic—displacements (like a sort of reinforcement skeleton), a
role which cannot be played by unreinforced masonry.

Constructive systems adopting timber frames with infill masonry (or adobe or stone) may be
actually found in different historical periods and geographical areas, starting from one of the
most ancient examples still visible: a Roman house of the first century BC in the archeological
site of Herculaneum (Italy) (Figure 4a). More recent examples are the several well-preserved

Figure 2. First European aseismic recommendations dating back to 1783 [14].

Figure 3. (a) Pombalino building scheme [18]; (b) Pombalino building walls.
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Ottoman traditional timber-frame houses (see Figure 4b), that may be still found in earth-
quake-prone areas as Turkey, Balkan countries, Iraq, Siria and Egipt [6, 9, 21]. Likewise the
Pombalinosystem, also in the Ottoman houses, the timber frames were introduced from the
first floor up (for this reason they are also referred to as half-timbered frames). Further
examples of timber-framed buildings (dating back even to the medieval period) may be also
found in European countries as Germany, the United Kingdom, Greece, France, Spain, Poland
(see e.g. the examples given inFigure 4c–f ), as well as in India [22, 23], the USA [24], China [25]
and Peru [26]. An overview of the history of timber framed buildings may be found for
instance in Ref. [32].

Different from the timber-framed systems, other wooden ancient buildings can be also broadly
found (seeFigure 5).

The widespread use of wood as structural material even in earthquake-prone areas highlights
the awareness they had in the past of the good performance of such a material even under
extreme conditions. Of course, mistakes and experience taught how to build timber structures to
better withstand strong dynamic actions. The following shortcomings were typically found, in
fact, to be responsible for the inefficient structural behavior of wood buildings in past natural
disasters: lack of adequate foundation anchorages or inadequate foundations soil; presence of a
soft-story mechanism (typically due to large openings at the ground floor of multi-story build-
ings); insufficient connections between major components or lacking lateral bracing, as

Figure 4. Historical timber-framed masonry buildings: (a) house wall from Herculanum (opus craticium attested by
Vitruvius in the first century BC); (b) nineteenth-century Ottoman house; (c) sixteenth-century timber-frame house in
Paris (France); (d) St. Bartholomew’s Gatehouse built in London in 1595 and survived to the 1665 great fire; (e) German
typical timber-framed houses (Fachwerkhäuser); (f) Anne Hvide's House built in 1560, Denmark.
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documented, among others, in Refs. [6–11]. Other causes of failure were also detected as, for
instance, failure of infill materials in timber-framed buildings, failure of chimneys, collapse of
neighbor buildings, structural changes or excessive loadings given at a certain stage of the
building life which caused very large inertia forces [6, 9, 11, 27, 28]. However, the main lesson
drown from past events was that, to better resist to lateral loads, a timber structure should be
regular, have little openings, possess effective connections, bracing elements and ground
anchorages. In other words, it should eventually behave as a box-like unit.

2.2. Ductility of historical buildings

Apart from the qualitative considerations r ecalled in the previous section, we can ask
whether and to what extent existing (and often very ancient) timber structures can be able
to exhibit a ductile and dissipative behavio r under extreme conditions. Unfortunately,
answering this question is not an easy task, since the actual dynamic behavior of historical
timber buildings is hardly predictable and it is usually documented, as far as for the past,
only by empirical data. The task is even made more difficult by the different constructive
techniques, wood species, kind and quality of infill materials and by the large variety of
joints adopted in ancient structures. Some recent studies can be, however, exploited to have
some clues.

Figure 5. Ancient wood constructions: (a) H � ry � -ji Pagoda (Japan, 607 A.C.); (b) Kizhi Pogost Church (Russia, seven-
teenth century); (c) Fogong Temple Pagoda (China, 1056 AC); (d) Heddal stave church (Norvey, thirteenth century).
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2.2.1. Timber-framed buildings

Experimental researches were carried out to assess the behavior of theBorboneconstructive
system, [16, 17, 29]. Particularly remarkable are the results provided in Ref. [16], relevant to in-
plane cycling tests performed on two full-scale models of Borbonewalls, following the UNI EN
12512:2006 protocol [30]. Experimental findings evidenced a non-linear behavior of specimens
with comparatively high values of ductility. The latter was calculated as the ratio between the
maximum displacement umax and the displacement at yield uy, namely

� ¼
umax

uy
(1)

The quantity defined by Eq. (1) is sometimes also referred to as the static ductility. To quantify
the dissipation of energy in the plastic range, the hysteresis equivalent damping ratio was
calculated in Ref. [16], as defined by

� eq ¼
1

2�
Ed

Ep
(2)

Based on the Jacobsen approach [31], Eq. (2) considers the ratio between the energy dissipated
for a half hysteresis cycle, namelyEd, and the potential energy Ep that an equivalent simple
oscillator would store for the same displacement achieved in the hysteretic half-cycle (see
Figure 6). The value of � eq was evaluated in Ref. [16] for the third cycle of each level of

displacement imposed, as suggested by the UNI EN 12512:2006 protocol [30]. The cumulative
dissipated energy Ed_cum, obtained by summing the loop areas of successive cycles, was also
calculated. The values of� , Ed_cum and � eq obtained in Ref. [16] for infilled and bare walls are

provided in Table 1.

Figure 6. Pinched hysteresis loop (third cycle): (a) dissipated energy for a half cycle; (b) potential energy of the equivalent
oscillator for a half cycle.
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In the infilled specimens, the energy dissipation was found to depend mostly on friction and
small ruptures in the masonry. In bare specimens, the almost wholeness dissipation was found
instead to be concentrated in the connections, where two mechanisms occur contemporarily:
the first one is related to the compression and crushing of wood grain with the formation of a
cavity due to the presence of nails (which is also responsible for the pinching effects discussed
in the following); the second one concerns the inelastic deformation of the iron nails, [16, 17].

The dynamic behavior of the Pombalinotimber-framed buildings in Lisbon was investigated
through experimental tests on specimens taken from actual sites [28] or rebuilt in laboratory
[19, 27, 32]. All of them assessed a rather good ductile behavior ofPombalinowalls. In particu-
lar, the results given in Ref. [19], relevant to real-size reconstructions ofPombalinowalls under
cyclic displacement sequences following the CUREE protocol [33], showed fat hysteresis loops
dissipating reasonable amounts of energy (although the actual values are not given by the
authors). The ductility ratio was found to be around 3. Significant pinching effects, related to
gaps and residual displacements which form in the connection zones and between masonry
and timber members were detected. A rather accurate non-linear hysteresis model was also
developed in the same paper to capture the dynamic response of the walls. Similar experimen-
tal tests on real-size laboratory reconstructions of infilled and bare-framed Pombalinowalls
were carried out in Ref. [32]. The values of � , Ed_cum and � eq found in Ref. [32] are collected in

Table 1.

Experimental tests on eight different timber frames with and without infill (brick and adobe)
or cladding, all reproducing portions of the typical himis-timber-framed Ottoman construc-
tions, were carried out in Ref. [21]. The force-displacement curves obtained for reversed cyclic
in-plane lateral loading showed stable hysteretic loops with highly dissipative behavior. The
authors suggested to evaluate the cumulative energy dissipation capacity through the follow-
ing empirical formulas [21]:

Test specimens Frame µ Ed_cum (kJ) � eq (%) Drift (%)

Real-sizeBorbonewalls [17] Infilled 7.6 19 6–8.9 2–2.6

Bare 1.36 1.6 1–23 0.15–2.71

Real-sizePombalinowalls [32] Infilled 5.48–17.95 2–2.8 15 1.76–3.34

Bare 11.6–15.28 0.75–2.8 11–15 2.55–2.61

Real-size Ottoman walls [21] Infilled n.a. 1.8–11 7.80 4–6.5

Bare n.a. 0.6–8 7.79 3.5–8.7

Real-sizedhajji-dewariwalls [23] Infilled 3.7 n.a. 5–25 4.2–5

Bare 3 n.a. 7 4.2–5

Half-scale quinchawalls [26] Infilled 6.2 n.a. n.a. n.a.

Bare 15.4 n.a. n.a. n.a.

Note: n.a., not available.

Table 1. Ductility ratio and dissipation capacity of historical timber-framed walls.
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Ed_cumW ¼ ð0:873Wef f þ 0:055Aef fÞð1:1865Dmax þ 0:5697Þ3=2 (3)

Ed_cumWO ¼ ðWef f þ 0:0638Aef fÞð0:19Dmax þ 1:0469Þ2 (4)

Here Ed_cumW and Ed_cumWO denote the cumulative energy dissipation capacity (expressed in
Joule) of specimens with and without infill/cladding, respectively; while Wef f, Aef f and Dmax

are the effective width (m), the effective area (m2) and the maximum lateral top displacement
(mm) of each framed wall considered in the experimental tests. The values of Ed_cum as
obtained by applying Eqs. (3) and (4) and of � eq, as defined by Eq. (2), were derived from the

data given in Ref. [21] and are provided in Table 1 both for infilled and bare frames. A high
ductile behavior was found to be exhibited by the considered timber-framed walls, although
the actual values of the ductility ratio � were not provided in Ref. [21]. The highly dissipative
behavior detected for Ottoman walls was found to depend on the dissipative plastic behavior
of nailed connections, as also confirmed by other authors [22].

The results of in-plane quasi-static cyclic tests on full-scaledhajji-dewariwalls (wooden-
braced frame system with masonry infill, typ ical of India and Pakistan) were given in Ref.
[23]. The tests highlighted a very strong resilience of the dhajji-dewari system against
lateral loads, which is almost totally due to the performance of the timber framework.
Also in this case, a rather good ductile and dissipative behavior is found in the experi-
mental tests. The values of� and � eq obtained in Ref. [23] for infilled and bare walls are

given in Table 1.

Finally, the data taken from [26] relevant to experimental tests carried out on half-scalequincha
walls are also provided in Table 1. (Quinchais a Peruvian traditional timber-framed construc-
tive system consisting of an adobe-made ground floor and upper stories built with timber
frames infilled with a weave of canes and mud).

A qualitative diagram is provided in Figure 7 showing some of the typical features evidenced
by the experimental cyclic tests on timber-framed walls, infilled with masonry and connected
with metallic nails. The main features evidenced in Figure 7 are (a) non-linear behavior; (b)
almost symmetric curves; (c) indistinct yield point; (d) lateral stiffness degradation for increas-
ing loading cycles; (e) pinching effect after the first load cycle; (f) strength degradation at the
same deformation level for increasing loading cycles; (g) strength degradation for higher
deformation;(h) fat hysteresis loops which implies large amounts of energy dissipated
(narrowed loop areas are generally found, however, for successive load cycles or for higher
deformation levels); (i) rather high values of ductility.

The so-called“ pinching effect” is due to the formation of a cavity around the fasteners due to
irrecoverable crushing of wood (this effect occurs after the first loading cycle) which implies
a reduced stiffness at load reversals (the connection stiffness is due, in this phase, to the sole
contribution of metallic fasteners). As soon as the contact with the surrounding wood is
reestablished, at increased deformation levels, the stiffness rapidly increases which leads to
the typical pinched shape of curves in the load-displacement diagram. It can be noted,
finally, that features very similar to those illustrated in Figure 7 and discussed before were
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also detected for modern timber walls (plywood shear, strand-board diaphragms), as can be
inferred by examining, for instance, the experimental load-displacement curves provided in
Ref. [34].

2.2.2. Other kinds of ancient wooden constructions

Experimental studies were carried out to assess the dynamic behavior of traditional Chinese
[35–37] and Japanese [38–40] constructions. Of particular interest to the purpose of the present
study are the results provided in Ref. [37]. They are relevant to scaled specimens, reproducing
a prototype of a historical Chinese timber palace, subjected to cyclic lateral loading. Stable and
large-area hysteretic loops were found in the tests, associated with rather high values of
ductility (9 –19) and energy dissipation (not quantified). The equivalent viscous damping was
evaluated to reach even values of 20–30%. It is worth noting that Chinese and Japanese
constructions were found able to exhibit a rather high ductile response and to dissipate large
amount of energy, despite they typically avoid metallic connections. Energy dissipation was
found to be due, in fact, to friction and embedding between structural elements at the contact
interfaces inside the wooden joints.

Further experimental studies can be also quoted, for example [41], confirming a rather good
ductile and dissipative behavior of ancient timber constructions.

Figure 7. Qualitative hysteresis loops as obtained from experimental tests on timber framed walls.
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2.3. Some remarks on the ductility of ancient timber constructions

Before closing the present section, the following remarks can be drawn.

i. Ductile behavior and energy dissipation are two key points of the modern aseismic
strategy adopted by current standards. Experimental findings showed that historical
timber buildings can generally be able to meet these modern requirements.

ii. Table 1 substantiates statement (i). With reference to the classification given by EC8 [1],
recalled in Table 2, three kinds of the traditional timber structures referred to in Table 1
may be assigned to the high ductility class (DCH), namely the Borbone, the Pombalinoand
the quinchawalls (all in the case of infilled timber frames). A low ductility class (DCL)
should be assigned instead to thedhajji-dewariwalls. The class of ductility of the Ottoman
traditional walls cannot be assessed through the available data.

iii. Although giving an interesting portrait of the ductile and dissipative capacity of tradi-
tional timber buildings, the data collected in Table 1 should be compared with caution
due to the different settings (laboratory set-ups, loading procedures, recorded data anal-
ysis, yield and ultimate deformation evaluation) adopted in the experimental studies
mentioned. For instance, the total amount of energy dissipated can be strongly dependent
on the load protocol, which is usually different from an experimental research to the other.
In addition, it can be noted that a different ductile behavior was sometimes detected in
experimental tests from positive to negative direction of load, although such an aspect has
not been evidenced inTable 1 for the sake of brevity.

iv. The last column of Table 1 reports the values of the drift (in %) as given by the ratio
between the maximum lateral displacement and the wall height. This is in fact a very
significant parameter to be considered when large displacements are involved.

v. Despite the extreme attention paid by the authors in reproducing, as faithfully as possible,
the in-situ conditions(timber species, infill materials, geometry, ground constraints, con-
nections, and so on), the results obtained in laboratory on rebuilt models of parts of
ancient constructions should be obviously used with great care to predict the actual
dynamic behavior of existing whole buildings, also in view of all the aspects affecting the
behavior of real structures (material degradation, efficiency of connections, internal dam-
age, workmanship irregularities, tridimensional behavior of the building).

vi. A crucial role in the ductile behavior of ancient timber structures was found to be played
by connections, since timber elements generally do not exploit their latest strength
resources [21, 42]. Based on this statement, some retrofitting solutions were also proposed
to improve the dynamic behavior of ancient structures under dynamic loads [27, 42]

3. Ductile and dissipative behavior of modern timber structures

Besides the more common single-family and low-rise houses, spectacular and daring-shaped
modern timber buildings may be even encountered nowadays in many countries, as the few
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instances ofFigure 8 let imagine. A feeling for eco-friendly and renewable materials, together
with the easy of production and transportation from the past, adds new motivations to the
construction of wooden buildings.

As discussed in the introductive section of this chapter, modern structures are required to be
ductile and dissipative, particularly when they are built in seismic areas. While timber struc-
tures are uniquely recognized to be able to meet such requirements provided that they are

� Class of ductility q Structural type

� 4 DCL Low capacity to
dissipate energy

1.5 Cantilevers; beams; arches with pinned joints; trusses joined with connectors;
mixed structures consisting of timber framing and non-load bearing infill.

4<� <6 DCM Medium capacity to
dissipate energy

2 Glued wall panels with glued diaphragms connected with nails and bolts;
trusses with doweled and bolted joints.

2.5 Hyperstatic portal frames with doweled and bolted joints possessing medium
capacity of rotational ductility.

� � 6 DCH High capacity to
dissipate energy

3 Nailed wall panels with glued diaphragms, connected with nails and bolts;
trusses with nailed joints

4 Hyperstatic portal frames with doweled and bolted joints possessing high
capacity of rotational ductility.

5 Nailed wall panels with nailed diaphragms, connected with nails and bolts.

Note: The q-values should be reduced by 20% if the building is non-regular in elevation.

Table 2. Ductility classes and behavior factors q for different typologies of timber structures, according to EC8 [1].

Figure 8. (a) Dolomites, Italy; (b) Vancouver, Canada; (c) London, Great Britain; (d) Odate Stadium, Japan.
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regular, hyperstatic and connected with ductile fasteners (as also confirmed byTable 2), most
of the issues related to evaluating and modeling this ability are still under discussion.

3.1. Crucial role of connections

Connections in modern timber buildings are metallic devices ensuring transmission of forces
between structural elements. Their design is the most strategic part of the structural project of a
timber construction, since from the characteristics of the connections (type, mechanical prop-
erties, geometry, spacing, assembly techniques) may strongly depend the stiffness, the
strength, the ductility and the energy dissipation of the whole structure.

Although some constructive typologies (such as moment-resisting timber frame systems,
timber shear panel systems and cross-laminated panel systems) are indicated as being partic-
ularly able to ensure a ductile behavior under extreme dynamic lateral loads [43], it is the
connection design that eventually decides the ductility resources of a timber structure. The
same structural type may be, in fact, assigned to different ductility classes in dependence of the
rotational ductility capacity of its connections, as can be inferred, for instance, by the classifi-
cation done by EC8, recalled inTable 2.

The most common connections in modern timber structures are the dowel-type mechanical
fasteners (nails, screws, dowels, bolts, rivets) which deeply penetrate into the wood to transfer
the load by means of wood bearing and connector bending. Dowel-type connectors can be
used alone or in combination with metal predrilled plates. Joints with dowel-type fasteners are
expected to be ductile due to the highly nonlinear behavior of the wood under embedding
stresses and the plastic behavior of the steel fasteners in bending [44]. Nevertheless, they can
sometimes be affected by sudden and brittle failures like block shear or splitting [45]. Ten
different types of failures (six in single shear and four in double shear) are considered by the
European standards for dowel-type timber connections [46].

As a matter of fact, timber members and metallic joints play different roles in the seismic
behavior of timber structures. Since the failure mechanisms of wooden elements are mostly
brittle, the timber members are required to remain in the elastic range even under very strong
events. The task of satisfying the demand of ductility is entrusted instead to the metallic
connections which are expected to sustain large inelastic deformations while preventing col-
lapse. The ductile behavior of connections is influenced both by metallic fasteners (which may
behave in a ductile or brittle way depending on whether plasticization is attained or not) and
by the strength properties of the wood surrounding the connection zone (direction of the grain
with respect to the load direction).

Preventing brittle failure may guarantee an adequate ductility to the whole structure.
Complying some strength hierarchy rules can assure a ductile behavior to timber struc-
tures. In particular, it is essential to design the fasteners to be weaker than the wood
members they are connecting, so that they can yield and dissipate great amount of energy.
On the other hand, the weaker the fasteners, the lower their bearing capacity. A way of
ensuring both adequate ductility and sufficient bearing area is using a large number of
weak fasteners. Some alternatives to improve the performance of dowel-type joints are
discussed in Ref. [47].
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Although the plastic properties of the steel fasteners alone are well-known and their behavior
under cyclic loads easy predictable, the non-linear response of the assembly of metallic con-
nectors and surrounding wood is rather difficult to predict, since it is not a cross-section
property (as for reinforced concrete). In fact, the behavior of the timber connections depends
from several factors, some well-known as the strength properties and the geometric configu-
ration of involved materials, others affected by uncertainty as the influence of neighboring
metallic fasteners or the interaction between fasteners and surrounding wood. This makes
rather difficult to develop an analytical model able to reproduce the behavior of a timber
connection.

Most of the features evidenced in Figure 7 and discussed in Section 2.2.1 characterize the
behavior of metallic timber connections, as can be inferred from Figures 9a and 9b, which
provide qualitative examples of the typical hysteretic behavior of riveted and nailed connec-
tions, respectively. In particular, two phenomena were found to be typical of the hysteretic
response of steel dowel-type connections, as recalled in Ref. [43]. The first one is thepinching
effectimplying different hysteretic curves from the first to the subsequent load cycles (see
Figure 9). The second one, referred to as thememory of material, is due to a dependence of the
load-slip curve from the loading history. Both these phenomena may influence the ductile
behavior of a timber structure.

3.1.1. Influence of the pinching effect on the ductile behavior of connections

The pinching effectis a very typical feature of the hysteretic behavior of dowel-type connections
affecting both historical and modern timber constructions. The mechanical causes of it have
been discussed in Section 2.2.1. This effect has been documented by many authors, as for
instance [48–52]. It was found, in particular, that for a given displacement level, the highest
resistance and widest hysteresis loop was attained at the first load cycle, whilst the subsequent
cycles were narrowed and achieved lower resistance, stabilizing after about three cycles (see
Figures 9a and 9b). Stabilization of the pinched curve after three cycles is also referred to in
UNI EN 12512:2006 [30]. Due to the reduction of the area of the hysteresis loop, thepinching
effectmay be actually responsible for a reduced amount of energy dissipation, although con-
nections are still able to exhibit high values of ductility.

Figure 9. Typical hysteretic curves from cyclic tests on metallic (a) riveted connections and (b) nailed connections.
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In modeling the mechanical behavior of a steel dowel-type connection for numerical analysis
purposes, the pinching effect should be considered. A discussion on how this can be done may
be found in Ref. [34], even if standard models comprehensive of the pinching effect and of the
strength and stiffness degradation are not yet available, neither suggested by codes of practice.

3.1.2. Influence of the load history on the ductile behavior of connections

From the results available in the literature, it is clear that the hysteretic behavior of timber
connections may strongly depend on the type of experimental test carried out (dynamic, static,
cyclic, monotonic) as well as on the testing protocol adopted. On the other hand, while
different protocols are available to carry out cyclic loading tests on timber structures, for
example, EN 12512 [30], CUREE-Caltech standard [33], UBC protocol [11], a consensus on the
best protocol to be assumed as standard has not been yet reached [48]. Many experimental
findings proved, however, the influence of the load history on the final results.

It was shown in Ref. [48] that a connection usually reaches its maximum load at a lower
deformation under cyclic loads than under monotonic loading. In Ref. [50], it was found that
the ductility ratio of timber shear walls may be much higher when measured under static
monotonic tests than when measured under dynamic tests. These experimental findings indi-
cate that results from monotonic tests tend to overestimate the load-deformation behavior of
connections with respect to cyclic loading tests, and therefore should be avoided when deter-
mining the seismic performance of timber buildings [48]. Dynamic tests are surely the best
choice to capture the behavior of timber structures under seismic or wind loads, also in view of
the fact that the failure modes may be very different in static and dynamic conditions [50]. The
hysteresis loops obtained from dynamic tests were, however, found to be very sensitive to the
protocol adopted [11, 53].

The dependence of the connection ductility from the experimental test may be also inferred
from Table 3, where are collected the ductility ratios experimentally obtained for different
timber connections [44, 48, 51–52, 54].Table 3 may be quite convenient to have an idea of the
ductile capacity of timber connections, although the data herein provided should be compared
with care, owing to the different specimens, test setups and loading protocols involved in the
tests (the reader is referred to the papers quoted in the table for any detail).

Analogously, the ductility ratios of modern timber walls are given in Table 4, as derived from
Refs. [50, 55, 56]. The data collected inTable 4 highlight the good ductility which may be
exhibited by modern timber constructions, although comparing the data collected in Table 4
needs again caution. It can be also noted, finally, that the hysteresis curves obtained by testing
modern timber walls with nailed connections evidenced features similar to those of Figure 7,
as can be inferred for instance from diagrams provided in Ref. [50–51, 55, 57].

3.2. Non-linear dynamic analysis to predict the seismic response of timber structures

The non-linear time-history analysis (NLTHA) is the most comprehensive procedure allowed
by seismic codes to design earthquake-resistant structures. It involves a complete time-history
investigation under different spectrum-compatible ground motions. Despite its potential, the
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NLTHA is still underused, likely due to the difficulties it indubitably involves and even to
some inadequacies of the current codes of practice [58]. Such an analysis is, however, the better
way to predict the actual seismic performance of structures composed of elastic and inelastic
parts. Current codes of practice allow non-linear analyses for the calculation of the internal
forces in the members of timber structures, provided that they are able to redistribute the
internal forces via connections of adequate ductility [46].

When implementing a NLTHA, an efficient approach to model the structure is that of separat-
ing the critical zones where the NLTHA ductile behavior may be exhibited from the other

Connection type Wood elements Loading µ

Steel plates with bolts [48] Glulam members Monotonic 3–4.8

Cyclic 2.53–2.91

Steel plates with glulam rivets [48] Glulam members Monotonic 16.4–20.4

Cyclic 10.74–15.96

Steel brackets with nails or screws [51, 52] XLam panels Cyclic (parallel to grain) 3.01–6.36

Cyclic (perpendicular to grain) 3.82–4.83

Dowel-type [44] XLam members Cyclic 1.3–2.1

Dowel-type reinforced with self-tapping screws [44] Cyclic 3.4 –7.3

Slotted-in steel plates with nails [54] glulam members Monotonic (parallel to grain) 11.9–31.9

Note: XLam, cross-laminated.

Table 3. Ductility of connections as obtained from experimental tests.

Test specimens Connections Loading µ

Shear walls sheathed with plywood [50] Plates to stud nailing Monotonic 14

cyclic 9.3

Shear walls sheathed with OSB [50] Plates to stud nailing Monotonic 13.2

cyclic 7.7

Cross-laminated walls [55] Hold-downs and brackets with nails, screws and
rivets

Cyclic 3.65–7.54

Shear walls sheathed with OSB [56] Nailed steel brackets and hold-down Monotonic 3.5–4.9

cyclic 3–4.2

Shear walls sheathed with GF [56] Nailed steel brackets and hold-down Cyclic 3.4

Shear walls sheathed with OSB and
GF [56]

Nailed steel brackets and hold-down Monotonic 5.67

Note: OSB, oriented strand board; GF, gypsum fiber.

Table 4. Ductility of modern timber walls as obtained from experimental tests.
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structural parts which are expected to deform elastically even at the ultimate state. This is a
typical procedure followed, for example, in reinforced concrete frames where plastic hinges
are usually lumped at either end of columns and beams, while preventive plasticization of
beams is guaranteed by some code-based strength hierarchy rules. An analogous procedure
can be exploited for timber structures, by assuming timber members as purely elastic elements
and connections as nonlinear links. To comply with the modern philosophy of the capacity
design, the timber elements should be overdesigned to ensure their brittle failure will follow
plasticization of connections (strength hierarchy rule).

3.2.1. Modeling timber connections

Exploiting experimental data is often the best way to obtain the mechanical behavior of a
timber connection under dynamic loads. Several empirical models were proposed in the
literature, which commonly involve parameters calibrated to experimental data, see for exam-
ple [34, 43, 59, 60]. It should be noted, however, that extracting a general model from the
experimental load-displacement curves needs caution owing to the possible dependence on
both the loading history and the test set-up [34, 61, 62], as already discussed in Section 3.1.2.
More detailed micro-models were also proposed by other authors, for example [62–64], which
investigated the non-linear response of metallic fasteners and surrounding wood through
three-dimensional finite element dynamic analyses. Still requiring some empirical adjustments
of parameters, such sophisticated models usually imply a significant aggravation of the com-
putational effort, which may become unsustainable for purposes other than those of advanced
researches.

As already observed in Section 3.1, the behavior of timber connections depends from several
factors, some of which are not easily predictable. This makes rather difficult to develop an
analytical model able to reproduce the behavior of a timber connection. However difficult it
may be, finding a suitable model for the hysteretic behavior of connections is essential to study
the dynamic response of a timber structure, at least when a non-linear analysis has to be
performed.

Commercial packages for structural analysis usually allow choosing between different
mechanical models to implement the behavior of nonlinear links. For instance, the pivot
hysteretic model provided by the widely used SAP2000 for nonlinear links (NLLINK) is
depicted in Figure 10. To adopt a model like this, a set of parameters have to be properly
assigned to reproduce all the typical phenomena experimentally detected in timber connec-
tions such as stiffness and strength degradation as well as pinching effects.

3.3. Concluding notes on the ductile behavior of modern timber structures

When appraising the ductile behavior of modern timber structures, the following aspects can
be eventually addressed.

i. In-situ inspections, laboratory investigations and analytical models available in the litera-
ture converge to the statement that modern timber structures may be ductile and dissipa-
tive, provided that their metallic connections are well designed and detailed. Data collected
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in Tables 3 and 4 show that timber constructions own a rather high —and sometimes
excellent-ductility capacity. However, the actual ductility of a timber construction is not
always univocally established. Different definitions of the ductility ratio are, in fact, pr o-
posed by authors and by codes of practice, as extensively discussed in Refs. [65–67].

ii. A decisive step to evaluate the ductility ratio, in its more classical definition, is the
determination of both the deformation at yield and the ultimate deformation from the
experimental load-deformation curve. Different conventional methods are available to
this purpose as discussed in Refs. [66, 67], but adopting one method or another may lead
to substantial differences in the calculation of the ductility ratio (even up to 100%), as
evidenced in Ref. [66].

iii. The value of the ductility ratio alone cannot be sufficiently representative of the perfor-
mance under strong dynamic loads. Not always, in fact, to higher values of ductility
corresponds a greater amount of energy dissipated. This was addressed, for instance, in
Ref. [55].

iv. To carry out a NLTHA of a timber structure nonlinear links should be located where
plasticization is expected to occur, that is, at connections (plastic hinges). The mechanical
model of the plastic hinges is generally difficult to be defined by the designer due to (a)
insufficient support given by codes of practice; (b) difficulty in finding the experimental
data relevant to the specific connection adopted; (c) uncertainty in the correct extraction of

Figure 10. Multi-linear plastic pivot model for nonlinear links (NLLINK) in SAP2000.

�:�R�R�G���L�Q���&�L�Y�L�O���(�Q�J�L�Q�H�H�U�L�Q�J������



the required parameters from the experimental curves. These difficulties may eventually
discourage the practitioners to carry out non-linear dynamic analyses of timber structures.
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