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1. Introduction 

A common practice in modern engineering is that of simulation-driven optimization. This 
implies replacing costly and lengthy laboratory experiments with computer experiments, 
i.e. computationally-intensive simulations which model real world physics with high 
fidelity. Due to the complexity of such simulations a single simulation run can require up to 
several hours of CPU time of a high-performance computer [45, 56, 61]. 
With computer experiments the simulation-driven optimization process is cast as a 
nonlinear optimization problem having three distinct features: 
- There is typically no analytic expression for the relation between inputs (candidate 

designs) and outputs, i.e. it is a black-box function. 
- Each simulation run is expensive so only a small number (∼ 200) of runs can be made. 
- The underlying real-world physics and/or numerical solution often yield an inputs–

output landscape which is multimodal and nonsmooth. 
A promising approach to tackle such problems is the surrogate-assisted memetic 
optimization. A memetic algorithm combines an evolutionary algorithm (EA) with an 
efficient local search so as to obtain both efficient exploration and exploitation during the 
optimization search [21, 65]. A surrogate-model is a computationally cheaper mathematical 
approximation of the expensive objective function and is used during the optimization 
search in lieu of the expensive function [2, 45] (in some references the term metamodel is 
used synonymously while ‘surrogate-model’ is reserved for a lower-fidelity simulation [42, 
87]). Thus, using surrogate-models circumvents the problem of simulation cost and allows 
evaluation of many candidate designs. 
In this study we propose a surrogate-assisted memetic algorithm which builds upon recent 
advances in computational intelligence and optimization [9, 53, 60, 83–85, 94]. The proposed 
algorithm aims to address four open issues:  
- Obtaining a global model with a small generalization error is too expensive: analysis 

has shown the number of sites required to achieve a fixed generalization error grows 
exponentially with the problem dimension [79]. To avoid allocating all function 
evaluations to the global model we employ a combination of global and local 
surrogate-models to achieve an efficient optimization search.  
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- The accuracy of a global Lagrangian model can degrade due to over-fitting: a 
Lagrangian model learns the exact features of the data which can lead to over-fitting 
and degrades its generalization ability. To address this we use as a global surrogate-
model an artificial neural network based on a RBF network (RBFN) with an adaptive 
network topology. We describe an efficient method for adapting and training the 
network. 

- Convergence to a false optimum: the local search relies on local models, hence if these 
are badly inaccurate the local search may converge to a false optimum. To address this 
we employ a trust-region framework applied to general nonlinear local models. Such 
models can describe a complicated landscape better than the quadratic models of the 
classical trust-region approach. We propose a framework for safeguarding and 
improving the models’ accuracy. 

- Difficulty in selecting an optimal model: different models can be used during the local 
search, e.g. RBF and Kriging. Due to lack of information the user typically chooses an 
inoptimal model which degrades the local search performance. To address this we 
describe a method for model selection based on an approximate generalization error. 
The method results in local models which vary during the local search. 

Accordingly, in this chapter we propose a framework of memetic optimization using 
variable global and local surrogate-models for expensive optimization problems. To obtain a 
global model with good generalization ability it uses an RBFN artificial neural network. 
During the local search it makes an extensive use of accuracy assessment to select the local 
models and to improve them if necessary. It also employs the trust-region approach but 
replaces the quadratic models with the more general RBF and Kriging models. Rigorous 
performance analysis shows the proposed algorithm outperforms several variants of a 
reference surrogate-assisted EA. 
This chapter is organized as follows: Sect. 2 reviews related work and Sect. 3 describes in 
detail the proposed algorithm. This is followed by Sect. 4 which provides the performance 
analysis and lastly Sect. 5 summarizes this chapter. 

2. Related work 

2.1 Expensive optimization problems 
Since EAs require many function evaluations to converge several approaches have been 
studied so as to make them applicable to expensive optimization problems. 
One such approach is fitness inheritance, where only a fraction of the offspring are 
evaluated with the computationally expensive objective function and the rest inherit their 
fitness from their parents [32, 75]. 
A second approach is that of hierarchical or variable-fidelity optimization which uses 
several computer simulations of varying computational cost (fidelity); promising candidate 
solutions migrate from low- to high-fidelity simulations and vice versa [15, 68, 71]. 
A third approach, which we adapt in this study, is that of surrogate-assisted optimization 
[2, 20, 26, 30, 53, 63, 77, 83, 85, 94]. As mentioned, a surrogate-model is a mathematically-
cheaper approximation of the expensive function (typically an interpolant). A least-squares 
quadratic model (originally designed for real-world experiments which are noisy) are used 
in the Response Surface Methodology [5, 48]. Recent studies have used neural-networks [29, 
61], Kriging [63, 72] and radial basis functions [85, 94]. The framework of surrogate-assisted 
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optimization also involves the design of computer experiments [25, 73] and accuracy 
assessment of surrogate-models [42, 74]. 

2.2 Memetic optimization 
Heuristics using random processes, such as EAs, are efficient in exploring the objective 
function landscape and can escape non-global optima. However, in late stages the 
optimization search focuses on a small subset of the search space so exploiting the local 
function behavior is preferred. This motivates the hybridization of random-based heuristics 
with efficient local search algorithms to balance exploration–exploitation, i.e. an efficient 
global and local search [88]. Within the framework of evolutionary optimization such 
algorithms are termed hybrid algorithms or memetic algorithms. 
Examples include hybridization of an EA with a quasi-Newton and conjugate directions 
algorithms [21, 62, 66] and various direct search methods [33, 65, 91, 92]. Multiobjective 
memetic algorithms were studied in [19, 61] and a parallel algorithm was studied in [10]. An 
algorithm for selection among candidate local searchs was studied in [52]. Memetic 
algorithms aimed for expensive optimization problems were studied in [53, 54, 83, 84, 93, 
94]. 

3. The proposed algorithm 

3.1 Initialization and main loop 
Analysis shows the number of sites required to achieve a fixed interpolation error grows 
exponentially with problem dimension [79]. This implies it is inefficient to allocate most or 
even all function evaluations to a single model as this may still result in an inaccurate 
model. Accordingly, we use a sequential approach where we only aim for a coarse global 
model and then use the remaining function evaluations to converge to an optimum [87]. As 
such, the algorithm begins by generating a Latin Hypercube sample (LHS) of N0 = 0.2femax 

where femax is the prescribed limit on evaluations of the expensive function. This provides a 
space-filling sample which improves the model accuracy [41, 73]. The sites are evaluated 
with the true objective function to obtain their corresponding responses and both are copied 
into a cache which is initially empty. Next, a global model is generated based on all cached 
sites using the procedure described in Sect. 3.2. We then search for an optimum of this 
model using a memetic algorithm. Lastly in the optimization iteration, a local search is 
initiated from the predicted optimum so as to converge to an optimum of the expensive 
function, as described in Sect. 3.4. The main loop terminates when the number of function 
evaluations reaches the prescribed limit femax (femax = 100, 150 and 200 were used for 
performance analysis). A pseudocode of the main algorithm is given in Algorithm 1. 
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3.2 A variable-topology RBFN global model 
A global model which is a Lagrangian interpolant, i.e. satisfying the conditions of exact 
interpolation 

 (1) 

can suffer from two demerits: a) it can generalize poorly due to over-fitting to the given data 
[4, 7, 34] and b) it can become computationally-expensive (since it accounts for all sites) and 
numerically unstable (due to ill-conditioning) [6, 11, 28]. 
To circumvent these issues we use for the global model an artificial neural network with 
radial basis functions neurons (processing units), a design termed an RBF network (RBFN). 
Such networks have two merits: a) both theoretical analysis and real-world experience have 
shown they generalize well [22, 43, 59, 81] and b) they have a simpler topology compared to 
other networks and hence are more easily implemented and trained [46, 57, 58]. 
 

 
Fig. 1. An RBFN with three neurons (processing units). 

Figure 1 shows a diagram of a typical RBFN. It comprises of three layers: the input layer, the 
processing layer comprised of neurons and the output layer which is a weighted sum of the 
neuron responses. An RBFN generalizes well and avoids over-fitting since it generates an 
abstraction of the data set. This is achieved by using fewer neurons than sample sites (so the 
centres of the neuron RBFs typically do not coincide with any of the data sites) and careful 
training of the network parameters. The response of an RBFN is given as 

 
(2) 

where N is the number of neurons, λ j  is a coefficient, jt  is a basis-function (or kernel) 

centre and jc  is a shape parameter (or hyper-parameter). The neurons are RBF Gaussian 

functions which assist in modelling nonlinear functions [22, 43, 49, 57]. 
To avoid ill-conditioning and expensive calculation the network needs to be compact 
(minimizing the number of neurons N) while still be capable of generalizing well. Also, it is 
difficult to prescribe an optimal topology so the network should be self-adaptive [18, 30, 31, 
39, 58]. Accordingly, we implement such a self-adaptive network which operates as follows. 
Initially, the data set is split into a training set (Xtra) and a testing set (Xtra) which are disjoint 
(we use a 80–20 training–testing ratio). Starting from a single neuron, the network is trained 
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with Xtra and is tested with Xtes , an approach termed holdout [23, 82]. The generalization 

error is measured by the normalized root mean square error (NRMSE) over Xtes , i.e. 

 
(3) 

where x i is the ith site in the testing set Xtes and the numerator is the sum of the Gaussian 

loss-function (or discrepancy) 

 (4) 

over then training set [34]. The denominator is the variance of the responses in the testing 
set. Besides the NRMSE the loss-function values over the training and testing set are also 
calculated, i.e. 

 

(5) 

and similarly for the training set yielding Ltra . If NRMSE > NRMSE
⋆
 where NRMSE

⋆
 is 

prescribed than 0.1|Xtra| neurons are added to the network and the new network is trained 

as explained below. The network stops growing if NRMSE ≤ NRMSE
⋆
 or if the number of 

neurons equals the number of training sites (N =|Xtra|) . After the network stopped 

growing the chosen topology is that which had the lowest weighted error 

 (6) 

where a larger weight is given to the testing error over the training error. 
For each number of neurons the network parameters (RBF centres, coefficients, shape 
parameters) need to be trained to achieve good generalization. While it is possible to train 
the network in a fully supervised manner by minimization of the generalization error 
convergence is slow [46]. Accordingly, we implement a fully unsupervised learning where 
the RBF centres are obtained by a k-means clustering algorithm [31, 46], the shape 
parameters are obtained from 

 (7) 

whered is the mean l2 distance between all sites in the data set X (related to the Gaussian 

rate of decay) [57, 58]), and the coefficients λ are obtained from the normal least-squares 

equations 

, (8) 
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where f  is the vector of responses and Φ is the interpolation matrix 

 
(9) 

Figure 2 shows an example of a model training with the variations in Ltra and Ltes . When the 
network is over-trained the testing error begins to grow. The parameters are taken from the 

cycle which minimized ew before over-training. Figure 3 shows an example of the adaptation 

of the proposed RBFN. Algorithm 2 gives a pseudocode of the proposed algorithm for the 
adaptive RBFN. 
 

 
 

 

Fig. 2. An example of the RBFN training with the Rastrigin-5D objective function. As the 
number of neurons increases both training error and testing error decrease until 
overtraining commences at 9 neurons (indicated by an increase in the testing error). The 
chosen topology has the minimal weighted error. 

 

 
 

                                        (a) 4 neurons                                           (b) 9 neurons 
 

Fig. 3. An example of the RBFN topology adaptation with the Rastrigin-2D function. A 
sample of 20 sites was split into training (■) and testing (▲) sites. We show each topology 
by its RBFN centres (  ) and the corresponding shape parameters (the radius of the circles). 
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3.3 Memetic search for an optimum of the global model 
After generating the global model S( x ) we use a memetic algorithm to search for an 

optimum of it. The memetic algorithm first employs a real-coded EA [8] for efficient 
exploration. The EA uses a population size spop = 50 , linear ranking, stochastic universal 

sampling (SUS), intermediate recombination, elitism with a generation gap ggap = 0.9 and the 

breeder-genetic-algorithm mutation operator with probability pm = 0.05 [47]. The 

evolutionary search is stopped when no improvement is observed after gn.i. = 10 generations; 

the small setting for gn.i. is since we do not require the EA to converge to a very accurate 
solution, as this is accomplished by the following step. The optimum found by the EA is 
then used as the initial solution for an SQP solver which uses the finite-differences quasi-
Newton BFGS algorithm. This yields  an improved predicted optimum of the global 
model. During the memetic optimization stage approximate function values are obtained 
from the surrogate-model (the objective function is not used). 

3.4 The local search 
Since the global model is coarse  may be a bad approximation to a true optimum of the 
expensive function. Accordingly, we use   as an initial guess for a local search to search 
for a true optimum. Two considerations with the local search are efficiency (which suggests 
using local models requiring fewer sites than the global model) and accuracy (which 
suggests using a procedure to safeguard against convergence to a false optimum). Both of 
these goals are accomplished by using a trust-region approach, as described below. To 
further improve the local search we propose a method for selecting the model type (as either 
RBF or Kriging) and to improve the models, if necessary; this results in local models which 
vary during the local search. 

3.4.1 A trust-region approach 
The classical trust-region approach generates at each iteration a quadratic model and obtains 
its constrained optimum (a truncated Newton step) as a quadratic programming problem. 
However, such models cannot adequately describe a complicated or multimodal landscape 
so instead we generate more flexible local models (either RBF or Kriging) and obtain their 
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constrained optimum (in the trust-region) using a memetic search. The trust-region 
framework safeguards the model accuracy and ensures convergence to an optimum of the 
expensive objective function, i.e. it is a framework for managing models [1, 12, 68]. 

The initial trust-region is taken as a cuboid centred at xc the predicted optimum of the global 

model and is of size Δ (with an initial size Δ 0 = 0.1), i.e. 

 (10)

All cached sites which are in the trust-region are used to generate the local surrogate-model. 
We exclude remote sites to emphasize only the local function behaviour. 
The model type is selected using the algorithm described in Sect. 3.2 and the constrained 
optimum of the local model in T , , is obtained by the memetic search described in Sect. 
3.3. 
Following the classical trust-region approach the predicted optimum is evaluated with the 
true objective function and a merit value is calculated 

 
(11)

where S( ) now denotes the current local surrogate-model. 
A main difference to the classical trust-region framework is that the latter assumes the 
quadratic model is accurate (i.e. based on an exact gradient and Hessian) while here we also 
need to account for model inaccuracy due to the interpolation on a finite set. As such, the 
model may be inaccurate due to an insufficient number of sites in the trust-region. Reducing 
the trust-region size too quickly due to model inaccuracy can lead to premature termination 
of the local search [9]. To avoid this we relate the model accuracy to the number of sites in 
the trust-region, denoted as . A reasonable criterion to consider the model accurate is when 

 ≥ d + 1 (d being the problem dimension). This threshold is based on the number of sites 
required to model the gradient of the objective function (and hence to identify a descent 
direction) by well-established methods like quasi-Newton finite-differences or polynomial 
interpolation [9]. However, if the allowed number of function evaluations femax is small and 
the problem dimension is high too many sites are needed to consider the model accurate. 
Accordingly, we use the threshold value s⋆ = min{d + 1 , 0.1femax}. 

Based on ρ, s and s⋆ the proposed algorithm performs one of the following updates: 
- if ρ > 0: then the surrogate-model is accurate since a better solution has been found. 

Following the classical trust-region framework we centre the trust-region at the new 
optimum xm and increase the trust-region size by a factor δ+ . 

- if ρ ≤ 0 and s < s⋆: the local model is inaccurate but this is attributed to an insufficient 
number of sites in the trust-region. Thus we improve the accuracy of the local model in 
the trust-region by adding a site using the model improvement algorithm (Sect. 3.4.3). 

- if ρ ≤ 0 and s ≥ s⋆: the local model is based on a sufficient number of sites but fails to 
predict an improvement due to the trust-region size. Following the classical trust-region 
framework we decrease the trust-region size by a factor δ_. 
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After the model and trust-region have been updated the current local search iteration is 
finished. The local search is stopped if the trust-region is small enough Δ < Δmin (we use  

Δmin = Δ0 · δ 2
_ ) or if the number of evaluations of the true objective function exceeds femax. 

Some additional comments on the local search: 
- At most only two evaluations of the true function are performed at each local search 

iteration. 
- All sites evaluated during the local search are added to the cache for later use. 
Figure 4 shows an example of a local search with the proposed trust-region approach used 
with the Branin function. A pseudocode of the proposed trust-region local search is given in 
Algorithm 3. 
 

 
 
                                    (a) Iteration 2                                                         (b) Iteration 5 
 

Fig. 4. An example of the trust-region local search using local models (RBF or Kriging). The 
objective function is Branin. For iterations 2 and 5 the chosen model (Kriging) and the 
corresponding trust-region are shown. 
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3.4.2 Model selection 
To assist the optimization search we wish to generate a surrogate-model which is optimal, 
i.e. as accurate as possible. We select among two candidate models, namely radial basis 
functions (RBFs) or Kriging, as these have performed well in benchmark tests against other 
models [17, 25, 73, 74]. 
The RBF surrogate-model is a Lagrangian interpolant which is a linear combination of basis 
functions. To ensure the non-singularity of the interpolation matrix we consider an RBF 
model which uses linear basis functions [44] such that 

 
(12)

where n is the number of sites, φi(x) are the linear radial basis functions and the coefficients 

λi are obtained from the linear system 

 (13)

A Kriging (or a spatial-correlation) model uses a global ‘drift’ function o which a stationary 
Gaussian process is overlaid; the former captures the global trend while the latter provides 
local adjustments [40, 45, 69]. We adapt the common approach where the drift function is 
taken as constant (e.g. set to 1) so the model is given by 

 (14)

where β is the drift function coefficient and Z(x) is the Gaussian process function [45, 69]. 

The Gaussian process is assumed to have a mean zero and variance σ. Deviating from the 
random error approach of the Response Surface Methodology, the response at any site is 

considered correlated with other sites. The correlation between two sites x1 and x2 is defined 

by a covariance function 

 (15)

where R(x1, x2) is a prescribed spatial correlation function (SCF). Following [45] we consider 

the exponential SCF 

 
(16)

The Kriging model is defined once β and θ have been fixed. For a given data set the value of 
θ is obtained by maximum likelihood estimation [37]. Having found the optimal θ and 
assuming a constant drift function then the Kriging model is 

 (17)
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where R is the correlation matrix for data set X, r  is the correlation vector between x and 

X and β̂ is the least-squares estimate of β 

 (18)

Details of the Kriging code implementation are given in [78]. 
The two different possible models, namely linear RBF and Kriging, introduces the issue of 
model selection. To assist the local search we wish to select the most accurate model, i.e. 
having the least generalization error. Similarly to Section 3.2 we approximate the 
generalization error based on the available data set. While it is possible to use the holdout 
method for approximating the generalization error a better estimate is obtained if repeated 
models are generated and all sites are used both for training and for testing, an approach 
known as the leave-one-out cross-validation (LOOCV) [42, 80]. The estimate is obtained as 
follows: given a candidate model (in our case a linear RBF or Kriging) then for each site x i ,  

i = 1…n a surrogate-model is generated using all sites except x i and the Gaussian loss-

function of this surrogate-model is calculated at x i . The estimated generalization error is 
then the mean of all observed errors. The model corresponding to the smallest LOOCV error 
is assumed to be the most accurate. In this basic form the LOOCV procedure requires 
generating n surrogate-models, which is expensive. To circumvent this, for the RBF we use 
an efficient procedure proposed in [67] while for the Kriging we use a procedure proposed 
in [45]. 
 

 
                               (a) Rosenbrock-10D                                             (b) Rastrigin-20D 
 

Fig. 5. Examples of the model selection algorithms. The solid line (—) indicates which model 
was more accurate based on a large sample of 250 sites while the dot (ï) indicates which 
model was selected by the proposed method based on a small sample. 
 

Figure 5 shows two examples of the proposed model selection algorithm. The following 
procedure was repeated 30 times to obtain statistically significant results. We used the 
Rosenbrock-10D and Rastrigin-20D test functions and 50 sites generated by LHS. The 
proposed method was used to select between an RBF model and a Kriging model. A 
separate testing sample of 250 LHS sites was used to obtain a more accurate estimate of the 
true generalization error of the models. It follows the proposed method selects (in the large 
majority of cases) the model whose true generalization error is indeed smaller. 
The outcome of the model selection is that the proposed memetic algorithm uses variable 
surrogate-models (either linear RBF or Kriging) during the local search. A pseudocode of 
the model selection algorithm is given in Algorithm 4. 
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3.4.3 Model improvement 
If the local model is deemed inaccurate, i.e. there is an insufficient number of sites in the 
trust-region then a new site is generated to improve the model accuracy (reduce its 
generalization error). Analysis of various surrogate-models (polynomial, RBF and Kriging) 
relates their generalization error to the distribution of sites [9, 28, 70]. Clustered sites do not 
provide sufficient information on the objective function and lead to an ill-conditioned 
interpolation matrix which further degrades the model accuracy. The distribution of sites is 
measured by the fill distance 

 (19)

i.e. the radius of the largest ball in the feasible domain F which does not contain any sites in 

its interior [36, 70]. To improve the model accuracy (increase h) new sites should be added 
such that they are remote from existing sites. Thus, to improve the model in the trust-region 

we seek a site which maximizes the fill distance for the augmented set { TX ∪ x i } where TX  

is the set of sites in the trust-region. To obtain the model-improving site x i we formulate the 

nonlinear optimization problem 

 
(20)

We solve (20) by generating an initial sample of candidate sites and starting an SQP solver 
from the best one (having the maximum separation distance). This results in sites 

distributed similarly to the maximin design [27]. After x i has been found it is evaluated with 

the true objective function and is added to the cache. A pseudocode of the model 
improvement iteration is given in Algorithm 5. 
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3.5 Additional remarks 
In this section we provide additional remarks on the complete algorithm. 
-    The local search is initiated only if the distance of the predicted optimum xc from all 

       cached sites is larger than Δmin 

- As the cache grows the interpolation matrix Φ becomes ill-conditioned and this 

degrades the solution accuracy of (8) [28]. To circumvent this we solve (13) by the 
numerically stable truncated singular value decomposition (TSVD) such that 

 (21)

where Σ is the diagonal matrix of singular values σi of Φ. Given the responses vector f 

and defining 

 (22)

and a vector y  such that 

 
(23)

the solution vector is 

 (24)

Thus the solution vector is generated by the span of the vectors corresponding to a 
sufficiently large singular value. We use εSVD = 10ε, where ε is the machine precision. 

4. Performance analysis 

We assessed the performance of the proposed algorithm using both mathematical test 
functions and a real-world problem of airfoil shape optimization. In these tests the proposed 
algorithm was also benchmarked against two variants of a reference surrogate-assisted EA 
which is representative of many others [64]; Algorithm 6 gives its pseudocode. 
 

 
The two variants differ by the surrogate-model they use, namely either a linear RBF model 
or a Kriging model with an exponential spatial correlation function. 
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Table 1. Parameter Settings for the Proposed Memetic Algorithm 

All relevant parameters (e.g. initial surrogate-model sample and evolutionary parameters) 
were the same as in the proposed algorithm. Parameter settings are given in Table 1. To 
obtain statistically-significant results 30 runs were repeated for each test with the proposed 
algorithm and the two variants. 

4.1 Mathematical test functions 
For the mathematical tests functions we used the well-known Branin, Hartman 3 and 
Hartman 6 functions with a maximum evaluations limit of femax = 100 [13]. To asses the 
impact of the ‘curse of dimensionality’ [3] we also used the well-known chained Rosenbrock 
(high epistasis) and Rastrigin function (high multimodality) functions with femax = 200 [86, 

90]. We set these small values for femax to measure performance under a constraint of 
resources (as function evaluations are considered expensive) [89]. Details of the test 
functions are given in Table 2. Test statistics are given in Table 3 which indicate the 
proposed algorithm outperformed the two surrogate-assisted EAs. 
To determine in a rigorous manner if there is a statistically-significant difference between 
the results of the proposed algorithm and the two variants we applied the nonparametric 
one-tailed Mann–Whitney (or Wilcoxon) test which provides a test statistic U [35]. The null 
and alternative hypothesis are: 

 (25a)
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 (25b) 

where P(x i < xp) is the probability that a score of the proposed algorithm is larger (worse) 

than a score of one of the variants (i = 1, 2). Table 4 provides the test statistics for 
comparisons with the two variants over the five test functions and the decision rules. For the  
 

 
Table 2. Mathematical Test Functions 

 
Table 3. Results for Mathematical Tests Functions 
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Table 4. Mann–Whitney Test Statistics 

Branin function and the RBF variant we cannot reject the null hypothesis at the 0.01 
significance level, which is attributed to the relative low difficulty of the problem (d = 2) so 
the difference between the proposed algorithm and the variant is not statistically-significant. 
For all other tests we reject H0 at both significance levels α = 0.05 and 0.01 and accept there is 
a statistically significant difference between the results obtained by the proposed algorithm 
and by each of the variants for both test functions, i.e. the proposed algorithm outperforms 
the two variants of the reference algorithm. 

4.2 A real-world application 
We have also applied the proposed algorithm to a real-world application of airfoil shape 
optimization. The goal is to find an airfoil shape which maximizes the lift-to-drag ratio 
(equivalently minimizes the drag-to-lift ratio) at the prescribed cruise conditions [51, 56], i.e. 

 

(26)

where the thickness constraint is based on [55] and the cruise conditions are based on [16, 
p.484–487] (modified from M = 0.57 , h = 25, 000[ft]) . 
Accordingly, to normalize the objectives cD  / cL and the thickness to the interval [0,1] we 
defined the objective function 

 
(27)

where cL,min = −0.5 , cD,max = 0.2 are the assumed minimum cL and maximal cD, respectively. 

For the latter two only reasonable estimates are needed as they are only used to normalize 
the objectives. 
Candidate airfoils were generated using the PARSEC parameterization [50, 76] which 
involves 11 design variables as shown in Figure 6. Bounds for these design variables were 
set according to previous studies [24, 56] and are given in Table 5. To ensure a closed airfoil 
shape the leading edge gap was set as Δz TE = 0. Candidate airfoils were evaluated with 
XFoil, an analysis code for subsonic isolated airfoils based on the panel method [14]. Each 
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airfoil evaluation required approximately 30 seconds on a desktop computer. We set the 
limit of function evaluations to femax = 150. 
 

 
Fig. 6. PARSEC design variables. 
 

 
Table 5. PARSEC design variables bounds. 

Figure 7 shows an airfoil found by the proposed algorithm and the distribution of the 
pressure coefficient along its upper and lower surfaces. The airfoil yields a lift to drag ratio 
of cL/cD = 4.557 and satisfies the minimum thickness requirement (minimum thickness at 
0.2–0.8 of chord is t = 0.120). 
We benchmarked the proposed algorithm against the two reference algorithms from the 
previous subsection and test statistics are given in Table 6. A nonparametric analysis similar 
to that of the previous section gives a Mann–Whitney test statistic of U = 3.918 and 4.110 for 
the RBF and Kriging variants respectively. 
 

 
                                                         1 standard deviation 

Table 6. Benchmarks for the airfoil shape optimization 
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                             (c) Airfoil geometry                                   (d) Pressure distribution 

Fig. 7. Obtained airfoil. 

We thus reject the null hypothesis at both α = 0.05 and 0.01 and accept there are statistically-
significant differences between the results. This shows that also in this real-world 
application the proposed algorithm outperformed the surrogate-assisted variants. 

5. Summary 

We have proposed a surrogate-assisted memetic algorithm for expensive optimization 
problems. The algorithm combines global and local models and makes extensive use of 
model selection to assist the optimization search. The global model is an RBF artificial neural 
network (RBFN) whose topology is adapted incrementally to achieve both a compact 
network and good generalization. For the local models the proposed algorithm selects 
between an RBF and a Kriging model based on an accuracy assessment of the models. To 
ensure convergence to a true optimum of the expensive function these models are used in a 
trust-region framework, i.e. they replace the quadratic models; the proposed trust-region 
framework safeguards the accuracy of the local models and improves them, if necessary. 
Extensive performance analysis shows the proposed algorithm outperforms variants of a 
reference surrogate-assisted EA. 
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