We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,400
Open access books available

117,000
International authors and editors

130M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter 3

Uniform Interfaces for Resource-Sharing Components in Hierarchically Scheduled Real-Time Systems

Martijn M. H. P. van den Heuvel, Reinder J. Bril, Johan J. Lukkien, Moris Behnam and Thomas Nolte

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/62691

Abstract

In literature, several hierarchical scheduling frameworks (HSFs) have been proposed for enabling resource sharing between components on a uni-processor system. Each HSF comes with its own set of composition rules which take into account a specific synchronization protocol for arbitrating access to resources. However, the inventors of these synchronization protocols have also chosen to describe these composition rules with the help of protocol-specific component interfaces. This creates unnecessary framework dependencies on components.

In this chapter, we review existing interfaces and propose uniform interfaces to integrate resource-sharing components into HSFs. For the purpose of computing uniform interfaces, we introduce a local (component-level) timing analysis for components which is independent (or agnostic) of the global synchronization protocol being used for arbitrating access to shared resources. An individual component can therefore be analyzed as if all resources are entirely dedicated to it. Given its interface, the component can then be used with an arbitrary global synchronization protocol. This increases the reusability of a component’s timing interface, because the interface can still be fed to protocol-specific composition rules when components are integrated.

Keywords: hierarchical scheduling frameworks, resource sharing, component composition, real-time interfaces, synchronization protocol

1. Introduction

Hierarchical scheduling frameworks (HSFs) have been developed to enable composition and reusability of real-time components in complex systems, for example, as described by Hole-
nderski et al. [1] for the automotive domain. During the development of such systems, component models have become important in order to separate and structure the development of system parts over engineering teams (or third parties). The increasing system complexity therefore demands a decoupling of (i) development and analysis of individual components and (ii) integration of components on a shared platform. This decoupling requires component interfaces covering both functional aspects as well as non-functional aspects, such as timing. An HSF supports system composition from a timing perspective because it isolates components by allocating a processor budget to each component. A component that is validated to meet its timing constraints when executed in isolation will continue meeting its timing constraints after integration (or admission) on a shared uni-processor platform. The HSF is therefore a promising solution for industrial standards, e.g., the AUTomotive Open System ARchitecture (AUTOSAR), which more and more specify that an underlying operating system should prevent timing faults in any component to propagate to other components on the same processor.

Independent analysis of components and their integration in HSFs is enabled through a set of composition rules (e.g., as proposed by Shin and Lee [2]). By splitting the timing analysis in complementary parts, one could establish global (system level) timing properties by composing independently specified and analyzed local (component level) timing properties. Local timing properties are analyzed by assuming a worst-case supply of processor resources to a component. The way of modeling the provisioning of the processor budget to a component is defined by a resource-supply model, e.g., the periodic resource model by Shin and Lee [2] or the bounded-delay model by Feng and Mok [3]. These models make it possible to combine the timing constraints of the tasks within a component (typically deadlines) and abstract from the way tasks are locally scheduled. A component can therefore be represented by a single real-time constraint, called a real-time interface. Components can be composed into an HSF by combining a set of real-time interfaces, which will treat each component as a single task by itself. This enables reuse of components.

The global scheduling environment (a parent component) can provide more resources to its (child) components than just processor resources. For example, components may use operating system services, memory mapped devices, and shared communication devices requiring mutually exclusive access. An HSF with support for resource sharing makes it possible to share serially accessible resources (from now on referred to as resources) between arbitrary tasks, which are located in arbitrary components, in a mutually exclusive manner. A resource that is only shared by tasks within a single component is a local shared resource. Their local scheduling impact can be easily abstracted by real-time interfaces. A resource that is used in more than one component is a globally shared resource.

Any access to a resource (local or global) is assumed to be arbitrated by a synchronization protocol. In practical situations, a component developer is typically unconcerned about the sharing scope of resources. A component may access resources for which just local usage or global usage is determined only upon integration of components into the HSF. Fortunately, the syntax of the primitives for accessing local and global resources can be the same, even though the synchronization protocols are different (e.g., as implemented by van den Heuvel,
et al. [4]). The actual binding of function calls to scope-dependent synchronization primitives, that arbitrate either global or local resource access, can be done at compile time or when the component is loaded. Dynamic binding of primitives makes it possible to decouple the specification of global resources in the interface from their use in the implementation. This flexible decoupling of the sharing scope of resources in the application’s programming interface is called *opacity* by Martinez et al. [5] and it abstracts whether or not a resource is globally shared in the system.

This chapter presents an extension of this notion of opacity to component analysis and the corresponding derivation of a real-time interface of a component. Opacity requires that the implementation of a component, as well as the way in which interface parameters are derived (the local analysis), are unaware of the global synchronization protocol. In this way, components cannot make use of any knowledge about the constraints and modifications to a component imposed by the global synchronization protocol. By definition of opacity, all computed interface parameters of a component are made independent of a global synchronization protocol.

Based on this observation, we present the following contributions:

- We present a uniform representation of component interfaces and a corresponding opaque analysis to derive these interfaces.
- We survey the existing analyses for components that are assumed to run in HSFs with a particular synchronization protocol. We characterize the opacity compliance of their analyses.

2. Related work

In hierarchically scheduled systems, a group of recurring tasks, forming a component, is mapped on a reservation; reservations were originally introduced by Mercer et al. [6] and Rajkumar et al. [7]. We first review existing works on hierarchical scheduling of independent components. Secondly, we lift the assumption on the independence of components, so that tasks may share resources with other tasks, either within the same component or located in other components. This means that resource sharing expands across reservations which calls for specialized synchronization protocols for arbitrating access to resources. Finally, we discuss the extension of real-time interface representations for components requiring access to shared resources through a synchronization protocol.

2.1. Timing interfaces of independent real-time components

The increasing complexity of real-time systems led to a growing attention for component-based systems. Deng and Liu [8] therefore proposed a two-level HSF for open systems, where components may be independently developed and validated. The corresponding timing analysis of the HSF has been presented by Kuo and Li [9] for fixed-priority preemptive
scheduling (FPPS) and by Lipari and Baruah [10] for earliest-deadline-first (EDF) global schedulers.

Later, the research community identified the challenges of separating the timing analysis of the HSF by means of real-time interfaces for components. A real-time interface separates the component's internals (i.e., its tasks and scheduling policy) from its global resource allocation strategy. Wandeler and Thiele [11] calculate demand and service curves for components using real-time calculus. Shin and Lee [2] proposed the periodic resource model to specify periodic processor allocations to components. The explicit-deadline periodic (EDP) resource model by Easwaran et al. [12] extends the periodic resource model of Shin and Lee [2] by distinguishing the relative deadline for the allocation time of budgets explicitly. The bounded-delay model by Feng and Mok [3] describes linear service curves with a bounded initial service delay. Many works presented approximated [e.g., 13–15] and exact [e.g., 2,12,14] budget allocations for the bounded-delay and periodic resource models under preemptive scheduling policies. Both Lipari and Bini [14] and Shin and Lee [16] have presented methods to convert the bounded-delay model into a periodic resource model. In our chapter, we extend these models in order to support task synchronization.

2.2. Task synchronization in hierarchically scheduled systems

In literature, several alternatives are presented to accommodate resource sharing between tasks in reservation-based systems. de Niz et al. [17] support this in their fixed-priority preemptively scheduled (FPPS) Linux/RK resource kernel based on the immediate priority ceiling protocol (IPCP) by Sha et al. [18]. Steinberg et al. [19] implemented a capacity-reserve donation protocol to solve the problem of priority inversion for tasks scheduled in a fixed-priority reservation-based system. A similar approach is described by Lipari et al. [20] for EDF-based systems and termed bandwidth inheritance (BWI).

BWI regulates resource access between tasks that each have their dedicated budget. It works similar to the priority-inheritance protocol (PIP) by Sha et al. [18], and when a task blocks on a resource, it donates its remaining budget to the task that causes the blocking. BWI does not require a priori knowledge of tasks, i.e., no ceilings need to be precalculated. BWI-like protocols are therefore not very suitable for arbitrating hard real-time tasks in HSFs, because the worst-case interference of all tasks in other components that access global resources needs to be added to a component’s budget at integration time in order to guarantee its internal tasks’ schedulability also in case budget needs to be donated. This leads to pessimistic budget allocations for hard real-time components. To accommodate resource sharing in HSFs, three synchronization protocols have therefore been proposed based on the stack resource policy (SRP) from Baker [21], i.e., HSRP by Davis and Burns [22], SIRAP by Behnam et al. [23], and BROE by Bertogna et al. [24].

2.3. Timing interfaces for resource-sharing components

Global resource sharing in HSFs is often based on the SRP by Baker [21] in order to compute blocking delays in the schedule; these computations follow a similar approach as the SRP,
which is then re-used at the various scheduling levels in the HSF. In addition, resource sharing requires scheduling mechanisms which have an impact on the local scheduling of a component. If a task that accesses a globally shared resource is suspended during its execution due to the exhaustion of its (processor) budget, excessive blocking periods can occur which may hamper the correct timeliness of other components (see Ghazalie and Baker [25]). To prevent such budget depletion during global resource access (see Figure 1), four synchronization protocols have been proposed. These are based on two general mechanisms to prevent budget depletion during the execution of a task’s critical section:

Figure 1. When the budget \(Q_s \) (allocated every period \(P_s \)) of a task depletes while a task executes on a global resource, tasks in other components may experience excessive blocking durations, \(B \).

1. **self-blocking:** wait with accessing a resource when the remaining budget is insufficient to complete a resource access entirely. Self-blocking comes in two flavors: (i) the subsystem integration and resource allocation policy (SIRAP) by Behnam et al. [23] and (ii) the bounded-delay resource open environment (BROE) by Bertogna et al. [24]. With SIRAP, a self-blocked task essentially spin locks, i.e., it idles the component’s budget away, while the task is waiting for its budget to replenish. Instead, BROE delays the remaining processor’s resource supply to a component if there is insufficient budget to complete the entire critical section and if the budget supplied so far is running ahead with respect to the guaranteed processor utilization.

The idea of self-blocking has also been considered in different contexts, e.g., see [26] for supporting soft real-time tasks and see Holman and Anderson [27] for a zone-based protocol in a pfair scheduling environment. SIRAP by Behnam et al. [23] and BROE by Bertogna et al. [24] use self-blocking for hard real-time tasks in HSFs on a single processor and their associated analysis supports composition. Behnam et al. [28] have significantly improved the original SIRAP analysis by Behnam et al. [23] for arbitrating multiple shared resources; similarly, Biondi et al. [29] have improved the analysis of BROE for arbitrating multiple shared resources. However, these improvements also complicate the analysis and they make the timing analysis more protocol specific.

2. **overrun:** execute over the budget boundary until the resource is released—called the hierarchical stack resource policy (HSRP) by Davis and Burns [22]. HSRP has two flavors: overrun with payback (OWP) and overrun without payback (ONP). The term *without payback* means that the additional amount of budget consumed during an overrun does not have to be returned in the next budget period.

The overrun mechanism (with payback) was first introduced by Ghazalie and Baker [25] in the context of aperiodic servers. This mechanism was later re-used in HSRP in the context of two-level HSFs by Davis and Burns [22] and complemented with a variant
without payback. Although the analysis presented by Davis and Burns [22] does not integrate in HSFs due to the lacking support for independent analysis of components, this limitation is lifted by Behnam et al. [30].

Although these four resource-arbitration protocols prevent budget depletion during a task’s resource access, in order to do so, processor resources may need to be delivered differently. This, on its turn, may add constraints to the supply of processor resources in order to preserve local deadline constraints of tasks. Protocol developers deal with these constraints in different ways and sometimes these are already taken into account in the local analysis of a component (e.g., see [28–30]). This may therefore result in protocol-specific interfaces of components.

We present a uniform way to model the local constraints on the component’s processor supply imposed by resource sharing by extending the periodically constrained model of Feng and Mok [3], as presented for independent components by Shin and Lee [16]. It is therefore important to know which resources a task will access in order to support independent analysis of each of the resource-sharing components. Our local analysis then yields the same timing interface, regardless of the protocol being used for global resource synchronization. During the integration of components, we take those interfaces and we analyze the impact of synchronization penalties with the help of protocol-specific composition rules.

3. Real-time scheduling model

A system contains a single processor and a set \mathcal{R} of M resources R_1, \ldots, R_M. The processor and (some of) these resources need to be shared by N components, C_1, \ldots, C_N, and each component executes its work through a set of (concurrent) tasks (as depicted in Figure 2).

![Figure 2](image_url)

Figure 2. Overview of our system model. A parent component implements a global scheduler to allocate a share of the processor and a share of other resources, e.g., R_1 and R_2, to each of its child components, C_1 to C_N. Each child component, C_s, contains a set of tasks, $\tau_{s1}, \ldots, \tau_{sn}$, and a local scheduler. Tasks, located in arbitrary components, may share resources. Tasks receive their share of the resources as specified by their component interface, Γ_s.

Real-time Systems

34

Real-time Systems
3.1. Component and task model

Each component \(C_s\) contains a set \(T_s\) of \(n_s\) sporadic, deadline-constrained tasks \(\tau_{s1}, \ldots, \tau_{sn_s}\). A sporadic task generates an infinite sequence of jobs which are activated at least \(T_{si}\) time units separated from each other. Each sporadic job may arrive at an arbitrary moment in time, i.e., it may delay its arrival for an arbitrarily long period. A sporadic task can be seen as a sporadically periodic task which exhibits its worst-case processor demand when subsequent jobs arrive separated minimally in time, i.e., similar to a periodic task under arbitrary phasing (see Liu and Layland [31]).

We extend the timing characteristics of a sporadic task, as introduced by Mok [32], with a parameter to capture its resource requirements. The timing characteristics of a task \(\tau_{si}\) are therefore specified by means of a quadruple \((T_{si}, E_{si}, D_{si}, H_{si})\), where \(T_{si} \in \mathbb{R}^+\) denotes its minimum inter-arrival time, \(E_{si} \in \mathbb{R}^+\) its worst-case execution time (WCET), \(D_{si} \in \mathbb{R}^+\) its (relative) deadline (where \(0 < E_{si} \leq D_{si} \leq T_{si}\)), and \(H_{si}\) denotes the set of its WCETs of critical sections. The WCET of task \(\tau_{si}\) within a critical section accessing global resource \(R_{\ell}\) is denoted \(h_{si\ell}\) (i.e., a value contained in \(H_{si}\)), where \(h_{si\ell} \in \mathbb{R}^+ \cup \{0\}\), \(E_{si} \geq h_{si\ell}\). For tasks, we also adopt the basic assumptions by Liu and Layland [31], i.e., jobs do not suspend themselves, a job of a task does not start before its previous job is completed, and the overhead of context switching and task scheduling is ignored. For notational convenience, tasks (and components) are given in deadline-monotonic order, i.e., \(\tau_{s1}\) has the smallest deadline and \(\tau_{sn_s}\) has the largest deadline.

A task set is said to be schedulable if all jobs of the tasks are able to complete their WCET of \(E_{si}\) time units within \(D_{si}\) time units from their arrival. The tasks of this component have to meet their deadlines with a particular budget on the processor and each resource being used. These budgets specify the periodically guaranteed fraction of the resource that the tasks may use. The timing interface of a component \(C_s\) specifies this budget, i.e., the interface is denoted by a triple \(\Gamma_s = (P_s, Q_s, X_s)\), where \(P_s \in \mathbb{R}^+\) denotes the component’s period, \(Q_s \in \mathbb{R}^+\) denotes its budget on the processor, and \(X_s\) denotes the set of resource holding times to global resources (which may be seen as budgets on resources). The maximum value in \(X_s\) is denoted by \(X_{smax}\) and, just like any budget, the resource holding time must fit in the component’s budget: \(0 \leq X_s \leq P_s\). The period \(P_s\) therefore serves as an implicit deadline of the component.

The set \(\mathcal{R}_s\) denotes the subset of global resources accessed by component \(C_s\), so that \(h_{si\ell} > 0 \iff R_{\ell} \in \mathcal{R}_s\) and the cardinality of \(\mathcal{R}_s\) is denoted by \(m_s\) (just like the cardinality of \(X_s\)). The maximum time that a component \(C_s\) executes on the processor while accessing resource \(R_{\ell} \in \mathcal{R}_s\) is called the resource holding time which is denoted by \(X_{s\ell}\), where \(X_{s\ell} \in \mathbb{R}^+ \cup \{0\}\) and \(X_{s\ell} > 0 \iff R_{\ell} \in \mathcal{R}_s\). The relation between the WCET of a critical section \(h_{si\ell}\) and the resource holding times \(X_{s\ell}\) of a component is further explained in Section 4.1.

3.2. Scheduling model

A unique system-level (global) scheduler selects which component, and when a component, is executed on the shared processor. The component-level (local) scheduler decides which of the tasks of the executing component is allocated the processor. The global scheduler and each of the local schedulers of individual components may apply different scheduling policies. As
scheduling policies, we consider EDF, an optimal dynamic uniprocessor scheduling algorithm, and the deadline-monotonic (DM) algorithm, an optimal priority assignment for FPPS of deadline-constrained tasks. The SRP by Baker [21] is used to arbitrate access to shared resources between components at the global level; similarly, the SRP is used at the local level to arbitrate access to shared resources between tasks locally.

3.3. Synchronization protocol

This chapter focuses on arbitrating global shared resources using the SRP. To be able to use the SRP for synchronizing global resources, its associated ceiling terms need to be extended.

3.3.1. Preemption levels

With the SRP, each task τ_i is assigned a static preemption level equal to $\pi_i = 1/D_i$. Similarly, we assign a component a preemption level equal to $\Pi_s = 1/P_s$ where period P_s serves as a relative deadline. If components (or tasks) have the same calculated preemption level, then the smallest index determines the highest preemption level.

3.3.2. Resource ceilings

With every global resource R_i two types of resource ceilings are associated; a global resource ceiling RC_i for global scheduling and a local resource ceiling rc_i for local scheduling. These ceilings are statically calculated values, which are defined as the highest preemption level of any component or task that shares the resource. According to the SRP, these ceilings are defined as:

$$RC_i = \max(\Pi_s, \max\{\pi_i \mid R_i \in R_s\}).$$ \hfill (1)

$$rc_i = \max(\pi_i, \max\{\pi_i \mid h_i > 0\}).$$ \hfill (2)

We use the outermost max in (1) and (2) to define RC_i and rc_i in those situations where no component or task uses R_i. The values of the local and global ceilings as defined in (1) and (2) by definition guarantee mutual exclusive access to their corresponding resource R_i by the sharing tasks and components and, therefore, the values of these ceilings cannot be further decreased. In some situations—as further investigated by Shin et al. [33] and van den Heuvel et al. [34]—it might be desirable to limit preemptions more than is strictly required for mutual exclusive resource access, which can be established by increasing the value of the local resource ceilings in (2) artificially. On the contrary, increasing the global ceiling, i.e., the value of RC_i in (1), never returns schedulability improvements.
3.3.3. System and component ceilings

The system ceiling and the component ceiling are dynamic parameters that change during execution. The system ceiling is equal to the highest global resource ceiling of a currently locked resource in the system. Similarly, the component ceiling is equal to the highest local resource ceiling of a currently locked resource within a component. Under the SRP, a task can only preempt the currently executing task if its preemption level is higher than its component ceiling. A similar condition for preemption holds for components.

4. Opaque schedulability analysis of a component

After developing a component and before publishing it to a framework integrator, a component is packaged as a re-usable entity. This includes deriving a timing interface to abstract from deadline constraints of tasks. Such an abstraction requires an explicit choice for a resource-supply model, capturing the processor supply to a component. Moreover, a component specifies what it needs in terms of resources and exposes those resources that may be shared globally in its interface. Whether or not a global resource is actually used by other components is unknown within the context of a component.

There are several ways to account for local scheduling penalties due to global resource sharing. One might assume that each resource must be globally shared and, subsequently, account for the worst-case overhead inside the local analysis. Alternatively, we opt for the assumption that all resources are just locally shared during the local analysis and we compensate for global sharing between components at integration time. These assumptions are often made tacitly.

The latter alternative presents the same view as during component development, i.e., a component has the entire platform at its disposal and all resources. Whenever a synchronization protocol for global resources is used that is compliant with a synchronization protocol for local resources, the local analysis of a component can be based on local properties only. We call such a local analysis opaque because it separates local and global resource arbitration.

Definition 1 An opaque analysis provides a sufficient local schedulability condition for an individual component. It treats all resources accessed by the component as local, so that, even under global sharing, properties of the global synchronization protocol do not influence the computed interface parameters.

The key consequence of an opaque local analysis is the absence of assumptions on the global synchronization protocol. Section 4.1 shows how resource holding times, $X \in X$, can be computed without making assumptions on the global synchronization protocol. Next, we accomplish the same for budget parameter Q in the interface of the component. This means that the values of the resource holding times should be absent in the equations that validate...
the local tasks’ schedulability. Table 1 gives an overview of local analyses found in literature by indicating their opacity. This section proceeds with an opaque analysis which ultimately results in a uniform representation of component interfaces, \(\Gamma(P, Q, X) \).

<table>
<thead>
<tr>
<th>Analysis of resource-sharing strategies</th>
<th>Authors</th>
<th>Opacity</th>
<th>Impact on local analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROE</td>
<td>Bertogna et al. [24]</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>Enhanced BROE</td>
<td>Biondi et al. [29]</td>
<td>No</td>
<td>Proc.-supply model uses RHTs</td>
</tr>
<tr>
<td>HSRP—overrun without payback (ONP)</td>
<td>Davis and Burns [22]</td>
<td>No</td>
<td>Not compositional</td>
</tr>
<tr>
<td>HSRP—overrun without payback (ONP)</td>
<td>Behnam et al. [30]</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>Enhanced overrun</td>
<td>Behnam et al. [30]</td>
<td>No</td>
<td>Proc.-supply model uses RHTs</td>
</tr>
<tr>
<td>Improved overrun without payback</td>
<td>Behnam et al. [35]</td>
<td>No</td>
<td>Proc.-supply model uses RHTs</td>
</tr>
<tr>
<td>HSRP—overrun with payback (OWP)</td>
<td>Davis and Burns [22]</td>
<td>No</td>
<td>Not compositional</td>
</tr>
<tr>
<td>HSRP—overrun with payback (OWP)</td>
<td>Behnam et al. [30]</td>
<td>No</td>
<td>Proc.-supply model uses RHTs</td>
</tr>
<tr>
<td>SIRAP</td>
<td>Behnam et al. [23, 28]</td>
<td>No</td>
<td>Proc.-supply model uses RHTs</td>
</tr>
</tbody>
</table>

Table 1. Overview of the synchronization protocol’s support for integrating resource-sharing components into the HSF with opaque analysis.

4.1. Computing resource holding times

The resource holding times were introduced by Bertogna et al. [36] in order to represent the cumulative processor time consumed by the tasks within the same component \(C \), that can preempt a task \(\tau_i \) while it is holding a resource \(R_\ell \). The way of computing resource holding times of tasks therefore depends on the local scheduling policy, because the scheduling policy determines possible preemptions. Besides the scheduling policy, preemptions may be limited by a resource ceiling, i.e., the value of the local resource ceiling \(r_{c_\ell} \) also influences the resource holding times (see Figure 3). In an HSF, the resource holding time represents the longest critical-section length as experienced by blocked tasks in other components.

In literature, various system assumptions in the description of a particular global synchronization protocol have shown to affect the way of computing resource holding times [e.g., see 23, 24, 30]. However, all these methods can be simplified and unified (independent of the local scheduling policy and the global synchronization protocol) by assuming that the component’s period \(P_\ell \) is smaller than the tasks’ periods.
The resource holding time (RHT) represents the cumulatively consumed processor time by any task of a component while one task holds a resource. In order to guarantee mutual-exclusive access to resource R_ℓ, the associated resource ceiling (rc_ℓ) is at least equal to the highest preemption level of any (local) task sharing resource R_ℓ. One may consider to further limit preemptions during critical sections by increasing the resource ceiling. On the one hand, this may lead to longer blocking delays to tasks with a higher preemption level (in this case: τ_s^1). On the other hand, this decreases the tasks' RHTs (in this case: τ_s^2 or τ_s^3).

The main observation leading to this simplification is that an access to a global resource must be followed by a release of the resource in the same component period, for example, established by the self-blocking mechanisms or the overrun mechanisms considered in real-time literature. If a resource must be accessed and released in the same component period which is smaller than the task periods, then we can limit the number of preemptions within a critical section and this, on its turn, will lead to a smaller resource holding time. The resource holding time of a task τ_i accessing a resource R_ℓ is captured by a value $X_{si\ell}$, which represents the amount of processor time supplied to component C_s from the access until the release of task τ_i to resource R_ℓ. We now present a lemma that captures the possible preemptions of task τ_i, regardless of other system assumptions.

Lemma 1 (Taken from van den Heuvel et al. [34]). Given $P_s < T_{smin}^*$ and $T_{smin}^* = \min\{T_{si} \mid 1 \leq i \leq n_s\}$, all tasks τ_j that are allowed to preempt a critical section accessing a global shared resource R_ℓ, i.e., $\pi_j > rc_\ell$, can preempt at most once during an access to resource R_ℓ when using any global SRP-compliant protocol, independent if the local scheduler is EDF or FPPS.

Lemma 1 makes it possible to compute the resource holding time, $X_{si\ell}$ of task τ_i to resource R_ℓ as follows:

$$X_{si\ell} = h_{si\ell} + \sum_{\tau_j > rc_\ell} E_{\tau_j},$$

and the maximum resource holding time within a component C_s is computed as
The computed values of X_s^ℓ are included in the set X_s which is part of the component's interface, Γ_s. We recall that opacity requires that the way of computing the interface parameters Q_s and X_s of a component is independent of the global synchronization protocol; Lemma 1 establishes this requirement for the set of resource holding times, X_s, of a component.

4.2. Computing a processor budget

The traditional schedulability analysis of tasks fills in task characteristics in a demand-bound function or a request bound function and compares the tasks’ requirements with the supplied processor resources. The same schedulability analysis holds for tasks executing within a component, although the processor supply is modeled in a more complicated way.

The processor supply refers to the amount of processor resources that a component C_s can provide to its tasks in order to satisfy deadline constraints. The linear lower bound of the processor resources supplied to a component with a periodically assigned processor (specified by an interface $\Gamma_s=(P_s, Q_s, X_s)$) is given by [2]:

$$\text{lsbf}_s(t) = \frac{Q_s}{P_s}(t - 2(P_s - Q_s)).$$

(5)

The longest interval a component may receive no processor supply on a periodic resource $\Gamma_s=(P_s, Q_s, X_s)$ is named the blackout duration, i.e.,

$$BD_s = \max \{ t | \text{lsbf}_s(t) = 0 \} = 2(P_s - Q_s).$$

(6)

The $\text{lsbf}_s(t)$ in (5) is not only a linear approximation of the supplied processor resources in an interval of length t, it also models a bounded-delay resource supply as defined by [3] with a continuous, fractional provisioning of $\frac{Q_s}{P_s}$ of the shared processor (also referred to as the virtual processor speed) and a longest initial service delay of BD_s time units.

4.2.1. Testing interfaces with earliest-deadline-first scheduling of tasks

Assume we are given a component C_s and its tasks have to execute on a periodic budget Q_s every period P_s. If this processor budget is allocated to the tasks according to an EDF scheduling policy, then the following sufficient schedulability condition holds (as described by Shin and Lee [16]):

$$X_s = \max \{ X_{s,t} | 1 \leq t \leq n_s \}. \quad (4)$$
where $\text{dbf}_s(t)$ denotes the cumulative processor demand of all tasks of component C_s for a time interval of length t and the set S_s denotes a non-empty finite set of time-interval lengths (see Baruah [37]), i.e.,

$$S_s = \left\{ t = b \cdot T_a + D_a \mid 1 \leq i \leq n_a; b \in \mathbb{N}^+; t \in \left\{ 0, \text{lcm}\{T_{a_1}, \ldots, T_{a_m}\} \right\} \right\}.$$

The $\text{dbf}_s(t)$ is fully compliant to the schedulability analysis for task sets on a dedicated unit-speed processor, i.e.,

$$\text{dbf}_s(t) = b_s(t) + \sum_{i \in C_s} \left[\frac{t - D_a + T_a}{T_a} \right] E_a.$$

The blocking term, $b_s(t)$, is defined according to the SRP, as described by Baruah [37]:

$$b_s(t) = \max\{ b_{a_i} \mid \exists k : h_{a_i} > 0 \land D_{a_i} \leq t < D_{a_i} \}.$$

The algorithmic complexity of verifying the scheduling condition in (7) is pseudo-polynomial in the number of tasks.

4.2.2. Testing interfaces with fixed-priority preemptive scheduling of tasks

Assume we are given a component C_s and its tasks have to execute on a periodic budget Q_s every period P_s. If this processor budget is allocated to the tasks according to a FPPS policy, then the following sufficient schedulability condition holds (as described by Shin and Lee [16]):

$$\forall 1 \leq i \leq n_s \exists t \in S_{a_i} : \text{rbf}_s(t, i) \leq 1 \text{sbf}_s(t, i),$$

where $\text{rbf}_s(t, i)$ denotes the worst-case cumulative processor request of τ_{a_i} for a time interval of length t and the set S_{a_i} denotes a non-empty finite set of time-interval lengths (see Lehoczky et al. [38]), i.e.,

$$S_{a_i} = \left\{ t = b \cdot T_{a_i} \mid a < i; b \in \mathbb{N}^+; t \in \left(0, D_{a_i} \right) \right\} \cup \{D_{a_i}\}.$$
The $rbf(t, i)$ is fully compliant to the schedulability analysis for task sets on a dedicated unit-speed processor, i.e.,

$$rbf(t, i) = b_{si} + \sum_{1 \leq j < i} \left[\frac{t}{T_{sj}} \right] E_{sj}. \tag{13}$$

The blocking term, b_{si}, is defined according to the SRP, as described by Baker [21]:

$$b_{si} = \max \{ h_{si} \mid \pi_{g} < \pi_{si} \leq rc_{si} \}. \tag{14}$$

The algorithmic complexity of verifying the scheduling condition in (11) is pseudo-polynomial in the number of tasks.

4.2.3. Deriving the processor budget from the scheduling test

Computing a processor budget for a component C_{s} involves a function that takes a fixed period P_{s}, a task set, and a local scheduling policy as input and returns the smallest component budget Q_{s}. The function should satisfy, dependent on the local scheduling policy, the condition in (7) or (11).

One may approximate the size of the smallest required processor budget by means of a binary search in the range $Q_{s} \in (0, P_{s})$. As amongst others suggested by Shin and Lee [2], the smallest value of budget Q_{s} can be found by means of taking an intersection between the left-hand sides and the right-hand sides of the inequalities. This intersection concerns solving a simple quadratic equation (e.g., see Lipari and Bini [14]).

5. Integration of components and global schedulability

In this section, we present the composition rules of components in HSFs in the presence of global shared resources. A global integration test implements the admission control for components based on the resource requirements specified in their interfaces. The global analysis explicitly takes into account the corresponding penalties for global resource sharing which depend on the synchronization protocol applied at the top-level scheduler. These penalties include (i) blocking between components and (ii) protocol-specific penalties (in our case, either BROE, ONP, OWP, or SIRAP). Dependent on the chosen global synchronization protocol, the latter influences the processor requests by a component or it influences the processor supplies to a component. To analyze these scheduling penalties appropriately, it is reasonable to assume that during component-integration in the HSF, the synchronization protocol of the HSF is known.
Looking at resource sharing between components, the effectively used processor bandwidth of a component therefore depends on two parts (see Section 3.1): the processor budget (denoted by Q_s in interface Γ_s) and the set of budgets on global resources (which are the resource holding times denoted by X_s in interface Γ_s). The budget Q_s should be sufficient to meet the deadline constraints of the tasks and no other constraints should influence the size of Q_s (e.g., constraints related to global synchronization should be avoided). The resource holding times define the amount of execution time that a component receives for an accessing a global resource. In other words, if component C_s is granted access to resource R_ℓ, it receives $X_s\ell$ time units of execution time on resource R_ℓ prior to the implicit deadline P_s. The global synchronization protocol defines how this is established and the run-time rules of the protocol may or may not lead to an overlap of the processor allocation times to a component as contained in Q_s and X_s. In the remainder of this section, we show the integration of components for two scheduling policies (EDF and FPPS) applied to the allocated bandwidth of the components.

5.1. Earliest-deadline-first scheduling of components

In the processor supply model, we assumed that the component’s period also serves as a deadline for the provisioning of its processor budget. The following utilization-based schedulability condition, as defined by Baruah [37], can therefore be applied to the top-level EDF-scheduler:

$$\forall w: 1 \leq w \leq N: \frac{B(P_w)}{P_w} + \sum_{s \in \Gamma_s} \frac{Q_s + O_s(P_s)}{P_s} \leq 1.$$ (15)

The blocking term, $B(t)$, presents the resource holding time of a potentially interfering, resource-sharing component with a deadline beyond the considered component, C_w. It is defined by Baruah [37]:

$$B(t) = \max\{X_s \mid \exists r: R_r \in R_s \cap R_s, t \leq P_r\}.$$ (16)

The term $O_s(t)$ defines the additional amount of budget that a component C_s requires under a certain global synchronization protocol in order to prevent excessive blocking durations for other components in the system.

With ONP, a component can request for an additional amount of X_s time units of processor time each period P_w. Similarly, with SIRAP, a task of a component may idle away at most X_s time units of processor time each period P_w. Hence, the synchronization penalties of both SIRAP and ONP can be modeled by allocating X_s time units of processor time in addition to the regular processor budget Q_s in each period P_w, so that the term $O_s(t)$ is defined by Behnam et al. [30] for ONP and van den Heuvel et al. [39] for SIRAP:
\[O_r(t) = \left\lfloor \frac{t}{P_r} \right\rfloor X_r. \] (17)

With OWP, a component can only request an additional amount of \(X_r \) time units of processor time once. Hence, the term \(O_r(t) \) is defined by [30]:

\[O_r(t) = \begin{cases}
X_r & \text{if } t \geq P_r \\
0 & \text{otherwise.}
\end{cases} \] (18)

For both SIRAP and BROE, it is required that \(X_r \leq Q_r \) in order to be able to complete an entire critical section within a single budget of size \(Q_r \). For SIRAP, we establish this condition by allocating \(Q_r + X_r \) time units of processor budget every period \(P_r \). For BROE, however, we increase \(Q_r \) with \(O_r(t) \) time units if it is too small to fit \(X_r \) time units contiguously, where \(O_r(t) \) is defined as follows:

\[O_r(t) = \left\lfloor \frac{t}{P_r} \right\rfloor \max \{0, X_r - Q_r\}. \] (19)

5.2. Fixed-priority preemptive scheduling of components

For global FPPS of components—by definition disallowing BROE—the following sufficient scheduling condition can be applied (as defined by Lehoczky et al. [38]):

\[\forall 1 \leq s \leq N : \exists t \in (0, P_r]: B_s + \sum_{i \neq s} O_i(t) + \left\lfloor \frac{t}{P_r} \right\rfloor Q_r \leq t. \] (20)

The blocking term, \(B_s \), is defined by the resource holding time of a lower-priority, resource-sharing component (in line with Baker [21]):

\[B_s = \max \{X_w | \Pi_w < \Pi_s \leq RC_s\} \] (21)

and the term \(O_i(t) \) defines the additional amount of budget that a component \(C_s \) requires under a certain global synchronization protocol in order to prevent excessive blocking durations for other components in the system.

Similar to EDF, under global FPPS the term \(O_i(t) \) is defined by Behnam et al. [30] for ONP and by van den Heuvel et al. [39] for SIRAP:
Also under FPPS, a component arbitrated by OWP can only request an additional amount of X_s time units of processor time once. Hence, the term $O_r(t)$ becomes time independent and it is defined by [30]:

$$O_r(t) = X_s.$$ \hspace{1cm} (23)

Just like with tasks, a finite set of time-interval lengths t can be tested in order to determine the schedulability of a set of components, i.e., the set can be specified as in (12) using component period P_s as the deadline for the execution of budget (WCET) Q_s. The algorithmic complexity of verifying the scheduling condition in (20) is then pseudo-polynomial in the number of components.

6. On the importance of opacity and its properties

Traditional protocols such as the PCP by Sha et al. [18] and the SRP by Baker [21] can be used for local resource sharing in HSFs, as observed by Almeida and Peidreiras [13]. With an opaque local analysis, we can re-use the same local analysis of components in the presence of global shared resources. The local analysis for HSFs with the ONP protocol, as presented by [30], already satisfied the notion of opacity because it uses a simple overrun upon integration and nothing else locally. In the previous sections, we also unified the local analysis of HSFs with other resource-sharing protocols (OWP, SIRAP, and BROE). This means that the interface of a component is independent of the resource-arbitration protocol. In this section, we briefly review non-opaque analysis and we highlight some important properties of opacity.

6.1. Monotonicity of the analysis

In Sections 4 and 5, we have summarized the compositional timing analysis of an HSF: the global analysis verifies the admission of a set of components into the HSF and the local analysis verifies the deadline constraints of tasks of each component in isolation on a periodically allocated budget, Q_s. The local scheduling conditions in (7) and (13) determine the smallest size of Q_s. For analyzing these conditions, we observe that increasing a local resource ceiling $r_{c,e}$ cannot lead to less blocking of local tasks (term $b_s(t)$ or b_{si}) and, thus, it cannot lead to a smaller budget Q_s. As a result, we have the following property.

Property 1 In an analysis satisfying (7) for EDF or (13) for FPPS, the total requested resources of a component reflected in the allocated budget Q_s is monotonically non-decreasing with an increase of a local resource ceiling $r_{c,e}, \forall R_e \in R_c$.
Although not mentioned explicitly, this property is tacitly assumed in some analysis (e.g., by Shin et al. [33], Behnam et al. [40] and Behnam et al. [30]) and our analysis supports it as well. It holds for all global synchronization protocols except for some non-opaque analysis (see Table 1).

6.1.1. SIRAP and its opacity

The analysis as traditionally presented for SIRAP is non-opaque. However, SIRAP is an important and widely used protocol, so we side-step this problem by applying the same local and global analysis of ONP also to SIRAP, i.e., inserting X_s units of idle time every period P_s. The intuition behind this idea is that SIRAP never idles away more processor time in one component period P_r than ONP requires for overrun (see van den Heuvel et al. [39] for the details). This adjusted analysis of SIRAP satisfies Property 1.

6.1.2. How Property 1 could be violated

Since global resources may need to be shared with tasks in other components, the ideas underlying most of the non-opaque analyses (like the non-opaque ones in Table 1) is to use the resource holding times of local tasks to tighten the analysis of wasted resources. Often this means that the tasks of a component are penalized by changes in the processor supply due to arbitrated accesses to global resources. The properties of a synchronization protocol are then reflected on the computed value of budget Q_s of a component. For example, this could work based on the following observations:

- With OWP, see Behnam et al. [30], the resource holding time can be used to account for the processor time that is being exchanged between two consecutive component periods due to overruns and paybacks.
- With ONP, see Behnam et al. [35], the resource holding times can be used to tighten the delivery of budget Q_s in component period P_s because an overrun must fit in each component period as well.
- With SIRAP, see Behnam et al. [23], the resource holding times can be used to determine the amount of resources that can be idled away by the tasks in each component period.
- With BROE, see Biondi et al. [29], the resource holding times can be used to bound an additional delay due to resource sharing experienced by tasks compared to the regular delay of their resource supply (BD_s).

Intuitively, resource sharing comes with penalties to the tasks involved. However, sometimes the local tasks may also benefit from resource sharing, i.e., the tasks may require less processor resources. Section 6.1.3 presents an example of such a scenario using a non-opaque analysis of ONP. This clearly shows that a non-opaque analysis may violate our monotonicity property (Property 1).
6.1.3. Motivating example

We now demonstrate the effect of using properties of the global synchronization protocol for optimizing the parameters of the component’s interface in the local analysis. We consider a simple non-opaque analysis for ONP. Behnam et al. [35] improved ONP by observing that the normal budget Q_s of a component C_s has to be served at least before $P_s - X_s$ instead of the regular relative deadline P_s (as we assumed for our analysis). The reason is that an overrun of at most length X_s must also fit in each period P_s after budget Q_s has been depleted. This means that the blackout duration of the processor supply becomes shorter, so that tasks have to wait shorter until they get selected for execution by the local scheduler. Behnam et al. [35] model their idea with the help of the explicit deadline periodic resource model by Easwaran et al. [12]. The explicit deadline $P_s - X_s$ improves the required budget of the tasks in a non-opaque way because it uses resource holding times to tighten the deadline.

Example 1 Consider a component C_1 with a period $P_1 = 10$ and a single task $\tau_{11} = (27, 5, 27, \{0.5\})$ which specifies an access to a global resource R_{ℓ} for a duration of $h_{11\ell} = X_{11\ell} = X_1 = 0.5$ time units. We use ONP for arbitrating access to global resources.

According to the improved ONP analysis of Behnam et al. [35] where the resource holding time of 0.5 time units is exploited to tighten the deadline for budget Q_1, it is sufficient to allocate $Q_1 = 2.5$ time units every period of 10 time units. This budget allocation can be captured by interface $\Gamma_1 = (P_1, Q_1, X_1) = (10, 2.5, \{0.5\})$ with explicit deadline $P_1 - X_1$. This interface is derived based on the assumption that an additional amount of 0.5 time units may need to be supplied within one component period to complete resource access by means of a budget overrun.

If resource R_{ℓ} turns out to be local to component C_1, i.e., component C_1 is independent of other components in the system, then budget overruns are unnecessary for accessing resource R_{ℓ}. An independent component C_1 would have required a periodic budget of $Q_1 = \frac{8}{3}$ time units every period of 10 time units. We recall, however, the 2.5 time units must be supplied within 9.5 time units from the budget’s release, leading to a density of processor allocations of $\frac{2.5}{9.5}$. This density is higher than the one without resource sharing, i.e., $\frac{8/3}{10} < \frac{2.5}{9.5}$.

Once the HSF is composed, one may admit a component into the system requiring $\frac{8}{3}$ time units every 10 time units while one may need to reject a component requiring 2.5 time units before relative deadline 9.5 every 10 time units. This depends on the resources requirements of other components in the HSF. Hence, a non-opaque analysis may give the illusion of resource efficiency by artificially creating resource dependencies.

By making assumptions in the local analysis on how ONP changes the processor supply to a component, a manufacturer may give an untruthful impression on the efficiency of the component. Such impressions cannot be given through an opaque analysis due to its monotonicity property. For some protocol-specific local analysis, monotonicity of the local analysis is hard to prove or disprove. Nevertheless, the above example clearly shows the importance of monotonicity for multi-vendor environments, for example, obtained through an opaque local analysis.
6.2. Detecting and accounting for shared resources

An additional problem with a non-opaque analysis (e.g., see the analyses in Table 1) is that it impacts the budget of a component with synchronization penalties, no matter whether or not an accessed resource is shared with other components. As a result, the synchronization penalties are incorporated in the component’s timing interface and they cannot be taken out any longer. Hence, it disallows us to account for the synchronization penalties corresponding to the resources that really need to be shared between components as detected at integration time.

Since a component is unaware of other components, it is also unknown which resources actually need to be shared. Instead of directly deriving the interface of a component, one may therefore perform an intermediate step. One may specify partial interfaces for components for each of the resources the component requires. Upon integration of components, these partial interfaces can then be combined into a true interface by selecting just the interfaces corresponding to the resources that are globally shared with other components.

This procedure works intuitively with an opaque analysis and works as follows. Given a component C_s, we assume that P_s is given by the system designer and is fixed during the whole process of merging partial interfaces into a single interface. A partial interface $\Gamma_{s\ell}$ considers one global resource R_ℓ in isolation, i.e., R_ℓ can be globally shared or it can be local to the component.

Definition 2 (Partial interface candidate) (Taken from van den Heuvel et al. [34]) A partial interface candidate $\Gamma_{s\ell} = (P_s, Q_{s\ell}, \{X_{s\ell}\})$ of component C_s accessing resource R_ℓ is a valid interface Γ_s for component C_s—i.e., an interface that satisfies the local scheduling condition in (7) for EDF or (11) for FPPS—under the assumption that only resource R_ℓ may be globally shared with other components.

A partial interface $\Gamma_{s\ell}$ is a valid interface for the restrictive case that resource R_ℓ is the only resource being exposed globally. It specifies the budget and the resource holding time to resource R_ℓ of the component, but other resources accessed by the same component are excluded from the interface. The remaining problem is to derive one interface for the case a component accesses more than one globally shared resource. Lemma 2 shows how to merge partial interfaces into a single interface.

Lemma 2 (Taken from van den Heuvel et al. [34]). Assume a component C_s accesses m_s resources. Let a selection of partial interfaces of component C_s be a series of $\Gamma_{s\ell} = (P_s, Q_{s\ell}, \{X_{s\ell}\})$, i.e., one partial interface $\Gamma_{s\ell}$ is selected for each resource R_ℓ. The local tasks’ deadlines of component C_s are met by interface $\Gamma_s = (P_s, Q_s, \{X_{s\ell} \mid R_\ell \in \mathcal{R}_s\})$, where $Q_s = \max\{Q_{s\ell} \mid R_\ell \in \mathcal{R}_s\}$.

The intuition behind this lemma is as follows. By virtue of the SRP [21], a task $\tau_{s\ell}$ can be blocked by just one (outermost) critical section of task τ_{sj} with a lower preemption level (where $\pi_{s\ell} \geq \pi_{sj}$) before $\tau_{s\ell}$ can start its execution. Hence, it is sufficient to add the largest difference in budget to the value of $Q_{s\ell}$ in order to accommodate for one local blocking occurrence.

Lemma 2 presents an important result for open environments in which components may be loaded or removed from the platform after deployment. It enables us to incrementally analyze the resource dependencies of the components in the HSF. Prior to the integration of compo-
nents, it is still unclear which of the global resources need to be shared with other components and which resources can be treated as local. Upon integration of components, the sets \mathcal{R}_c of accessed resources by component C_c with the resources that truly need to be shared globally are known. We can then make an appropriate selection of partial interfaces and combine them into a single interface for each component. Figure 4 illustrates this procedure as defined by Lemma 2. The result is that we account for the synchronization penalties of just the globally shared resources. If components enter or leave the HSF, one may use the partial interfaces to detect the updated resource dependencies between the components in the HSF.

Figure 4. Partial interfaces define the resource requirements of a component on each accessed resource separately. They can be combined into a single interface which captures all resource requirements of a component. The resources that do not need to be shared between components can be ignored (in this example, R_s and R_h can be ignored), so that resource arbitration and the corresponding penalties can be avoided for those resources.

7. Conclusion

This chapter introduced the notion of uniform interfaces for resource-sharing components that need to be integrated on a uni-processor platform. The interface of a component abstracts from global resource sharing until component integration. The local timing analysis of a component that returns such an interface is called opaque. Sufficient conditions for opacity are

- component periods are smaller than the local tasks’ periods, so that resource holding times of a component are defined independently of the global synchronization protocol;
- resource holding times must disappear from the local schedulability test, so that the budget parameter of a component can be solely computed with the purpose of meeting deadline constraints of tasks (and independently of the global synchronization protocol).

As a result of both conditions, when the SRP arbitrates access to shared resources between periodic components, the necessary condition of opacity is satisfied: all interface parameters of a component are computed independently of a global synchronization protocol. Moreover,
component dependencies on shared resources and the corresponding synchronization penalties can be optimized at component integration.

We applied opacity to four existing global synchronization protocols: SIRAP, ONP, OWP, and BROE. For some systems that deploy such a protocol, a non-opaque analysis has shown to significantly improve schedulability (e.g., as demonstrated by Behnam et al. [28], Biondi et al. [29]). However, this requires that components are delivered to system integrators with an interface that includes worst-case synchronization penalties, which in practice may never occur. We therefore believe that the simplicity of opaque analysis and its opportunities to analyze systems incrementally may be beneficial for complex systems in which component development, test, analysis, and integration is spread over different research and development teams.

8. Glossary

This section gives an overview of the abbreviations and the symbols being used throughout this chapter.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOSAR</td>
<td>AUTomotive Open System Architecture</td>
</tr>
<tr>
<td>BROE</td>
<td>Bounded-delay resource open environment</td>
</tr>
<tr>
<td>BD</td>
<td>Blackout duration</td>
</tr>
<tr>
<td>BWI</td>
<td>Bandwidth inheritance</td>
</tr>
<tr>
<td>DM</td>
<td>Deadline monotonic</td>
</tr>
<tr>
<td>EDF</td>
<td>Earliest-deadline-first</td>
</tr>
<tr>
<td>EDP</td>
<td>Explicit-deadline periodic</td>
</tr>
<tr>
<td>FPPS</td>
<td>Fixed-priority preemptive scheduling</td>
</tr>
<tr>
<td>HSFs</td>
<td>Hierarchical scheduling frameworks</td>
</tr>
<tr>
<td>HSRP</td>
<td>Hierarchical SRP</td>
</tr>
<tr>
<td>IPCP</td>
<td>Immediate PCP</td>
</tr>
<tr>
<td>LCM</td>
<td>Least common multiple</td>
</tr>
<tr>
<td>ONP</td>
<td>Overrun and no payback</td>
</tr>
<tr>
<td>OWP</td>
<td>Overrun with payback</td>
</tr>
<tr>
<td>PCP</td>
<td>Priority ceiling protocol</td>
</tr>
<tr>
<td>RHT</td>
<td>Resource holding time</td>
</tr>
<tr>
<td>LSBF</td>
<td>Linear supply-bound function</td>
</tr>
<tr>
<td>SIRAP</td>
<td>Subsystem integration and resource allocation policy</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>SRP</td>
<td>Stack resource policy</td>
</tr>
<tr>
<td>WCET</td>
<td>Worst-case execution time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Number of components in the system</td>
</tr>
<tr>
<td>M</td>
<td>Number of global resources</td>
</tr>
<tr>
<td>\mathcal{R}</td>
<td>Set of global resources</td>
</tr>
<tr>
<td>R_ℓ</td>
<td>ℓ-th global resource</td>
</tr>
<tr>
<td>RC_{ℓ}</td>
<td>Global resource ceiling of R_ℓ</td>
</tr>
<tr>
<td>C_s</td>
<td>s-th component</td>
</tr>
<tr>
<td>Π_s</td>
<td>Preemption level of C_s</td>
</tr>
<tr>
<td>P_s</td>
<td>Period of the resource allocations to component C_s</td>
</tr>
<tr>
<td>D_s</td>
<td>Relative deadline for the resource allocations to component C_s</td>
</tr>
<tr>
<td>Q_s</td>
<td>Periodically allocated processor time for C_s</td>
</tr>
<tr>
<td>\mathcal{R}_s</td>
<td>Set of global resources accessed by C_s</td>
</tr>
<tr>
<td>X_s</td>
<td>Set of holding times to global resources accessed by C_s</td>
</tr>
<tr>
<td>$X_{s,\ell}$</td>
<td>the resource holding time of C_s for R_ℓ</td>
</tr>
<tr>
<td>X_s</td>
<td>Maximum of the resource holding times of C_s</td>
</tr>
<tr>
<td>O_s</td>
<td>Processor time for C_s merely dedicated to prevent excessive blocking</td>
</tr>
<tr>
<td>Γ_s</td>
<td>Interface of C_s defining periodic resource demands of C_s</td>
</tr>
<tr>
<td>$\Gamma_{s,\ell}$</td>
<td>Partial interface defining C_s' demands for a given resource R_ℓ</td>
</tr>
<tr>
<td>BD_s</td>
<td>Longest duration for C_s without any processor supply</td>
</tr>
<tr>
<td>$dbf_s(t)$</td>
<td>Demand-bound function of the tasks of C_s in an interval t</td>
</tr>
<tr>
<td>$rfb_s(t, i)$</td>
<td>Request-bound function of task τ_{si} and its higher priorities in an interval t</td>
</tr>
<tr>
<td>$lsbf(t)$</td>
<td>Linear lower bound of the processor supply in any sliding window of length t</td>
</tr>
<tr>
<td>T_s</td>
<td>Task set of a component</td>
</tr>
<tr>
<td>n_s</td>
<td>Number of tasks composing component C_s</td>
</tr>
<tr>
<td>τ_i</td>
<td>i-th task of component C_s</td>
</tr>
<tr>
<td>$T_{\tau_{si}}$</td>
<td>Minimal inter-arrival time of task τ_{si}</td>
</tr>
<tr>
<td>$E_{\tau_{si}}$</td>
<td>WCET of τ_{si}</td>
</tr>
<tr>
<td>$D_{\tau_{si}}$</td>
<td>(Relative) deadline of τ_{si}</td>
</tr>
<tr>
<td>$S_{\tau_{si}}$</td>
<td>Set of time instances that to determine schedulability of a task τ_{si}</td>
</tr>
<tr>
<td>$\mathcal{H}{\tau{si}}$</td>
<td>Set of WCETs of task τ_{si} on resources</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>(r_{c_i})</td>
<td>Local resource ceiling of resource (R_i)</td>
</tr>
<tr>
<td>(\pi_{s_i})</td>
<td>Preemption level of task (\tau_{s_i})</td>
</tr>
<tr>
<td>(h_{c_i})</td>
<td>WCET of (\tau_{s_i})'s largest critical section to (R_i)</td>
</tr>
<tr>
<td>(X_{s_i})</td>
<td>Largest resource holding time of (\tau_{s_i}) to (R_i)</td>
</tr>
</tbody>
</table>

Author details

Martijn M. H. P. van den Heuvel\(^1\), Reinder J. Bril\(^*\), Johan J. Lukkien\(^1\), Moris Behnam\(^2\) and Thomas Nolte\(^2\)

\(^*\)Address all correspondence to: r.j.bril@tue.nl

1 Eindhoven University of Technology, Eindhoven, Netherlands

2 The Netherlands Mälardalen University, Västerås, Sweden

References

