We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

5,000 Open access books available
125,000 International authors and editors
140M Downloads

154 Countries delivered to
TOP 1% Our authors are among the most cited scientists
12.2% Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter 3

Managing Pain with Laser Acupuncture

Szu-Ying Wu, Chun-En Kuo, Yu-Chiang Hung and Wen-Long Hu

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/62863

Abstract

According to the theory of traditional Chinese medicine, Qi flows through the body along specific paths known as meridians. Any disturbance in Qi evokes a Ying–Yang imbalance in the body, and consequently leads to disease. Pain results from blood stasis and Qi stagnation. Laser acupuncture (LA), first introduced clinically in the 1970s, combines the advantages of traditional acupuncture and modern laser medicine and has been applied for the treatment of various diseases. Here, we investigated studies on the use of LA for pain management according to current evidence. Articles including English keywords related to the use of LA for pain, published between January 2006 and August 2015 were sourced from PubMed, Medline, and Cochrane Library databases. On the basis of these papers, we explored the modern applications, mechanisms, and analgesic effects of LA. LA integrates the positive effects of acupuncture and low-level laser therapy, and is therefore effective in activating blood and in moving Qi. LA relieves pain through both anti-inflammatory and analgesic effects. No adverse effects or complications resulting from LA were reported in the literature. In the hands of an experienced physician, LA can be a useful and safe method for pain management.

Keywords: laser acupuncture, low-level laser therapy, acupuncture, pain, traditional Chinese medicine

1. Introduction

Although written accounts of acupuncture date back over 2000 years, archaeological evidence suggests more than 3000 years of practice. According to the principles of traditional Chinese medicine (TCM), energy (or Qi) flows through the body along specific paths known as meridians. Balanced Qi contributes to the maintenance of good health. On the other hand, any
disturbance in Qi results in an energy imbalance in the body. This imbalance, either an excess or a deficiency, may then result in disease [1]. Both blood stasis and Qi stagnation will lead to pain [2]. In 1996, the World Health Organization (WHO) confirmed 64 indications for acupuncture treatment. Acupuncture treats the underlying diseases by stimulating specific acupuncture points along the meridians. Acupuncture is one of the most common types of alternative treatments for patients who suffer from long-term pain. Moreover, it is a relatively safe procedure with minimal adverse effects [3]. Even though acupuncture has been proven to be effective for many therapeutic applications, metal needling is not widely accepted owing to fear of possible contamination or transcutaneous lesions [4]. Consequently, following the theory of TCM, the use of low-level laser on acupuncture points has been developed as a new therapeutic approach called laser acupuncture (LA) [5, 6].

LA was first introduced clinically in the 1970s [7]. It has been widely studied over several years to turn it into an evidence-based clinical practice. The use of low-intensity and nonthermal laser irradiation stimulation of acupuncture points is an effective alternative to traditional metal needling; it is a safe technique because it is noninvasive and is acceptable to needle-phobic persons. Thus, LA can be used at acupuncture points that require complicated applications of needles [1, 8]. The laser beam is an electromagnetic wave and can stimulate acupuncture points in the human body by depositing energy without causing heating. In contrast to needling, acupuncture points irradiated by a laser beam need to receive sufficient energy to induce a physiological effect at the cellular level based on the principle of “photobiomodulation.” The beam excites the relevant channels and activities, regulates the function of organs, and promotes metabolism. Recently, several papers have reported that the decisive factor in the efficacy of LA is the applied dosage [5, 9–11].

Although the mechanisms underlying LA are not well understood, LA is widely applied clinically. LA is also referred to as low-level laser therapy (LLLT), with 0.1–0.5 J/cm² deposited per acupuncture point, or 1–4 J/cm² per Ashi point [12]. LLLT has an anti-inflammatory function because it can reduce the levels of certain biochemical factors (prostaglandin E2, messenger ribonucleic acid cyclooxygenase-2, interleukin (IL)-1β, and tumor necrosis factor (TNF)-α), neutrophil influx, oxidative stress, edema, and hemorrhaging [13]. Analgesia induced by laser phototherapy is mediated by peripheral opioid receptors [14]. Nevertheless, LA has both local and distant analgesic effects, which may be mediated by different mechanisms. LA combines the advantages of traditional metal-needle acupuncture and LLLT. This chapter on managing pain by LA focuses on how LA may be an alternative method of relieving pain and improving functional outcomes.

2. Review of the clinical literature

Clinical literature in electronic databases—PubMed, Medline, and Cochrane library—was surveyed using the terms “laser acupuncture”, “low level laser therapy”, and “pain”, published from January 2006 to August 2015. All papers had to meet the following criteria: randomized controlled trials (RCTs) that considered a control group (either placebo, sham LA,
nonstandard traditional acupuncture, or other therapeutic equipment) and retrospective/prospective clinical studies in which LA/LLLT was used. Studies cited in review articles were also included. Papers published in languages other than English were excluded. Conference abstracts, single-case studies, and paper for which full text was not available were also excluded.

Among the reviewed literature, most studies targeted myofascial pain, fibromyalgia, tendinopathy, radiculopathy, osteoarthritis (OA), low back pain, temporomandibular joint dysfunction (TMD), and headache. These are discussed below.

2.1. Myofascial pain
Kiralp et al. [15] reported a RCT in which 43 patients with myofascial pain were enrolled, and showed the positive effect of LA as compared to prilocaine injection. Eight other RCTs also showed the pain-relieving effect of LA; some of these focused on myofascial pain over the cervical region [16, 17], masseter [18], masticatory muscles [19, 20], trapezius [21, 22], or trigger points [23]. The consistency of these trials highlighted the efficacy of LA in the treatment of myofascial pain.

2.2. Fibromyalgia
Two RCTs showed different results for LA treatment of fibromyalgia [24, 25]. Both of these studies obtained subjective pain presentation using a visual analog scale (VAS), the Fibromyalgia Impact Questionnaire (FIQ), and other measures. Armagan et al. [24] reported positive results of LA for treating the pain of fibromyalgia. The difference between these studies was the dose and power density. Armagan et al. set the parameters of LA to 830 nm, 2 J/point, and 50 mW. These results suggested that the treatment effect of LA was inconclusive in fibromyalgia or that the power density used should be sufficiently high to manage the pain in this disease group.

2.3. Tendinopathy
Two RCTs showed positive results of LA in pain management of lateral epicondylitis (LE) [26, 27], also known as tennis elbow. Emanet et al. [27] reported that even though LA had no short-term advantage over the placebo in patients with LE, there was a significant long-term improvement, especially in functional parameters. Another RCT reported that LA had a treatment effect equal to that of ultrasound [28]. Moreover, a systemic review revealed that applying LLLT to myofascial trigger points of LE patients was an effective treatment for pain reduction and also led to increase in grip force, range of motion (ROM), and weight test [9]. As for tendomyopathy of the masticatory musculature, the pilot study showed inconclusive results because there were few participants [19].

2.4. Radiculopathy
Konstantinovic et al. [29] performed an RCT that enrolled 60 patients with acute neck pain with cervical radiculopathy. After a 3-week LA treatment, VAS, neck movement, neck
disability index, and quality of life indicated the positive effect of LA. Radiculopathy of other spinal segments was not reported.

2.5. Osteoarthritis

Among the four RCTs on the use of LA in treating the pain of knee OA, two showed a positive result [30, 31], one was inconclusive [32], and the other one reported efficacy after 2 weeks of treatment but not at the 4-week assessment [33]. However, the RCT showed the inconclusive result for only one point, ST35. An inappropriate dose or insufficient irradiation at a point may be the reason for the poor treatment effect.

2.6. Low back pain

Glazov et al. [34] had reported negative result for the use of LA to relieve low back pain in their study, in which LA was applied to local points of three meridians (Bladder, Gallbladder, and Governor vessel) and Ashi points. Subsequently, Glazov [35] reported another RCT, in which 100 patients with low back pain were enrolled, and found a positive result for pain management with LA. However, the parameter settings used for the second RCT were not described. Therefore, we were not able to determine the differences that contributed to the successful treatment. Nevertheless, further two RCTs showed a positive response for low back pain treated with LA [36, 37].

2.7 Temporomandibular joint disorder

In our literature search, all four RCTs suggested a positive treatment effect for LA in treating the pain associated with TMD [4, 38–40]. Occlusal splinting is the nonsurgical standard treatment for this condition in dental clinics. In two RCTs, LA was found to be as effective as occlusal splinting in relieving TMD-associated pain [39, 40]. LA could be an alternative treatment choice to occlusal splinting. Sattayut and Bradley [41] compared low- and high-grade LA and found that high-grade LA, i.e., 820 nm, 107 J/cm², and 300 mW, showed a superior treatment effect. More recently, Hu et al. [42] clearly showed the therapeutic effects of LA in managing treatment-resistant TMD. In our literature review, another two clinical trials revealed the benefit of LA therapy for TMD patients [43, 44].

2.8. Headache

Gottschling et al. [45] reported an RCT in which LA was used to treat headache in children and showed a decrease in the VAS score and monthly hours with headache. Interestingly, the treatment in this study consisted of only four treatment episodes, at a frequency of once a week, yet the improvement of symptoms was excellent. This study also focused on the meridian-based selection of irradiation points. The basic points for patients with frontal headache were LI4 and ST36; for lateral pain, they were TE6 and GB34; for occipital pain, they were SI3 and BL60, and for holoccephalic pain, it was GV20. Additional body acupuncture points and ear acupuncture points were chosen individually. The combination of TCM meridian theory with
LA energy treatment seemed to provide a better effect than simply irradiating the tender points.

2.9. Others

Chow et al. [17] reported that chronic neck pain of any etiology could be treated successfully with a program of 14 LA treatments over a period of 7 weeks. Ip and Fu [46] reported a prospective cohort study that proved the treatment efficacy of LA in painful adhesive capsulitis of the shoulder.

3. Conclusions

We have presented evidence supporting the use of LA in the management for various types of pain (Table 1). LA is a noninvasive technique involving the stimulation of traditional acupuncture points with low-intensity laser irradiation. LA has the advantages of being painless and safe as no heat is generated during the procedure, and it is more effective in some medical conditions and requires less time than needle-based acupuncture [47]. No adverse effects or complications resulting from LA have been reported in any study to date. The effectiveness of LA in managing pain depends on the selection of appropriate points and frequencies. Insufficient energy and very few therapeutic sessions will result in ineffective therapy. In conclusion, LA combines the positive effects of traditional Chinese acupuncture and LLLT, and is therefore effective in both activating blood and moving Qi. LA relieves pain through both anti-inflammatory and analgesic effects. As experienced physicians, we should optimize laser parameters, treatment intervals, and long-term follow-up for LA therapy.

<table>
<thead>
<tr>
<th>Study design</th>
<th>Subjects</th>
<th>Diagnosis</th>
<th>Control</th>
<th>Intervention time</th>
<th>Wavelength (nm)</th>
<th>Dose (J/cm²)</th>
<th>Power (mW)</th>
<th>Irradiation duration (s)</th>
<th>Acupoints</th>
<th>Outcome measure</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCT</td>
<td>43</td>
<td>Myofascial pain syndrome</td>
<td>Prilocaine injection</td>
<td>4 weeks (12 sessions)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>180</td>
<td>Trigger points in the neck, shoulder, and back muscles</td>
<td>VAS, VPS, pressure pain threshold by pressure algometer</td>
<td>Positive in pressure algometer</td>
</tr>
<tr>
<td>RCT</td>
<td>90</td>
<td>Chronic neck pain</td>
<td>Placebo</td>
<td>7 weeks (14 sessions)</td>
<td>632 nm</td>
<td>0.67 W/cm²</td>
<td>230 mW</td>
<td>30</td>
<td>Tender points</td>
<td>VAS</td>
<td>Positive</td>
</tr>
<tr>
<td>RCT</td>
<td>32</td>
<td>Fibromyalgia</td>
<td>Placebo</td>
<td>2 weeks (10 sessions)</td>
<td>830 nm</td>
<td>2 J/point</td>
<td>50 mW</td>
<td>40</td>
<td>Tender points</td>
<td>NTP, EQ, morning stiffness, VAS, and total myalgia score</td>
<td>VAS</td>
</tr>
<tr>
<td>RCT</td>
<td>52</td>
<td>Knee OA</td>
<td>Placebo</td>
<td>2 weeks (10 sessions)</td>
<td>984 nm</td>
<td>0.48 J</td>
<td>10 mW</td>
<td>120</td>
<td>SPQ</td>
<td>VAS, 50-foot walking time, KC, MFS, WOMAC, SF-36</td>
<td>Improvement in KC</td>
</tr>
<tr>
<td>RCT</td>
<td>46</td>
<td>TMD</td>
<td>Placebo</td>
<td>4 weeks (8 sessions)</td>
<td>788 nm</td>
<td>86.7 J/cm²</td>
<td>70 mW</td>
<td>10</td>
<td>One point inside the external auditory duct</td>
<td>VAS</td>
<td>Positive</td>
</tr>
<tr>
<td>RCT</td>
<td>20</td>
<td>Fibromyalgia</td>
<td>Stimulation plus LLLT versus no laser</td>
<td>End of intervention</td>
<td>838 nm</td>
<td>3.5 J/cm²</td>
<td>30 mW</td>
<td>—</td>
<td>—</td>
<td>VAS, Dolorimetry at tender points, EQ, SF-36</td>
<td>Negative</td>
</tr>
<tr>
<td>RCT</td>
<td>39</td>
<td>Lateral epicondylitis</td>
<td>Placebo</td>
<td>3 weeks (9 sessions)</td>
<td>904 nm</td>
<td>2.4 J/cm²</td>
<td>25 mW</td>
<td>11</td>
<td>Tender points</td>
<td>VAS, DASH questionnaire</td>
<td>Positive</td>
</tr>
<tr>
<td>RCT</td>
<td>64</td>
<td>Myofascial pain</td>
<td>Placebo</td>
<td>3 weeks (15 sessions)</td>
<td>832 nm</td>
<td>7.5 J/cm²</td>
<td>50 mW</td>
<td>120</td>
<td>Trigger points</td>
<td>VAS, ROM</td>
<td>Positive</td>
</tr>
<tr>
<td>Study</td>
<td>Study design</td>
<td>Subjects</td>
<td>Diagnosis</td>
<td>Control</td>
<td>Intervention time</td>
<td>Wavelength</td>
<td>Dose</td>
<td>Power</td>
<td>Irradiation time (s)</td>
<td>Acupoints</td>
<td>Outcome measure</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>------------------</td>
<td>-------------</td>
<td>------</td>
<td>-------</td>
<td>---------------------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Shen et al. [31]</td>
<td>RCT 40</td>
<td>Knee OA</td>
<td>Combined laser versus light</td>
<td>3 times/week for 2 weeks then 1 time/week for 4 weeks</td>
<td>650 nm, semiconductor laser 30 J/cm², CO₂ laser</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ST35</td>
<td>HOMA-EC</td>
<td>Positive but inconclusive difference</td>
</tr>
<tr>
<td>Gorochov et al. [42]</td>
<td>RCT 43</td>
<td>Headache in children</td>
<td>Placebo</td>
<td>4 weeks (4 sessions)</td>
<td>830 nm</td>
<td>0.9 J/point, 30 mW</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>LI4, ST10, GB34, SI3, SI25, SI23; CO₂ laser</td>
<td>Positive</td>
</tr>
<tr>
<td>Skires et al. [20]</td>
<td>RCT 36</td>
<td>Myofascial pain of mandibular system</td>
<td>Placebo</td>
<td>3 weeks (6 sessions)</td>
<td>660 nm, 1064 nm</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Tender points</td>
<td>Positive</td>
<td></td>
</tr>
<tr>
<td>Shen et al. [32]</td>
<td>RCT 40</td>
<td>Knee OA</td>
<td>Placebo</td>
<td>4 weeks (12 sessions)</td>
<td>650 nm, semiconductor laser plus 1064 nm CO₂ laser</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ST5</td>
<td>HOMA-EC</td>
<td>Inconclusive</td>
</tr>
<tr>
<td>Chang et al. [34]</td>
<td>RCT 100</td>
<td>Chronic non-specific low back pain</td>
<td>Placebo</td>
<td>5–10 sessions</td>
<td>830 nm</td>
<td>0.2 J/point, 10 mW</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Points on BL, CV, GB, ST, Ashi points</td>
<td>Negative</td>
</tr>
<tr>
<td>Katsoulis et al. [19]</td>
<td>Pilot study 11</td>
<td>Tendomyopathy of upper trapezius</td>
<td>Placebo</td>
<td>2 weeks then 2 weeks</td>
<td>830 nm</td>
<td>0.9 J/point, 30 mW</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Positive</td>
<td></td>
</tr>
<tr>
<td>Glazov et al. [34]</td>
<td>RCT 100</td>
<td>Low back pain</td>
<td>Placebo 5–10 sessions</td>
<td>830 nm 0.2 J/point 10 mW</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>120</td>
<td>ST5</td>
<td>HOMA-EC</td>
<td>Positive in long-term evaluation (12 weeks)</td>
</tr>
<tr>
<td>Zhao et al. [33]</td>
<td>RCT 40</td>
<td>Knee OA</td>
<td>Placebo</td>
<td>3 weeks (6 sessions)</td>
<td>650 nm, semiconductor laser plus 1064 nm CO₂ laser</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ST35</td>
<td>HOMA-EC</td>
<td>Positive after 2 weeks of treatment, but not at 6 weeks</td>
</tr>
<tr>
<td>Ferreira et al. [4]</td>
<td>RCT 40</td>
<td>TMD</td>
<td>Placebo 3 months</td>
<td>904 nm 0.2 J/point 10 mW</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>120</td>
<td>ST5</td>
<td>HOMA-EC</td>
<td>Positive in higher energy group</td>
</tr>
<tr>
<td>Uemoto et al. [18]</td>
<td>RCT 21</td>
<td>Myofascial pain syndrome of masseter muscle</td>
<td>Placebo</td>
<td>8 days (4 sessions)</td>
<td>780 nm</td>
<td>0.9 J/point, 30 mW</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Trigger points</td>
<td>Positive</td>
</tr>
</tbody>
</table>
DASH: disabilities of the arm, shoulder, and hand; DASS-21: Depression Anxiety Stress Scale; EMG: electromyography; EQ-5D: Euro-Quality-of-Life Five Dimensions questionnaire; KC: knee circumference; MOSP: maximum mouth opening (MMO) without pain; MTS: medial tenderness score; NHP: Nottingham Health Profile; NTP: number of tender points; ODI: Oswestry Disability Index; PGIC: Patient Global Impression of Change; PPT: pressure pain threshold; PRTEE: Patient-Related Lateral Epicondylitis Evaluation; SF-36: 36-item Short-Form Health Survey; VPS: verbal pain scale; VSGI: global improvement on a verbal scale; WOMAC: Western Ontario and McMaster Universities osteoarthritis index.

Table 1. Summary of clinical studies into pain management with laser acupuncture.

<table>
<thead>
<tr>
<th>Study design</th>
<th>Study design</th>
<th>Subjects</th>
<th>Diagnosis</th>
<th>Control</th>
<th>Intervention</th>
<th>Wavelength</th>
<th>Dose</th>
<th>Power</th>
<th>Irradiation time</th>
<th>Acupoints</th>
<th>Outcome measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huang et al. [44]</td>
<td>Clinical trial</td>
<td>20</td>
<td>TMD</td>
<td>Placebo</td>
<td>Once a week till symptom relief or 3 weeks of no improvement</td>
<td>808 nm</td>
<td>160 J/cm²</td>
<td>5 W/cm²</td>
<td>10 s</td>
<td>ST6, ST7, LI4 and one local Ashi point</td>
<td>VAS</td>
</tr>
<tr>
<td>Demirkol et al. [40]</td>
<td>RCT</td>
<td>30</td>
<td>Myofascial pain due to TMD</td>
<td>Occlusal splint; placebo</td>
<td>10 days (10 sessions)</td>
<td>1064 nm</td>
<td>8 J/cm²</td>
<td>250 mW</td>
<td>20</td>
<td>Trigger points</td>
<td>VAS</td>
</tr>
<tr>
<td>Hu et al. [42]</td>
<td>Clinical trial</td>
<td>29</td>
<td>Treatment-resistant TMD</td>
<td>—</td>
<td>4 weeks (12 sessions)</td>
<td>810 nm</td>
<td>7.5–26.25 J/cm²</td>
<td>5 W/cm²</td>
<td>5 sec (acupoint); 40 sec (Ashi point)</td>
<td>ST6, ST7, LI4 and Ashi points</td>
<td>VAS, MMO</td>
</tr>
<tr>
<td>Shin et al. [37]</td>
<td>RCT</td>
<td>56</td>
<td>Low back pain</td>
<td>Sham laser</td>
<td>1 week (3 sessions)</td>
<td>—</td>
<td>50 mW</td>
<td>370 mW</td>
<td>10 min</td>
<td>GV3, GV4, GV5, BL23, BL25, BL40, GB30</td>
<td>VAS, PPT, PGIC, EQ-5D</td>
</tr>
<tr>
<td>Ip and Fu [46]</td>
<td>Prospective cohort study</td>
<td>30</td>
<td>Painful adhesive capsulitis of shoulder</td>
<td>—</td>
<td>8 week (24 sessions)</td>
<td>810 nm</td>
<td>5.4 J/poin 20</td>
<td>20–30</td>
<td>6 anatomic points; SI11, SI12</td>
<td>Constant</td>
<td>Score Constant</td>
</tr>
</tbody>
</table>

Abbreviations

DASH disabilities of the arm, shoulder and hand
DASS-21 Depression Anxiety Stress Scale
EMG electromyography
EQ-5D Euro-Quality-of-Life Five Dimensions questionnaire
FIQ Fibromyalgia Impact Questionnaire
FIQ Fibromyalgia Impact Questionnaire
KC knee circumference
LA laser acupuncture
LE lateral epicondylitis
LLLT low-level laser therapy
MOSP maximum mouth opening (MMO) without pain
MTS medial tenderness score
NHP Nottingham Health Profile
NTP number of tender points
OA osteoarthritis
ODI Oswestry Disability Index
PGIC Patient Global Impression of Change
PPT pressure pain threshold
PRTEE Patient-Related Lateral Epicondylitis Evaluation
PWI-A Personal Wellbeing Index
RCT randomized controlled trial
ROM active range of motion
SF-36 36-item Short-Form Health Survey
SSI symptom severity index
TCM traditional Chinese medicine
TMD temporomandibular joint (TMJ) disorder
VAS visual analogue scale
VPS verbal pain scale
VSGI global improvement on a verbal scale
WHO World Health Organization
WOMAC Western Ontario and McMaster Universities osteoarthritis index

Author details
Szu-Ying Wu¹, Chun-En Kuo¹, Yu-Chiang Hung¹² and Wen-Long Hu¹³⁴*

*Address all correspondence to: oolonghu@gmail.com

1 Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and School of
Traditional Chinese Medicine, Chang Gung University College of Medicine, Kaohsiung,
Taiwan

2 School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan

3 Fooyin University College of Nursing, Kaohsiung, Taiwan

4 Kaohsiung Medical University College of Medicine, Kaohsiung, Taiwan
References

