We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,200
Open access books available

116,000
International authors and editors

125M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
1. Introduction

Aluminum oxide (Al_2O_3) commonly referred as to alumina is one of the most widely used as engineering oxide ceramics. From crystalline structure difference, there are many forms of Al_2O_3 (α, χ, η, δ, θ, γ and ρ), with α-Al_2O_3 being thermodynamically the most stable form. An example of α phase of Al_2O_3 is corundum or sapphire [1]. In the present chapter, α-Al_2O_3 is discussed and described as Al_2O_3. With a high melting temperature, chemical stability, Al_2O_3 is leading to applications as high-temperature components, catalyst substrates and biomedical implants. Al_2O_3 has excellent optical transparency and along with additives such as chromium and titanium, it is important as a sodium lamp (sapphire), a gem stone (sapphire and ruby) and a laser host (ruby).

Usually, Al_2O_3 ceramics were produced by sintering Al_2O_3 powder, that is, polycrystalline Al_2O_3. Sintered polycrystalline Al_2O_3 ceramics were opaque because of light scattering by closed pores and grain boundaries. In order to fabricate transparent polycrystalline Al_2O_3 many sintering techniques have been studied such as hot-pressing (HP), hot isostatic pressing (HIP), microwave sintering and pulsed electric current sintering (PECS).

PECS is also known as spark plasma sintering (SPS) or plasma activated sintering (PAS). The sintering technique is the latest pressure-sintering process to consolidate advanced materials such as ceramics, metallic materials, composites, polymers, semiconductors and oxide superconductors, in which the powder is heated by the application of electric current under uniaxial pressure.

PECS is a promising sintering technique for producing transparent polycrystalline Al_2O_3. In the present chapter, progress in PECS for transparent Al_2O_3 was discussed as well as other
oxides. Fundamentals of PECS were also discussed in the present chapter in order to understand PECS for transparent Al$_2$O$_3$.

2. Fundamentals on PECS

According to the open literatures [2, 3], the electric current activated/assisted sintering technology was pioneered by Duval d’Adrian in 1922 [4]. However, the first patent on pure direct current (DC) resistance sintering (RS) was proclaimed by Bloxam in 1906 [5, 6]. Thereafter, Taylor [7-9] developed the resistive sintering process consisting of capacitors, transformers and special switching devices. This process originated the electric discharge compaction (EDC) [10].

Inoue [11, 12] developed the first concept of the PECS technology in 1966. It introduced different electric current waveforms, i.e. low-frequency alternate current (AC), high-frequency unidirectional AC or pulsed DC. These sintering techniques were combined in one sintering process of electric-discharge sintering (EDS) [11], also known as spark sintering (SS). In SS process, a unidirectional pulsed DC or a unidirectional AC, is applied, then DC is eventually superimposed. This process led the development of current PECS technology, e.g. plasma activated sintering (PAS), spark plasma sintering (SPS), filed assisted sintering and plasma pressure compaction® (P2C) [13].

In the late 1980s various companies started to manufacture PECS machines based on Inoue’s patents. Since then, the number of the PECS applications has been extended further. In the early 1990s, Sumitomo Coal Mining Co. commercialized the new PECS apparatuses (2-20 kA DC pulse generators, 98-980 kN load cells) [14, 15]. The PECS process is schematically shown in Figure 1.

It simultaneously applies an electric current along with a uniaxial pressure in order to accelerate densification of powders with desired configuration [16]. The electric current delivered during PECS processes could in general assume different intensity and waveform which depend upon the power supply characteristics [2, 3, 14, 16].

The PECS process is characterized by the application of the pulsed electric current during sintering. The heating rate in the PECS process depends on the materials and shapes of the die/sample ensemble and on the electric power supply. Heating rates from 100 to 600 K/min can be obtained in the current PECS equipments. As a consequence, the PECS process can be in time ranges from a few ten seconds to minutes depending on the material and its size to be sintered, configuration and equipment capacity.

The temperature is measured either with a pyrometer focused on the surface of the graphite die or with the thermocouple inserted into the die. Usually, the measured temperature at the surface of the die (die temperature) is lower than that of the sample (sample temperature). The magnitude of this temperature difference depends on a number of factors such as thermal conductivity of the die and the sample, the heating rate used, the pressure used, how well the die is thermal insulated etc. [17]. The current and consequent temperature distributions within
the sample inside are very important to the homogeneity of density and grain size distribution of the product. Locally dense parts, at the beginning of current flow in particular, may result in locally overheating or even melting [16]. Experimental evidence of temperature distributions with different conductivity materials have been reported in [18-24]. It has been verified that the electrical properties of the sample influence significantly the temperature distributions inside the die as well as sample inside. Thus, in a nonconductive sample (i.e. Si$_3$N$_4$ and Al$_2$O$_3$), larger thermal gradients has been sometimes observed than in the case of a conductive one (i.e. Ti and Ni), indicating that the temperature distribution within the nonconductive sample is not as homogeneous as within a conductive sample.

Current understanding of the effects of pulse current waveform on compact density in a PECS process is still incomplete. The pulse current did not affect significantly the PECS of cast-iron powder [20] and Ni-20Cr powder [21]. In the PECS process of Al powder, densification behavior is independent of pulse frequency ranging from 300 Hz to 20 kHz [25]. The applied current, however, can significantly affect the growth of the product layer in chemical reaction between Mo and Si plates [26, 27]. With the PECS process, the pulse DC current affected the growth of Nb-C system, Mo$_2$C layer formed in Mo/C, Ti/C and Zr/C diffusion couples [28-30]. Inoue claimed that there was a frequency-dependent effect in his patent [31]. The densification rate of Fe and Ni based alloy processed by pulsed current was about 5% faster than by direct current [32].

However, the sintering mechanism of insulating oxides such as Al$_2$O$_3$ using the PECS method is still an on-going research area. Many papers on PECS of Al$_2$O$_3$ powder focused on densification and grain growth behavior by investigating effects of various parameters such as particle size, heating rate, sintering time, pressure and sintering temperature during the PECS process.
process. Influences of the sintering parameters on densification and grain growth are not clear yet.

There are no reports about pulse current waveform effects on sintering behavior of Al₂O₃. The waveform of applied current is probably an important factor to the sintering process of Al₂O₃. An effect of two types of pulse current waveforms, inverter and pulsed DC, on sample temperature and densification of Al₂O₃ powder by using the PECS process has been clarified in [33-35]. The magnitude of the voltage peaks increased with an increase of the “OFF” time relative to the “ON” time for all of pulse power generator. Maximum voltage value of the inverter generator was higher than that of the pulsed DC generator. PECS with the inverter generator had higher sample temperature than that with the pulsed DC generator.

In PECS of Al₂O₃ powder, the electric current would be mostly applied to the punches and graphite die for heating up to sintering temperature. The average peak height of the 12/2 pulsed DC pattern is lower than that of the 2/6 pulsed DC pattern as well as lower than that of 40/10 inverter and 10/20 inverter pattern at the same die temperature. The inverter-type PECS had a higher voltage applied to the graphite die than the pulsed DC-type ones at the same die temperature. When the number of the “OFF” pulses increased as in the 10/20 inverter or the 2/6 pulsed DC pattern, the peak height of voltages of the “ON” pulses must have increased to keep the output power constant.

Temperature difference in Al₂O₃ sample is generated in PECS [33-35]. When PECS of Al₂O₃ sample with φ15 in diameter and 3 mm in thickness was conducted, temperature of sample outside was 20 - 30 K higher than that of the inside sample. The difference of inside/outside temperature using pulsed DC was approximately 10 K lower compared to the inside/outside temperature using the inverter. PECS with an inverter had a higher sample temperature than that with a pulsed DC power generator and it also higher than the die temperature. When the die temperature is increased, the temperature difference between the die surface and the sample also increases.

The sample temperature would be strongly affected by the applied current profile during the PECS process. The current flow should be strongly dependent on the characteristics of the different elements which compose the system (powder, punches, die) and, particularly, their electrical and thermal characteristics. For an insulating material, the applied current does not flow through the sample when a pulse current power is applied to the die-sample, but could only flow from one punch to the other punch via the die. The current forms a magnetic field in the near surface of punches and the die inside where is close to the sample surface, and this magnetic field affects current density [19, 33-37]. The highest current density should be located close to the sample surface as can be illustrated in Figure 2. The temperature distribution is closely related to the current distribution because the heat transfer is generated by the flow of current at the graphite die and the punches. Thus, during the PECS process, the Al₂O₃ powder must be sintered by the heat transferred from the die inside close to the sample surface and punches by means of heat conduction. Given that heat generation and transfer lead to a temperature distribution, temperature outside is higher than that inside the sample [33-35]. In the punch-compression direction, the die temperature is lower than the sample because the
punches are in contact with water-cooled jacket and the die is cooled by radiation from the die outer surface.

Figure 2. Current flows and distributions in the PECS die/punch/sample system for various pulse waveforms.

The ON/OFF pulse patterns and power generator frequency could also affect the sample temperature. In the case of inverter power waveform, high voltage with high frequency at long “OFF” time flows into die and punch gives higher heat transfer to heat sample than that of other pulse patterns. The difference in sample temperature using pulse current waveform inverter and pulsed DC could be explained by the skin effect as shown in Figure 2. In the punch/die/sample system, the back color area shows the current concentration during the PECS process. In both cases, the heat is generated only in the conductive die and the distribution of the heat generation does not change drastically with the electric conductivity of sample. Electric current distribution is the main cause of the temperature gradient between the sample and the external surface of the die, together with radiation heat from the die surface. When the high frequency current (inverter generator) is applied to punches and graphite die, the current density near the inner surface of the punches/die should be higher than that at its center. In contrast, at low frequency (pulsed DC generator), current density would be uniformly distributed across graphite die and punches. This difference suggests that higher temperature could be achieved due to higher applied voltages, and the required energy for heating a sample with an inverter is higher than that with pulsed DC generator [19, 33-37]. The relative density as a function of the outside/inside sample temperature was discussed in [33-37]. These results show a consistent relative density increase trend with an increase in the sample temperature, independent of the applied pulse current waveforms and ON/OFF patterns. It was also revealed that the average grain size increases with an increase in sample temperature even in different pulse current waveforms and ON/OFF patterns. Densification and grain growth were
predominated by sample temperature. The pulse electric current waveform had effects on the sample temperature, but did not have direct influence on the densification, grain growth and homogeneity of the sample sintered by the PECS process.

3. Sintering of transparent polycrystalline alumina

Transparent polycrystalline \(\text{Al}_2\text{O}_3 \) has increasingly become the focus of recent investigations primarily because of their unique combination of properties. Single crystals of \(\text{Al}_2\text{O}_3 \) are highly transparent in visible and IR region. However polycrystalline \(\text{Al}_2\text{O}_3 \) ceramics are usually opaque because of light scattering of pores and grain boundaries as well as impurities. High density is the most important factor to produce polycrystalline transparent ceramics, as well as grain size. Because of the high efficiency of pores for light scattering, transparency in polycrystalline materials requires extremely low level in porosity, less than 0.01 vol.%. Samples with such low porosity could only be produced under proper sintering conditions involving high temperatures and long sintering time. Residual porosity is much more important than grain boundaries for obtaining the transparency, even in crystallographically anisotropic materials in optical properties. The scattering efficiency for spherical pores, however, decreases dramatically when the pore size in the nanometric range could be achieved [38-40]. It is believed that nanostructured polycrystalline materials would possess higher transparency than ones with the micrometric grain size range. The sintering process at high temperature causes extensive grain growth and then seriously degrades the mechanical properties of the material. What is more important, the higher/bigger grain size larger than 410 μm leads to significant light scattering coming from the birefringence of coarse \(\text{Al}_2\text{O}_3 \) grains [41].

After Coble developed transparent polycrystalline \(\text{Al}_2\text{O}_3 \) [42], many studies for producing transparent polycrystalline \(\text{Al}_2\text{O}_3 \) by sintering techniques were reported [40, 41, 43-82]. Recently, fine-grained transparent polycrystalline \(\text{Al}_2\text{O}_3 \) has attracted much attention due to its superior mechanical and optical properties. This material is prepared by sintering using HP and HIP at low temperature ranging from 1150 to 1400°C. The formation of nanostructure (< 1 μm) results in a significant improvement in both the mechanical strength and the optical transparency. It is reported that the mechanical strength of the fine-grained transparent \(\text{Al}_2\text{O}_3 \) is reached up to 400 - 600 MPa together with a high in-line transmission up to 60 % for visible light [41, 45]. Thus far, the addition of small amount of MgO is known to suppress normal and abnormal grain growth. The MgO concentration needed to inhibit abnormal grain growth depends on other impurities, CaO, SiO\(_2\) etc.. [42, 46, 47, 70, 72]. Coble opened a new chapter that positive effect of 250 ppm MgO addition in sintering of \(\text{Al}_2\text{O}_3 \) is accompanied by dissolution into \(\text{Al}_2\text{O}_3 \) and excess MgO beyond its solid solubility limit exists as non-stoichiometric MgAl\(_2\)O\(_4\) spinel at the grain boundaries of \(\text{Al}_2\text{O}_3 \) [42]. Hence, MgO strongly segregates into \(\text{Al}_2\text{O}_3 \) grain boundaries and produces a solute drag effect. The resultant microstructure is finer in grain size with higher final density. The transparent MgO doped \(\text{Al}_2\text{O}_3 \) ceramics was sintered to full density and had an in-line transmission of 40-50 % between 400 and 600 nm of the wavelength.
On the other hand, HPed Al$_2$O$_3$ yielding better transparency than pressureless-sintered samples was reported long back [38, 48-50]. Those reports showed that the increase of the transparent Al$_2$O$_3$ with a much smaller grain size of 1 μm could be obtained by a continuous hot-pressing process at 1400°C under pressures of 120 MPa in different atmosphere.

The major contribution to the less transparency for undoped polycrystalline Al$_2$O$_3$ originates from scattering caused by the remaining pores, and the difference between translucent and transparent Al$_2$O$_3$ could come entirely from the difference in pore-size and its distribution. Until quite recently, HIP is the most widely used technique for developing transparent alumina as it eliminates residual porosity and prevents grain growth leading to high transmission. For post-HIP treated samples, results for undoped [52], single doped (Mg$^{2+}$, Ti$^{4+}$) [39, 45, 46] transparent polycrystalline Al$_2$O$_3$ have been reported so far. This method gave fairly reproducible in-line transmittance between different groups with values up to 65 %.

Recently, some new sintering techniques such as microwave sintering [65] have also been studied for transparent crystalline Al$_2$O$_3$. Pressure-sintering such as HP and HIP is usually expensive in process cost. Microwave sintering is expected to realize homogeneous heating of the whole of ceramic sample.

4. Transparent Polycrystalline Al$_2$O$_3$ Produced by using PECS

Many reports on PECS for sintering transparent Al$_2$O$_3$ have been published as well as other transparent polycrystalline oxides. As process technology for ceramic powder is progressed, oxide ceramic powders with fine grain size and less agglomeration have been developed. Transparent polycrystalline Al$_2$O$_3$ with fine grains have been able to be prepared with such advanced oxide powder by using PECS.

Recently transparent oxide ceramics with fine grains such as 300 nm have been reported with different the PECS techniques as well as Al$_2$O$_3$. Munir and his colleagues promote PECS with ultra-high pressure such as 500 MPa [82]. High-pressure PECS is effective for preparing highly transparent polycrystalline Al$_2$O$_3$ [83], and also Y$_2$O$_3$-doped ZrO$_2$ [82] and Y$_2$O$_3$ [84]. High-pressure PECS is very useful for eliminate closed pores. However sample size is likely limited in high-pressure PECS.

Kim et al. proposed slow-heating PECS for densifying Al$_2$O$_3$ with less grain growth [57]. PECS with slow healing rate is available for not only Al$_2$O$_3$ but also MgAl$_2$O$_4$ [85]. Kim studied kinetics of densification and grain growth with stress rate in the point of view on “dynamic grain growth” [86]. He mentioned that slow stress rate in PECS is preferred in order to densification of Al$_2$O$_3$ with less grain growth. On the other hand, Makino and his colleagues reported that transparent polycrystalline Al$_2$O$_3$ can successfully obtained by PECS with fast heating rate such as 200 K/min [73]. However transparency of the sample with fast heating rate was not good in homogeneity. In order to densify Al$_2$O$_3$ without significant grain growth, influences of heating rate is still in discussion.
Goto and his colleagues reported PECS of transparent Lu$_2$O$_3$ with two-step pressure profile [87]. Lu$_2$O$_3$ is one of the candidates on laser host materials for high-power and ultra-short pulse lasers. However it is difficult for densification by conventional sintering. Taking account of advanced studies on transparent oxides given by Kim and Goto, a sintering profile is very important even in a process of PECS.

Thus PECS provides transparent polycrystalline oxides. Besides the oxides described here, there are many examples of transparent oxides sintered by using PECS. Table 1 shows a variety of transparent polycrystalline oxides prepared by using PECS.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Dopants</th>
<th>Remarks</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al$_2$O$_3$</td>
<td>As-received</td>
<td>Slow-heating</td>
<td>[57]</td>
</tr>
<tr>
<td></td>
<td>Cr$_2$O$_3$-doped</td>
<td></td>
<td>[76]</td>
</tr>
<tr>
<td></td>
<td>As-received</td>
<td>High-pressure</td>
<td>[88]</td>
</tr>
<tr>
<td>MgO, Y$_2$O$_3$, and La$_2$O$_3$-doped</td>
<td>Cr$_2$O$_3$-doped</td>
<td>Slow-heating</td>
<td>[77]</td>
</tr>
<tr>
<td>ZrO$_2$, La$_2$O$_3$, and MgO-doping</td>
<td>MgO-doped</td>
<td>High-pressure</td>
<td>[83]</td>
</tr>
<tr>
<td></td>
<td>As-received</td>
<td>Fast-heating</td>
<td>[73]</td>
</tr>
<tr>
<td></td>
<td>As-received</td>
<td>Slow-heating</td>
<td>[80]</td>
</tr>
<tr>
<td></td>
<td>La$_2$O$_3$-Doped</td>
<td>High-pressure</td>
<td>[81]</td>
</tr>
<tr>
<td></td>
<td>As-received</td>
<td>Two-step temperature</td>
<td>[74, 75]</td>
</tr>
<tr>
<td>Mg$_2$Al$_2$O$_4$</td>
<td>Undoped & LiF-doped</td>
<td>Two-step Pressure & Temperature</td>
<td>[89]</td>
</tr>
<tr>
<td></td>
<td>As-received</td>
<td>Slow-heating</td>
<td>[85]</td>
</tr>
<tr>
<td></td>
<td>As-received</td>
<td></td>
<td>[90]</td>
</tr>
<tr>
<td></td>
<td>As-received</td>
<td></td>
<td>[91]</td>
</tr>
<tr>
<td></td>
<td>As-received</td>
<td>Slow-heating</td>
<td>[92]</td>
</tr>
<tr>
<td></td>
<td>Lab-made</td>
<td></td>
<td>[93]</td>
</tr>
<tr>
<td>Y$_2$O$_3$-Doped ZrO$_2$</td>
<td>As-received</td>
<td>High-pressure</td>
<td>[82]</td>
</tr>
<tr>
<td></td>
<td>As-received</td>
<td></td>
<td>[94]</td>
</tr>
<tr>
<td></td>
<td>As-received</td>
<td></td>
<td>[95]</td>
</tr>
<tr>
<td></td>
<td>Lab-made</td>
<td></td>
<td>[96]</td>
</tr>
<tr>
<td>Y$_2$O$_3$</td>
<td>As-received, undoped</td>
<td>High-pressure</td>
<td>[97]</td>
</tr>
</tbody>
</table>
Table 1. Transparent polycrystalline oxides produced by PECS

<table>
<thead>
<tr>
<th>Materials</th>
<th>Dopants</th>
<th>Remarks</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lu₂O₃</td>
<td>As-received, undoped</td>
<td></td>
<td>[98]</td>
</tr>
<tr>
<td>Lu₂O₃</td>
<td>As-received, undoped</td>
<td>Two-step Pressure</td>
<td>[87]</td>
</tr>
<tr>
<td>Lu₂O₃</td>
<td>Lab-made, Yb₂O₃-doped</td>
<td></td>
<td>[100]</td>
</tr>
<tr>
<td>MgO</td>
<td>As-received</td>
<td></td>
<td>[101]</td>
</tr>
<tr>
<td>MgO</td>
<td>Lab-made, Undoped & CaO-doped</td>
<td>High-pressure</td>
<td>[102]</td>
</tr>
<tr>
<td>Lu₁,Ti₂O₇</td>
<td>Lab-made, undoped</td>
<td>Two-step Pressure</td>
<td>[103]</td>
</tr>
<tr>
<td>Lu₁,NdO₇</td>
<td>Lab-made, undoped</td>
<td>Two-step Pressure</td>
<td>[104]</td>
</tr>
<tr>
<td>La₂,Zr₂O₇</td>
<td>Lab-made, undoped</td>
<td>Two-step Pressure</td>
<td>[105]</td>
</tr>
<tr>
<td>β-Ca₃(PO₄)₂</td>
<td>undoped</td>
<td></td>
<td>[106]</td>
</tr>
<tr>
<td>YAG</td>
<td>undoped</td>
<td></td>
<td>[107]</td>
</tr>
<tr>
<td>YAG</td>
<td>undoped & LiF-doped</td>
<td></td>
<td>[108]</td>
</tr>
<tr>
<td>Oxyapatite</td>
<td>Lab-made, undoped</td>
<td></td>
<td>[109]</td>
</tr>
<tr>
<td>Mullite</td>
<td>Lab-made, undoped</td>
<td>High-pressure</td>
<td>[110]</td>
</tr>
</tbody>
</table>

5. Two-step PECS for transparent polycrystalline alumina

The authors study PECS with two-step temperature profile, that is, two-step PECS (referred as to TS-PECS), in order to fabricate transparent oxide ceramics with fine grains [74, 75]. Figure 3 shows the sintering profile of TS-PECS with other PECS techniques. TS-PECS can provide well-transparent oxides with shorter sintering period in comparison with slow-heating PECS.

Figure 4 shows appearance, fracture surface and density of polycrystalline Al₂O₃ prepared by using TS-PECS with 1st different temperature for 60 min and 1200°C for 20 min under 100 MPa in vacuum. A sample prepared by slow-heating PECS at 1200°C is shown for comparison. Importance of the 1st step temperature can be understood in Figure 4. The sample sintered at 1000°C in the 1st step has high transparency and less grain growth. The meaning of the 1st step is densification without significant grain growth. Sintering at 1000°C can provide densification without grain growth, however, full densification cannot be achieved. In order to reach to the full densification of the sample, the 2nd step with higher sintering temperature is necessary.
Figure 3. Schematic diagrams on sintering profiles of TS-PECS with other PECS techniques.

Figure 4. Appearance, fracture surface and density of polycrystalline Al₂O₃ prepared by using TS-PECS with 1st different temperature for 60 min and 1200°C for 20 min under 100 MPa in vacuum.
TS-PECS is also useful for other transparent oxides such as MgAl\(_2\)O\(_4\). This polycrystalline oxide has better transparency because of isotropic crystal structure. Figure 5 shows appearance of polycrystalline MgAl\(_2\)O\(_4\) produced by using TS-PECS. Even regular PECS such as 1300°C for 20 min with 100 K/min can provide transparent MgAl\(_2\)O\(_4\) with fine grain size. However TS-PECS can increase transparency of the sintered sample.

![Figure 5. Appearance of polycrystalline MgAl\(_2\)O\(_4\) produced by using (a) PECS and (b) TS-PECS under 100 MPa in vacuum.](image)

Table 2 shows mechanical properties of transparent Al\(_2\)O\(_3\) of TS-PECS. Bending strength of the samples is approximately 400 MPa, which is comparable with any commercial opaque Al\(_2\)O\(_3\). This is caused by the existence of macroscopic defects as large as a few tens micrometers. Figure 6 shows an optical microscopic image of the inside of the transparent Al\(_2\)O\(_3\) prepared by TS-PECS. Many black dots are observed in the sample. Figure 7 represents a scanning electron microscopic image of the cross-section of a black dot in transparent Al\(_2\)O\(_3\) prepared by TS-PECS. Size of the black dot in Al\(_2\)O\(_3\) is approximately 50 μm in diameter. The black dot is pores although the surrounding is fully densified. The microstructure of the black dots implies that the black dots were derived from the agglomeration of the initial particles of the Al\(_2\)O\(_3\) powder. Such a larger defect leads low mechanical strength, as given by the Griffith Criteria. Even PECS with high pressure, the powder properties such as the agglomeration is very important. PECS under 100 MPa in uniaxial pressure cannot eliminate the agglomeration of the initial particles. In particular elimination of the agglomeration of the initial particles is very important in even PECS for structural ceramics and transparent ceramics.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>99.8%</td>
</tr>
<tr>
<td>Average Grain Size</td>
<td>0.31 μm</td>
</tr>
<tr>
<td>Vickers Hardness</td>
<td>20.8 GPa</td>
</tr>
<tr>
<td>Bending Strength</td>
<td>400 MPa</td>
</tr>
<tr>
<td>Fracture Toughness</td>
<td>3.3 MPa(^{1/2})</td>
</tr>
</tbody>
</table>

Table 2. Mechanical Properties of Transparent Al\(_2\)O\(_3\) prepared by TS-PECS (1000°C for 60 min, 1200°C for 20 min, 100MPa 100 K/min)
Figure 6. An optical microscopic image of the inside of the transparent Al₂O₃ prepared by TS-PECS.

Figure 7. A scanning electron microscopic image of the cross-section of a black dot in transparent Al₂O₃.

TS-PECS is also available for preparing transparent colored-Al₂O₃ and MgAl₂O₄. Figure 7 shows appearance of various transparent Al₂O₃ and MgAl₂O₄ added with different dopants. A red color in Al₂O₃ and MgAl₂O₄ is caused by doping Cr₂O₃. In polycrystalline Al₂O₃, MnO causes the color of orange or brown, however less transparency. Doping MnO into MgAl₂O₄ shows yellow in color and good transparency.
6. Summary

Transparent Polycrystalline Al\textsubscript{2}O\textsubscript{3} can be produced by using PECS with advanced Al\textsubscript{2}O\textsubscript{3} powder. The preferred techniques of PECS to obtain better transparency in Al\textsubscript{2}O\textsubscript{3} are classified into the following: (1) high-pressure PECS, (2) slow-heating PECS, (3) fast-heating PECS, and (4) two-step PECS, as well as PECS with preferred additives. Influences in sintering parameters in PECS for transparent polycrystalline Al\textsubscript{2}O\textsubscript{3} are still not clear. At least, PECS with slow heating rate and two-step heating profile is preferred to produce transparent polycrystalline Al\textsubscript{2}O\textsubscript{3}. Using advanced Al\textsubscript{2}O\textsubscript{3} powder and PECS, agglomeration of the particles is still significant issue in transparent polycrystalline Al\textsubscript{2}O\textsubscript{3}. Management of Al\textsubscript{2}O\textsubscript{3} powder to reduce the agglomeration is necessary to increase transparency of Al\textsubscript{2}O\textsubscript{3} prepared by using PECS.

Acknowledgements

The authors thank to Mr. Masakazu Kawahara (Fuji Electric Industry Co. Ltd.) and Mr. Shin-ichi Takei (SinterLand Inc.) for useful discussion and Mr. Huu Hien Nguyen who is a graduate student of Nagaoka University of Technology, for conducting experiments on colored Al\textsubscript{2}O\textsubscript{3} and MgAl\textsubscript{2}O\textsubscript{4} and observation of black dots in transparent polycrystalline Al\textsubscript{2}O\textsubscript{3}.
Author details

Makoto Nanko1* and Khanh Quoc Dang2

*Address all correspondence to: nanko@mech.nagaokaut.ac.jp

1 Department of Mechanical Engineering, Nagaoka University of Technology, Japan
2 School of Materials Science and Engineering, Hanoi University of Science and Technology, Vietnam

References

[65] Krell A., Blank P. Grain size Dependence of Hardness in Dense Submicrometer Alu-

[66] Cheng J., Agarwal D., Zhang Y., Roy R. Microwave Sintering of Transparent Alumi-

