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1. Introduction

The quantities characterizing near-tip fields of cracks are generally recognized to play a crucial

role in both linear and nonlinear fracture mechanics. Among various methods developed to

analyze the structure of the near-tip fields, the weight function technique of Bueckner [4, 6]

based on Betti’s reciprocity theorem turned out to be especially promising. The concept of

higher-order weight functions in mechanics of elastic cracks was introduced by Sham [20, 21]

as an extension of the weight function approach. A historical introduction into the existing

alternative formulations of the weight function theory and a review of its earlier development

can be found in the papers by Belov and Kirchner [28, 31]. The theory of weight functions

treats the stress intensity factor K, which is a coefficient normalizing the stress singularity

σ = K/(2πr)1/2 at the crack tip, as a linear functional of loadings applied to an elastic body.

The kernel of the functional is however independent of loadings and, in this sense, universal

for the given body geometry and crack configuration. To emphasize this fact, Bueckner [4]

suggested that the kernel to be called ’universal weight function’. The weight functions play

the role of influence functions for stress intensity factors, since the weight function value
at a point situated inside the body or at its surface (including crack faces) is equal to the

stress intensity factor, which is due to the unit concentrated force applied at this point. The

weight function based functionals can be constructed not only for external forces but also for

the dislocation distributions described by the dislocation density tensor, as it was shown by

Kirchner [14]. The objective of the weight function theory is not to compute complete stress

distributions in cracked bodies for an arbitrary loading, but to express only one parameter K

characterizing the strength of the near-tip stress field as a functional (weighted average) of

the loading. In particular, in the simplest case of a cracked body subjected to only surface

loadings the functional has the form of a contour integral. However, in order to apply the

weight function theory to practical situations, the kernel of the functional has to be evaluated

and this can be done by solving a special elasticity problem, for instance, numerically by

a finite element method. The stress singularities are inherent not only to cracks. Sharp
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re-entrant corners or notches that are encountered in a number of engineering structures

can become likely sites of stress concentrations and therefore the potential sources of the

crack initiation. At the tips (or vertices) of these notches the stress can be also singular

σ = K/r1−s, where s > 0 and K is a generalized stress intensity factor normalizing the stress
singularity. An attractive feature of the approach based on Betti’s reciprocity theorem is that

it enables for the weight functions to be constructed not only for sharp cracks but also for

notches of finite opening angle [19]. It is the purpose of this paper to review the main ideas

underlying the higher-order weight function methodology and to consider its applications to

elastically anisotropic multimaterials with notches or cracks. The present analysis is confined

to the two-dimensional structures in the state of the generalized plane deformation, where

considerable analytical advancement was demonstrated in the last two decades.

As is known, the stress field in a finite two-dimensional elastic body containing an edge crack

can be represented in series form over homogeneous eigenfunctions of an infinite plane with

a semi-infinite crack. Such a series representation was first utilized by Williams [1, 2] to

describe stress distributions around the crack tip, and is commonly referred to as Williams’

eigenfunction expansion, although Williams confined himself only to the case of isotropy

and spacial homogeneity of the elastic constants tensor. The eigenfunction expansion of this

type however exists whatever the body is elastically isotropic or anisotropic, homogeneous

or angularly inhomogeneous (with elasticity constants dependent on the azimuth around the

crack tip). The weight functions introduced by Bueckner enable to evaluate only the stress

intensity K, that is the magnitude of the singular term, which close to the crack tip dominates

other terms in the Williams’ expansion. It is the purpose of higher order weight function

theory to evaluate coefficients of non-singular terms in this expansion.

2. Symmetry in anisotropic theory of elasticity

If one exploits the linear elasticity theory, the tensor of the second order elastic constants

Cijkl(r) of an anisotropic medium (both homogeneous and inhomogeneous) possesses the

following types of symmetry:

a) due to the symmetry of stresses and strains

Cijkl(r) = Cjikl(r) = Cijlk(r) (1)

b) due to the existence of the elastic potential W(εkl)

Cijkl(r) = Cklij(r) (2)

Owing to both properties given in Eqs. (1)-(2), one has

(ab) = (ba)t, (3)

where the real 3 × 3 matrices are constructed according to the rule

(ab)jk = aiCijkl(r)bl (4)

4 Applied Fracture Mechanics
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for two arbitrary vectors ai and bl . Although Eq. (3) looks rather simple, it underlies

many fundamental results of the anisotropic elasticity theory. In particular, the proof of the

orthogonality relation for the six-dimensional Stroh eigenvectors [3] is based only on Eq. (3),

see [22] for further details. Here it is worth to mention that Betti’s reciprocity theorem is
based on the symmetry properties (1)-(2) as well. This fact was utilized in [5] to derive the

aforementioned orthogonality relation for the Stroh eigenvectors from Betti’s theorem. In

fact, practically all significant analytical achievements in the anisotropic theory of elasticity

employ the directly following from Eq. (3) symmetry relation

(T̂N̂)t = T̂N̂, (5)

where the 6 × 6 matrix T̂ is defined as

T̂ =

(

0 I

I 0

)

, T̂
2
=

(

I 0

0 I

)

= Î, (6)

Î is the 6 × 6 unit matrix, and the 6 × 6 matrix N̂ = N̂(r) is the well-known matrix of Stroh

N̂(r) =

(

N̂1 N̂2

N̂3 N̂4

)

, (7)

consisting of the 3 × 3 blocks

N̂1 = −(nn)−1(nm), N̂2 = −(nn)−1,

N̂3 = (mm)− (mn)(nn)−1(nm), N̂4 = −(mn)(nn)−1.
(8)

The blocks of the Stroh matrix are formed by a convolution of the elastic constants tensor

Cijkl(r) with two unit vectors m and n forming together with the unit vector t the right-handed

basis (m, n, t). Eq. (5) is easily proved by direct inspection.

3. The consistency equation

Here, we review the fundamentals of the weight function theory in inhomogeneous elastic

media, following the method of Belov and Kirchner [28]. Let us consider a two-dimensional

(that is infinite along the axis x3) notched body A of finite size in the x1x2-plane, as shown in

Fig. 1. The body is supposed to be loaded such that a state of generalized plane strains occurs,

that is the displacement vector u remains invariant along x3 and has both plane (u1 and u2)

and anti-plane (u3) components. We deal with a special class of multimaterials, which are

composed from the elastically anisotropic homogeneous wedge-like regions with a common

apex, as shown Fig. 2. The wedges differ in their elastic constants. In fact, the multimaterial

structures discussed in this chapter are a particular case of the elastic media with angular

inhomogeneity of the elastic properties. Therefore they can be treated within the framework

of the general formalism developed by Kirchner [17] for elastically anisotropic angularly

inhomogeneous media, where the elasticity constants Cjikl(ω) depend on the azimuth ω

counted around the axis x3 from which the radius r is counted, as illustrated in Fig. 3. The

essence of this approach is to employ a six-dimensional consistency equation for the field

variable (u,φ) formed by the displacement vector u and the Airy stress function vector φ. The

5Higher Order Weight Functions in Fracture Mechanics of Multimaterials
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A

SN

ST

SU

R0
r0

L
x1

x2

(r,ω)

Figure 1. Finite specimen A with a notch. The tractions are prescribed on ST and the displacements on
SU; the notch faces SN are traction free. The reciprocity theorem is applied to the dashed contour L.

consistency equation results from the fact that some linear forms consisting of the first-order

spacial derivatives of the displacements and stress functions must represent components of

the same stress tensor. Consequently the stresses σij can be equally derived from u via Hook’s

law as

σij = Cijkl(ω)∂kul (9)

or from φ according to

σi1 = ∂2φi, σi2 = −∂1φi. (10)

Direct comparison of Eq. (9) and Eq. (10) yields a first-order differential equation

{

N̂(ω)
∂

∂r
− Î

1

r

∂

∂ω

}(

u(r, ω)
φφφ(r, ω)

)

= 0, (11)

where the matrix N̂(ω) is defined by Eq. (7) and Eq. (8) and the unit vectors m and n are

rotated counterclockwise by an angle ω against a fixed basis {m0, n0}, as shown in Fig.

3. The consistency condition given in Eq. (11) ensures that any its solution corresponds to

equilibrated stresses (because they are derived from the stress functions) and compatible

strains (because they are derived from the displacements). Therefore, the solutions of Eq. (11)

describe states free of body forces and dislocation distributions. As it was emphasized in
[28], the consistency equation (11) remains valid for arbitrary inhomogeneity, where the

matrix N̂(r, ω) depends also on the radius r via Cijkl(r, ω), and provides an extension of the

well-known result [9] obtained under assumption of elastic homogeneity. The examples of

successful application of the consistency equation to the analysis of the stress state due to

linear defects such as dislocations, line forces, and disclinations in angularly inhomogeneous

6 Applied Fracture Mechanics
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n-1
n

n-2

Figure 2. Multimaterial consisting of n bonded together elastic wedges with different elastic constants

C
(m)
ijkl , (m = 1, . . . , n).

SN

x1

x2

(r,ω)

ΩCijkl(ω)

n

n0 m

m0

Figure 3. Elastic plane with a notch and the elastic constants Cijkl(ω) continuously dependent on the
azimuth ω. Basis (m,n,t) is rotated counterclockwise by an angle ω against a fixed basis (m0,n0,t).

anisotropic media can be found in [16] and [23, 24], respectively. The consistency equation was

further applied in [29] to study the stress behavior in the angularly inhomogeneous elastic

wedges near and at the critical wedge angle.

4. Eigenfunction expansions

According to [28], an extension of the Williams’ eigenfunction expansion [1] to the notched

body shown in Fig. 3 can be constructed from homogeneous solutions of Eq. (11). A suitable

7Higher Order Weight Functions in Fracture Mechanics of Multimaterials
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separable solution varying as a power of distance r has the form

(

u(r, ω)
φφφ(r, ω)

)

= rsV̂
(s)

(ω)

(

h

g

)

, (12)

where (h, g) is a constant six-dimensional vector and

V̂
(s)

(ω) =

(

V̂
(s)
1 V̂

(s)
2

V̂
(s)
3 V̂

(s)
4

)

, (13)

is a 6 × 6 matrix function of the azimuth ω, which is sometimes also referred to as transfer

matrix. It is to be found by inserting the separable solution (12) into the consistency equation

(11). As was shown in [17], this procedure results in the first-order ordinary differential

equation

dV̂
(s)

(ω)

dω
= sN̂(ω)V̂

(s)
(ω) (14)

with the initial condition

V̂
(s)

(0) = Î. (15)

The solution of Eq. (14) is the ordered exponential defined as

V̂
(s)

(ω) = Ordexp

(

s
∫ ω

0
N̂(θ)dθ

)

=
k

∏
i=1

exp (sN̂(θi−1)δθ),
(16)

where θ0 = 0, δθ = ω/k, and k → ∞. A representation of the ordered exponential as a

series expansion useful for approximate calculations within the framework of the perturbation

theory can be found in [17]. The six-dimensional field (12) satisfies the consistency equation

(11) and provides the solution, which is both compatible and equilibrated in the bulk for any

value of the parameter s, which may be real or complex. Hence, the bulk operator N̂(ω) in Eq.

(11) itself doesn’t impose any restrictions on the admissible values of s. However, in order for

(12) to become an eigenfunction of the angularly inhomogeneous notched plane (see Fig. 3),

the appropriate boundary condition at the notch faces must be satisfied, and it is the boundary

condition that results in the discrete spectrum of the eigenvalues {sn} and the corresponding

eigenvectors (hn, gn). If both notch faces, ω = 0 and ω = Ω, are traction free, the boundary

condition reads as

φφφ(r, 0) = φφφ(r, Ω) = 0. (17)

In view of Eq. (15), the condition at the notch face ω = 0 implies that g = 0. The condition at

the other face, ω = Ω, gives a linear homogeneous algebraic system of equations for the three

components of h,

V̂
(s)
3 (Ω) · h = 0. (18)

The system (18) has a non-trivial solution for h only provided that the parameter s satisfies

the eigenvalue equation

‖V̂
(s)
3 (Ω)‖ = 0, (19)

8 Applied Fracture Mechanics
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where the symbol ‖ . . . ‖ stands for determinant. Equation (19) yields an infinite set of

roots {sn}, each of which generates an eigenfunction. With a positive real part Re sn, the

eigenfunction (12) has bounded elastic energy in any neighborhood of the notch tip, although

this requirement doesn’t exclude the existence of the stress singularity at r = 0.

Finally, an inner Williams’ expansion for the notch is given by

(

u(r, ω)
φφφ(r, ω)

)

= ∑
Re sn≥ 0

K(n)rsn V̂
(sn)(ω)

(

hn

0

)

, (20)

with the coefficients K(n) being the eigenfunction amplitudes, which characterize the fine

structure of the near-tip fields. Since the eigenvalue problem resulting from the traction free

boundary conditions (17) is invariant with respect to the rigid body translations and rotations,

the eigenvalues s = 0 and s = 1 are roots of equation (19), whatever the angular dependence

the elastic constants Cijkl(ω) have. Hence, two terms in Eq. (20) require special consideration.

These two terms describe a rigid body translation and a rotation and they are ordered in the

expansion (20) by n = 0 and n = 1 respectively. At this point, it is worth noting that the

expansion coefficients K(0) and K(1) of both rigid body motion terms can be uniquely defined

only if SU �= 0, where SU is a part of the body surface S (see, Fig. 1 for details), at which

the displacements are prescribed. Otherwise the two coefficients remain arbitrary and the

corresponding terms in the expansion (20) can be omitted.

In the case of SU �= 0 the coefficients K(0) and K(1) become important, especially in the

numerical analysis. In order to reveal their geometrical interpretation, let us consider

the corresponding eigenfunctions explicitly. Rigid body translations are generated by the

eigenvalue s0 = 0. Since V̂
(0)

(ω) reduces to the unit matrix, the eigenfunction associated

with this eigenvalue takes the form

(

u(0)(r, ω)

φφφ(0)(r, ω)

)

= K(0)
(

h0

0

)

. (21)

Thereby the coefficient K(0) describes the notch tip (and the body as a whole) displacement

magnitude in the direction of the vector h0, which length is assumed to be normalized to unity,

u(0) = K(0)h0. (22)

In turn the rigid body rotation term is generated by the eigenvalue s1 = 1 and the eigenvector

h1 = n(0). Using the properties of the ordered exponential V̂
(1)

(ω) (consult with [24, 28] for

further details), the corresponding eigenfunction can be found in explicit form for an arbitrary

rotational inhomogeneity

(

u(1)(r, ω)

φφφ(1)(r, ω)

)

= K(1)rV̂
(1)

(ω)

(

n(0)
0

)

= θr

(

n(ω)
0

)

. (23)

The coefficient K(1) = θ represents a rigid body rotation by an angle θ.

9Higher Order Weight Functions in Fracture Mechanics of Multimaterials
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In general, for some particular angular dependencies of the elastic constants Cijkl(ω) or for

some values of the notch angle the eigenvalue equation (19) can have multiple roots. This

case needs special treatment since the expansion (20) over the power-law eigenfunctions

is no longer complete and must be completed by the power-logarithmic solutions. The
necessary modifications can be done by taking into consideration some general properties of

solutions of elliptic problems in domains with piecewise smooth boundaries [26]. In fact, such

degeneracies are of minor practical importance for fracture mechanics and are not discussed

in this paper. The only exception is the root s = 1 associated with rigid body rotation as well

as the complementary root s = −1 generating a solution for a concentrated couple applied

at the noth tip. This case is analyzed in detail in [29], where also analytical expressions for

power-logarithmic solutions in elastically anisotropic angularly inhomogeneous media were

presented (see also [24]).

5. Complementary eigenfunctions

The eigenfunction expansion (20) of the near-tip field contains only the terms of bounded

elastic energy. However, the eigenvalue problem (18) admits solutions of unbounded energy

as well. The latter correspond to self-equilibrated loadings applied at the notch tip. The

eigenfunctions of bounded and unbounded elastic energy are not independent and there

exists an intrinsic symmetry between them, which follows from the invariance of Eq. (19)

with respect to the index inversion s → −s. As has been proved by Belov and Kirchner [31],

for any angular inhomogeneity Cijkl(ω), whenever Eq. (19) is satisfied,

‖V̂
(−s)
3 (Ω)‖ = 0 (24)

is also valid. Hence, for any eigenfunction (12) generated by a positive real part root s there

exists a complementary eigenfunction generated by an eigenvalue −s with negative real part

and unbounded elastic energy. This symmetry between the positive and negative real part

solutions of Eq. (19) is the cornerstone of the weight function theory.

Since eigenvalues s and −s appear always in pairs, the complementary eigenfunction

(

u(r, ω)
φφφ(r, ω)

)

= r−sV̂
(−s)

(ω)

(

h∗

g∗

)

, (25)

where (h∗, g∗) is a constant vector, is also a solution without body forces and dislocations that

obeys the traction free boundary condition (17) at the notch faces. The vector (h∗, g∗) excites

this field just as (h, g) excited (12).

6. Pseudo-orthogonality relations

The second property of the eigenfunctions (12), which underlies the weight function theory,

is their six-dimensional orthogonality. The paper by Chen [13] appears to be the first work

where the orthogonality property of the eigenfunctions along with Betti’s reciprocity theorem

were applied to compute the coefficients in the Williams’ eigenfunction expansion for an edge

crack. The case an elastically isotropic medium considered in [13] is rather simple, since the

existing analytical expressions for the eigenfunctions enable for the orthogonality property

10 Applied Fracture Mechanics
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to be easily proved by direct calculation. Using the same method, Chen and Hasebe [25, 27]

derived the orthogonality property for an interface crack in an isotropic bimaterial and also

for an orthotropic material with pure imaginary roots of the Stroh matrix. The cumbersome

direct calculations [13, 25, 27] are possible only for very simple cases and reveal neither the
nature of the orthogonality relations nor their connection with the symmetry of the elasticity

equations. Belov and Kirchner [28] suggested a proof of the orthogonality property for both

cracks and notches of finite opening angle in an elastically anisotropic media possessing

arbitrary inhomogeneity of the elastic constants Cijkl(ω). In contrast to [13, 25], the proof

given in [28] shows that the orthogonality property of the eigenfunctions (12) directly follows

from the symmetry (5) of the operator N̂(r).

The idea of the proof [28] consists in the following. Integrating by parts an average of the

weighted product of two ordered exponentials of arbitrary indices s and q, one finds

q

∫ Ω

0
[V̂

(s)
(ω)]tT̂N̂(ω)V̂

(q)
(ω)dω =

∫ Ω

0
[V̂

(s)
(ω)]tT̂

d

dω
V̂
(q)

(ω)dω (26)

= [V̂
(s)

(Ω)]tT̂ V̂
(q)

(Ω)− T̂

− s

∫ Ω

0
[V̂

(s)
(ω)]tN̂

t
(ω)T̂V̂

(q)
(ω)dω

So far only the fact that the ordered exponential V̂
(q)

(ω) satisfies equation (14) has been used.

Taking into account that the ’bulk’ operator T̂N̂(r) is symmetric (according to Eq.(5)), we

obtain an important property of the ordered exponentials

(s + q)

∫ Ω

0
[V̂

(s)
(ω)]tT̂N̂(ω)V̂

(q)
(ω)dω = [V̂

(s)
(Ω)]tT̂ V̂

(q)
(Ω)− T̂. (27)

This result is independent of the boundary conditions (17) specified at the notch faces. It takes

place for any indices s and q, which are not necessary roots of Eq. (19). Let us now consider

two roots sn and sp satisfying the condition sn + sp �= 0. Then, according to Eq. (27), the

weighted average can be represented as

∫ Ω

0
[V̂

(sp)(ω)]tT̂N̂(ω)V̂
(sn)(ω)dω =

1

sp + sn

(

[V̂
(sp)(Ω)]tT̂ V̂

(sn)(Ω)− T̂
)

. (28)

Now let (hp, 0) and (hn, 0) be corresponding eigenvectors. Multiplying equation (28) from

the right and from the left by these eigenvectors, one obtains the orthogonality relation in the

form

(hp, 0)t

∫ Ω

0
[V̂

(sp)(ω)]tT̂N̂(ω)V̂
(sn)(ω)dω

(

hn

0

)

= 0, (sn + sp �= 0). (29)

Details of the proof are clear from Eq. (28) and the identity

(

[

V̂
(sp)(Ω)

(

hp

0

)]t

T̂V̂
(sn)(Ω)− (hp, 0)T̂

)

(

hn

0

)

= (hpV̂
(sp)
1 (Ω), 0)

(

0

V̂
(sn)
1 (Ω)hn

)

= 0.

(30)

11Higher Order Weight Functions in Fracture Mechanics of Multimaterials
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Finally, the orthogonality relation can be rewritten explicitly in terms of the eigenfunctions

(12) as
∫ Ω

0
(up, φφφp)

tT̂N̂(ω)

(

un

φφφn

)

dω = 0, (sn + sp �= 0). (31)

The six-dimensional orthogonality (or pseudo-orthogonality) is not an orthogonality in

the generally accepted sense, because it takes place not only for different eigenvalues,

but also when sn = sp. This means that all eigenfunctions are ’self-orthogonal’. The

pseudo-orthogonality property fails only for the pairs sp �= −sn, which have special status

in the higher-order weight function theory.

7. Fundamental field and weight function of higher-order

Following [28], we consider a notched body A shown in Fig. 1 and subject it to an external

surface loading system which includes prescribed surface tractions F on the boundary ST and

imposed displacements U at the remainder SU of the body surface S = ST + SU. We further

suppose that A is free from body forces and dislocations. The notch faces SN are assumed to

be traction free. This system of loadings leads to the boundary conditions

{

Tk = Fk on ST, and Tk = 0 on SN,

uk = Uk on SU,
(32)

where Tk = σijνj and νj is an outer unit normal to the body surface. Inside A the elastic

field produced by the loading system (32) is represented by the eigenfunction expansion (20).

This field is called regular, while it can result in a stress singularity at the notch tip. As

already noted, the elastic energy associated with the regular field remains bounded in any

neighborhood of the notch tip.

In order to derive weight functions for the coefficients K(n) in the series expansion (20), it is

convenient to consider the cases SU = 0 and SU �= 0 separately.

(I) If SU = 0, except for n = 0 and 1, all coefficients K(n) are defined uniquely. In order to

find a coefficient K(m), one needs to apply Betti’s reciprocity theorem to the regular field and

to a specially chosen auxiliary field called the fundamental field of order m. It consists of a

complementary solution (25) for the term of order m and a regular part,

(

u∗(m)(r, ω)

φφφ∗(m)(r, ω)

)

= r−smV̂
(−sm)(ω)

(

h∗
m

0

)

+ ∑
Re sp> 0

kprspV̂
(sp)(ω)

(

hp

0

)

, (33)

where the sum is extended over all eigenfunctions of bounded elastic energy. The

fundamental field of the mth order corresponds to a certain source placed at r = 0 and thereby

provides zero body forces and dislocation density in the bulk. This justifies introduction

of both the displacement (no dislocations) and the Airy stress function (no body forces)

anywhere inside the body. The coefficients kp must be chosen so as to subject the solution

(33) to the traction free boundary conditions

T
∗(m)
k = 0 on ST + SN. (34)

12 Applied Fracture Mechanics
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Because SU = 0, the representation (33) of the mth order fundamental field is possible for

m �= 0 and 1. The terms corresponding to rigid body motions can be chosen arbitrary.

For a subdomain A′ ⊂ A, bounded as shown in Fig. 1 by a closed contour L which consists of

a circular arc R0 of radius r0 around the notch tip, the body surface S = ST, and the remaining

part SN’ of the notch faces SN, application of Betti’s reciprocity theorem yields

Γ(m) = −

∫

ST+SN’

(T
∗(m)
k uk − Tku

∗(m)
k )ds = −

∫

ST

u
∗(m)
k Fkds, (35)

where uk and Tk are the displacement and traction due to the regular field, and

Γ(m) =

∫

R0

(Tku
∗(m)
k − T

∗(m)
k uk)ds. (36)

Integrating Eq.(36) by part, one obtains

Γ(m) = φφφ∗(m)(r, 0)u∗(m)(r, 0)− φφφ∗(m)(r, Ω)u∗(m)(r, Ω) +

∫ Ω

0
(φφφ∗(m), u∗(m))

d

dω

(

u

φφφ

)

dω,

(37)
with the two first terms vanishing owing to the traction free boundary conditions (17) imposed

on all eigenfunctions at the notch faces. Hence, substituting the explicit expressions for the

regular and fundamental field into (37), one finds

Γ(m) = ∑
n

K(n)snrsn−sm
0 (h∗

m, 0)t

∫ Ω

0
[V̂

(−sm)(ω)]tT̂N̂(ω)V̂
(sn)(ω)dω

(

hn

0

)

(38)

+ ∑
n,p

K(n)kpsnr
sn+sp

0 (hp, 0)t

∫ Ω

0
[V̂

(sp)(ω)]tT̂N̂(ω)V̂
(sn)(ω)dω

(

hn

0

)

.

As r0 shrinks to zero, the second sum in Eq. (38) vanishes due to the fact that the real parts

of all eigenvalues sn and sp are positive. However, there is also another reason for this term

in Eq. (38) to vanish. In fact, it must vanish due to the pseudo-orthogonality property (29).

As concerns the first sum in Eq. (38), it contains the terms formally divergent as the radius

r0 → 0. However, owing to the pseudo-orthogonality property (29), these terms drop out

of Eq. (38) and finally only one term for which sn = sm remains non-vanishing. This term is

independent of r0 and remains constant as it shrinks. Note also that the second sum in Eq. (38)

is not sensitive to the rigid body motion terms in the fundamental field.

According to Eq. (38), the reciprocity theorem relates the expansion coefficient of order m

directly with external loading as

K(m)Y(m) = −

∫

ST

u
∗(m)
k Fkds, (39)

with a normalizing geometry factor

Y(m) = −sm(h
∗
m, 0)t

∫ Ω

0
[V̂

(−sm)(ω)]tT̂N̂(ω)V̂
(sm)(ω)dω

(

hm

0

)

(40)
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Correspondingly, an expansion coefficient K(m) is available via the mth order weight function,

h
(m)
k (x1, x2) = u

∗(m)
k (x1, x2)/Y(m), (41)

as a functional

K(m) =

∫

ST

h
∗(m)
k (x1, x2)Fkds (42)

of the surface loading. Thus the mth order weight function differs from the corresponding

fundamental field (33) only in a constant geometry factor (40).

(II) If SU �= 0, all expansion coefficients in the series (20) are defined unambiguously,

including K(0) and K(1). For m �= 0 the fundamental field of the mth order is still given by the

solution (33) provided that its bounded energy part is completed by the rigid body motion

terms. The coefficients kp in (33) are now chosen to subject it to the boundary conditions

⎧

⎨

⎩

T
∗(m)
k = 0 on ST + SN,

u
∗(m)
k = 0 on SU.

(43)

Modifying the reciprocal relation (35) to include SU, one obtains

Γ(m) = −

∫

ST

u
∗(m)
k Fkds +

∫

ST

T
∗(m)
k Ukds. (44)

The remaining calculations are similar to those performed in the case of vanishing SU. Weight

functions of the mth order are introduced according to

h
(m)
k (x1, x2) = u

∗(m)
k (x1, x2)/Y(m), (45)

H
(m)
k (x1, x2) = T

∗(m)
k (x1, x2)/Y(m). (46)

The coefficients K(m) in the eigenfunction expansion are now expressed via the mth order

weight functions as

K(m) =

∫

ST

h
∗(m)
k (x1, x2)Fkds −

∫

SU

H
∗(m)
k (x1, x2)Ukds. (47)

As it was noted above, in the case of non-vanishing SU the coefficient K(0) needs a special

treatment. The complementary field for the rigid body translation (21) has a logarithmic rather

than power-law functional form. Indeed, the auxiliary source generating this complementary
solution is a concentrated force applied at the notch tip. Unlike other eigenfunctions it is not

self-equilibrated. The complementary logarithmic solution can be constructed by means of

the analytical expression for the elastic field of a force at the tip of a notch in an angularly

inhomogeneous plane [16, 18]. Details of further development and the corresponding 0th

order fundamental field for the calculation of the rigid body translation term are available

from [28].
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8. Multimaterials

A continuously inhomogeneous elastic material is actually only a useful tool, which

considerably simplifies the establishing of important properties of elastic fields involved in

weight function theory. Nowadays functionally graded materials with continuous angular

inhomogeneity of elastic properties are still exotic and in engineering structures we deal

mostly with piecewise homogeneous media (junctions of a finite number of dissimilar

materials) called multimaterials. In the case of multimaterials further analytical advancement

in the weight function theory becomes possible. The ordered exponentials are known to

appear in Eq. (16) instead of the conventional exponentials since the angular inhomogeneity

causes non-commutability of the matrices N̂(ω) for different values of the argument ω.

However, when the medium is piecewise homogeneous, the matrices N̂(ω) commute within

each homogeneous wedge-like region [15] and the integration in the ordered exponentials can

be performed analytically. For example, in the case of a multimaterial composed from three

wedges (triple junction)

Cijkl(ω) =

⎧





⎨





⎩

C
(1)
ijkl 0 < ω < α,

C
(2)
ijkl for α < ω < β,

C
(3)
ijkl β < ω < Ω,

(48)

the ordered exponential admits factorization and reduces to (for details, see [17, 23, 24])

Ordexp

(

s

∫ ω

0
N̂(θ)dθ

)

=

⎧



⎨



⎩

V̂
s
1(ω) 0 < ω < α,

V̂
s
2(ω)V̂

−s
2 (α)V̂

s
1(α) for α < ω < β,

V̂
s
3(ω)V̂

−s
3 (β)V̂

s
2(β)V̂

−s
2 (α)V̂

s
1(α) β < ω < Ω,

(49)

where V̂
s
i (ω) and V̂

−s
i (ω) denote for each homogeneous region powers of

V̂i(ω) = Ordexp

(

∫ ω

0
N̂(θ)dθ

)

= Î cos ω + N̂i(0) sin ω (50)

and

V̂
−1
i (ω) = Î cos ω − N̂i(ω) sin ω, (51)

The matrix N̂i(ω) for each homogeneous wedge-like region of a multimaterial is constructed

by replacing Cijkl(ω) in the definition (4) by C
(i)
ijkl. If s is not an integer, the powers of the

matrices (50) and (51) should be defined in terms of their spectral decompositions over the

eigenvectors of the matrices N̂i(ω) (for details, see [22]).

9. Conclusions

Here, it was shown that the established in [28] pseudo-orthogonality property of the power

eigenfunctions follows directly from the symmetry of the operator N̂(r), which is commonly

referred to as Stroh matrix [3, 22] of anisotropic elasticity theory. In the last decade the

proof of the pseudo-orthogonality property was republished in a large number of papers

[32–38], where however only trivial particular cases of anisotropy and inhomogeneity were
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analyzed. The general proof by Belov and Kirchner [28] is not cited in these papers, which

are to be considered as plagiarism, although some of them contain further development,

in particular, by taking into account piezoelectricity. Here, it is worth to mention that the

proof of the pseudo-orthogonality property remains valid for the general case of piezoelectric
piezomagnetic magnetoelectric anisotropic media, provided that the dimension of both the

matrix N̂(r) and the field variables is increased to include these effects (for details, see

[30]). In conclusion, it may be also said that the pseudo-orthogonality property allows for

a set of path-independent integrals similar to H-integral [7, 8, 10–12] to be introduced for

multimaterials with notches or cracks. This is achieved by applying Betti’s reciprocity theorem

to the complementary field (25) rather than to the fundamental field (33). The contour L must

be properly shifted from the surface S to interior domain of A.
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