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1. Introduction 

What does it mean that the cosmic radio wave flux density var ies with the passage of 
time is an interesting question; the radio wave is of the quasar, a system of galaxy,  
which is distributed in our universe from a few billions of light years to the distanse 
close to the big bang age and has been radiating immense electromagnetic energy from 
it by the synchrotron radiation that we may able to make a measurement of the flux 
density at micro wave bands with a radio interferometer[3,4]. A group of radi o 
observers and astronomers has been monitoring daily so far over several years 
extragalactic radio sources (radio galaxies, quasars, etc.) and the monitored data were 
kindly shared with us who were interested in using for analys is[5]. In a few recent 
decades, the chaos and fractal theory has been intensively studied and developed in the 
fields of mathematics, computer nu merical analysis, natural sciences and 
technologies[1], and in same decades, the nonlinear time series analysis methods have 
been developed intensely based on the newly understood ideas of the theory for 
analyzing the nonlinear phenonena[2]. 

The study in this chapter is motivated by th e three factors mentioned above to analyze the 
time series of the radio wave flux density from the cosmologic al object, primarily, with one 
of the nonlinear methods, for finding the dynami cs related to the cosmic object, including its 
information in the flux density variations. We hoped that if we could infer the dynamics and 
if the result would be found to have any rule  changing with the magnitude of the red shift 
of the object we might have some knowledge concerning to the evolution of our universe. 
The hope has been prompted us to continue consistently to analyze the time series data. The 
period of monitor over several years is extremely short compared wi th the cosmic age, 
however , the analysis result of the time series data in newly developing methods may give 
us a new sight viewed from the nonlinear dyna mics in the short time scale for the cosmic 
dynamical system.  
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2. Linear and nonlinear systems 

2.1. Linear system 

The result of a linear data computed with Fourier spectral analysis gives a pure periodicity, 
which means predictability of event(s) for unlimited future. No event of evolution can be 
expected by a linear data, and a linear system is not a way of our natural world. On the 
other hand, the result of a pure random data computed with it gives no structure of the 
periodicity, a continuous spectrum, an d means no event of predictability.  

2.2. Nonlinear system 

One of discrete nonlinear dynamical systems is given in this section for explanation. The 
logistic map function is given in Eq.(1) with a difference equation. Given that the time series 
data is generated from this system by iterating at  � P  L � r� á� s� á � ä � ä � á � 0. 

 �B�:�T�;  L � =� T�:� s  F � T�;� â � �� T�:� P  E � s�;  L � B�:�T�:�P�;�; (1) 

The result of the Fourier analysis for the time series data at parameter �=� �  L � v� ä� r  in the 
function of Eq.(1) is indistinguishable from th e result of the random data. The spectra for the 
random data and logistic time series data are given in Fig.1. The latter comes from the 
deterministic system, but the analysis result does not disclose the nonlinearity of the data. 
This is a reason why a help of a new method is necessary for the analysis of data from the 
natural phenomena which are often complex fo r us to understand and may include such 
complexity as above in part. A method to distin guish between the kinds of data is to draw a 
graph composed of coordinates with time-lagged components, that is, a graphical execution 
of differentiation for a time series. The result  of the graphical execution for the random and 
logistic time series in Fig. 1 is shown in Fig. 2. As a result, in the figure the two time series 
are correctly discriminated. The time series generated from Eq.(1) resulted in a quadratic 
expression with the second dimension of coordinates (see Fig. 2(b)). On the other hand, the 
random time series resulted in the uncorrelated graph as shown in Fig. 2(a).1   

The time series data measured from natural and social systems is not generated in such a 
mathematical way and so complicated that more intricated process is required to deal with 
data. This problem will be discussed in later sections. Before we do this, some methods of 
quantifying fractal data and some characteri stics of chaos dynamics (the initial value 
dependence and the parametric dependence) are exemplified by the logistic system. 

Time series data were generated from Eq.(1) at parameter � =  L � u� ä� y with two initial values at 
�T�:�r�; L �r�ä�s�r�r�r�r and at  �š�:�r�; L �r�ä�s�r�r�r�s, and the two time series are drawn as the diagram 
shown in Fig. 3 (left). The diagram shows that the trajectories of the two time series separate 
in a few tens of iteration time, which means th at a small error was extended to a magnitude 
of space the time series occupies within the limited time and  th e prediction is failed over the  
                                                                 
1 It is true in the second dimension of coordinates. If the time series is generated by the function of higher degree, the 
correlation may be true in the graph at a higher dimension of coordinates. 
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Figure 1.  Fourier analysis for time series data  of  (a) uniform random numbers and (b) logistic map 
system at � =  L � v� ä� r. The spectrum is shown by the absolute of the Fourier transform. 

 
Figure 2.  Graphical analysis for  (a) random  time series data and  (b) logistic time series data given in 
Fig. 1. 

time. This means that in spite of extremely small error in the chaos deterministic system, the 
error is extended to a scale of state space in a limited time, that the system is unpredictable. 
The fact was explained in the Fourier spectrum of the time series in Fig. 1 (b). 

The parametric dependence is characteristic to a chaos system. The vertical axis on the right 
diagram in Fig. 3 shows the values of number computed by Eq.(1) at parameter �‡ in the 
range of �u�ä�z Q �=  Q � v� ä� r, along the horizontal axis. At a parameter value between 3.82 and 
3.83, the behavior of the system drastically changes to periodicity. In the logistic system the 
parameter is interpreted as the environment for a living thing to survive. For nonlinear 
systems, a parameter value becomes crucial for the system's behavior. For example, in the 
logistic dynamics, extinction or evolution of  the system depends on the parameter value. 
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Figure 3.  Logistic time series at parameter  � =  L � u� ä� y and at initial values �T�:�r�; L �r�ä�s�r�r�r�r  and �T�:�r�; L
�r�ä�s�r�r�r�s (orange) on the left, and the bifurcation diagram in the parameter range over  �u�ä�z Q �= Q �v�ä�r on 
the right. 

3. Quantitative properties of nonlinearity 

Time series data of a natural system may often be of a nonlinear dynamics, about which we 
know little for the system and need to analyz e in an appropreate method in assumed state 
space dimensions. In this section we discuss on the way how to quantify such data assumed 
to be nonlinear by exemplifying th e analysis for the logistic system. 

3.1. Lyapunov  exponent and information entropy 

The initial value dependence of a system is evaluated by the Lyapunov exponent given by  

 � I  L � Ž� ‹� •�Ç�\�¶
�5

�Ç
�Ã �Ž�‘�‰���B�"�:�T�:�P�;�;���Ç�?�5

�ç�@�4  , (2) 

for the discrete system, and � ã  L � Ž� ‹� •�ç�\�¶ �P�?�5�Ž�‘�‰ �@�ç���@�4 for the continuous system with �@�4��� á � @�ç�� 
the initial error and its expansion at time �P, respectively. It is easy to understand that if the 
system is in the chaos, � I  P � r, the error is exponentially extended. Even if we have this way 
to distinguish a system whether it is a chaos system or a mere random system, it is a difficult 
problem to analyze �I of a time series data because the system’s function �B is not in our hand.  

The information entropy of a system, as its manifo ld is given in a state space, is defined as 

 �* �:�Ý�;  L  F�Ã �L�Ü
�Æ
�Ü�@�5 �Ž�‘�‰ �L�Ü�á���������Ã �L�Ü

�Æ
�Ü�@�5  L � s , (3) 

where �Ý is an infinitesimal length with a super cube and �/  the number of cubes with which 
cover whole manifold in the state space. Equation (3) quantifies the distribution of data 
points in the state space as the average number of the amount of information.  

Figure 4 shows the bifurcation diagram for the logistic system (left diagram), the Lyapunov 
exponent �I (middle diag.) and the information entropy �*�:�Ý�; (right diag.), with common 
abscissas of parameter �= ( �t�ä�z Q �= Q �v�ä�r). It is clear that the bifurcation diagram (left 
diagram) is quantified by the Lyapunov  exponent (middle diag.: not chaos in � I  Q � r ; chaos  
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Figure 4.  The bifurcation diagram of the logistic map (left diagram)  over the parameter range �t�ä�z Q
� =  Q � v� ä� r, the Lyapunov exponent (middle diag.)  and the information entropy (right diag.).  

in  � I  P � r) and by the information entropy varieing with parameter �= (right diag., compare 
with the left diag.). 

3.2. Fractal dimension 

In this chapter we aim to infer the cosmic system’s evolution by the flux density data 
radiated from cosmic object and measured by the interferometer (of the radio wave).  The 
fractal dimension is useful to study the system  with which the data is related. We have a 
variety of fractal dimensions ; the box counting dimension �&�4, the information dimension �&�5 
and the correlation dimension �&�6 as defined in the following equations [see Fig. 5.].  

 
Figure 5.  Diagram of a point distribution in a state space for computing the fractal dimension. 

 �&�4  L � Ž� ‹� •�•�\�4
�j�m�e �Æ�:���;

� ? � j� m� e � •
� � �á �&�5  L � Ž� ‹� •�•�\�4

�Á�:�•�;

� ? � j� m� e � �
� � �á �&�6  L � Ž� ‹� •���\�4

�j�m�e�Ã �ã�Ô
�.�¾

�Ô�8�-

�j�m�e �•
  (4) 

The fractal dimensions in Eq.(4) are derived from the generalized dimension �&�ä:  

 �&�ä  L � Ž� ‹� •�•�\�4
�5

�ä�?�5

�j�m�e�Ã �ã�Ô
�Ü�¾

�Ô�8�-

�j�m�e �•
 (5) 

for � M  L � r (the box counting dimension), � M  L � s (the information dimension at � M � \ � s) and 
� M  L � t (the correlation dimension) [1]. It is not easy to compute the fractal dimension from 
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measured data, even if it is at � M  L � r, because we know little about the system’s dynamics, on 
which we are to study, and in addition, it is impossible to box-count a manifold constructed 
in a state space with unknown dimension. Fortunately, we have Grassbergar-Procaccia 
algorithm  (GPA)  to compute the measured data and substitute the result for the fractal 
dimension at � M  L � t  [2]. The GPA is discussed in section 5.  

4. Dynamical system and time series data 

The purpose of this section is to discuss on the problem: if we measure the time series data 
from a system of nature how we access to a function of the system with which the data is 
generated. If the nature was constructed by the mathematics it would have been going well  
to solve the problem. Unfortunately, the nature , I believe, do not go so easy. We need to 
solve it by devising the data reconstruction and by applying above nonlinear methods to it . 

4.1. Time series data 

The originally measured data is defined as follows: A measurement starts at time �P�4 with 
sampling rate �ì and the time series is expressed in the following way,  with �E��natural number 

�U�:�P�4�;� á � U�:�P�4  E � ì�;� á � ® � á � U�:�P�4  E � E� ì�;� á � ®� �

If we find a time lag �ì�ñ proper for the system in three dimensional state space, the time series 
is reconstructed, for example, to three dimensional vector �� �ç at time �P. 

�8�ç L �:�U�:�P�;� á � U�:� P  E � ì�ñ�;� á � U� :� P  E � t� ì�ñ�;�;�â ���P L �s�á�t�á �® 

Vector �‚ �ç  is embedded in three dimensional time-lagged state space. As the time goes by, 
the vector draws a trajectory in the state space. The measured data may geometrically 
express its functional property in this way. The method can be considered to differentiate 
the data in the state space in a graphycal way. The dimension of the system is unknown in 
advance, so an original dimension of the reconstructed vector must be searched by changing 
it one by one until to find the optimal one which is called the embedding dimension. The 
dynamics of the observed system have a fractal dimension in the embedding dimension. A 
manifold is drawn in the embedding dimension in this way from the ofserved data and it is  
called the attractor of the system given by the observed data. From the manifold we infer the 
original function, as  a mathematical nonlinear equation.  

4.2. Embedding theory 

The attractor is the manifold of a dynamical system, from which a physical quantity is 
continuausly released to be observed and the time series is, as a result, accessed to be 
analized. The time series is reconstructed in the form of a vector �8�ç at �I -th dimension to be  
embedded in the state space.  In the following equation the time lag �ì�ñ was replaced by �ì. 

 �8�ç L �:�U�:�P�;� á � U�:� P  E � ì�;� á � ® � á � U� :� P  E � :� I  F � s� ;� ì� ;�; (6) 
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Figure 6.  Takens’ theorem given by a schemetic diagram to infer the system’s dynamics from measured 
time series[2]. 

The data set  �<�U�:�P�;�=�ç�@�ç�,

�ç�¿ is measured by �C��, with �C the observation map and ��  the manifold 

of the system‘s (source) dynamics at �J-th dimension. Takens’ theory claims that the attractor 
reconstructed on the embedding space in Fig. 6 is generic embedding under condition 
� I  P � t� J.[2] The attractor in the embedding state space is a theoretical reflection of the 
manifold, that is, the embedding map is �8�ã �� �\ �4�à , in which the condition does not need to 
be satisfied.The source dynamics at the observed system could be inferred in this way. It is 
generally impossible to solve the function, in a definitive form, of the system‘s dynamics.  

Takens‘ theorem is summarized in Eq. (7) �1 Eq. (9).  �D is a map function transforming the 
embedded attractor into the original attractor. 

 �B�ã �� �\ �������� �œ �������C�ã �� �\ �4���� �œ �����8�ã �� �\ �4�à ���� (7) 

 �8�:�T�;  L  k� C�:�T�;� á � C k� B�:�T�;o�á �® �á �C�:�B�à�?�5�:�T�;�;o (8) 

 �D�ã �8 �\M (9)��

The experimantal expression of Eq.(6), reconstructed by using measured data, corresponds 
to the theoretical expression of Eq.(8), assuming that a time delay is neglected and the time 
span is same between both systems. We have the attractor �8 by analyzing measured data, 
but it is difficult to have a determ inistic expression of the manifold ��  in Eq.(9). 

It is same to say that Galileo Galilei could find  experimentally the gravity on the earth, but 
could not express it in a deterministic expression as the Newton’s equation. The map (�D) in 
Eq.(9) is similar to the gravity in the era. At pr esent, it is only possible to get access to the 
geometrical manifold with the way given in this section. A discussion on the method how to 
apply the fractal dimension to quantify the geometrical manifold will be given. 

It is useful to give attention to noise inev itaby coming into the dynamical system and the 
observation system. The noise comes into the two systems[2], 

 �T�:� P  E � s�;  L � B�:�T�:�P�;�;  E � ß� :� P� ; (10) 

 �U�:�P�;  L � C�:�T�:�P�;�;  E � æ� :� P� ; (11) 
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where �ß�:�P�; and �æ�:�P�; are system’s noise and observation noise, respectively. This makes it 
very difficult to judge observed data that system’s function �B is a genuine chaos or not, even 
if  the analysis gives a chaotic result, because the chaos trajectory depends severely on the 
initial condition.  

4.3. Correlation dimension 

The attractor is reconstructed in the embedded state space from observed time series. We 
are interested in the dynamical system of the quasar, the galactic object distributed at 
cosmological distances (up to ten billions of light years), which releases vast energy by 
synchrotron radiation and enables us to research some cosmic information by the 
fluctuations of the microwave flux density. We study the dynamics involving in the time 
series to know the structure of the dynamics for the system at different cosmological 
distances. We may be to have some dynamical knowledge of the systems‘s evolution in 
the experimental method. The system’s informat ion is, in our context, is the manifold for 
the dynamics of the quasar system at different cosmological distances. The data is the 
time series of the flux density of the mi crowaves, 2.7GHz and 8.1GHz, for more than 
twenty quasars, daily monitored over thousand days. The fractal dimension of the 
manifold is to be analyzed. The dimensions introduced in the section 3 are difficult to 
compute with the reconstructed data. Fortunately we have an useful method to compute 
the correlation dimension developed by Grassberger and Procaccia (GPA) as the 
substitute of �&�6. The algorithm for calculation are the correlation sum and the fractal 
exponent in the following expressions, �0 the number of points in the embedding state 
space at �I -th dimension.  

Given each point �F�á �G���:�F M �G�; in Fig. 5 (not number of the cell), with ���0 the number of full 
points and �N the diameter of  hypersphere, the correlation sum is expressed by [1,2] 

 �%�:�à �;�:�N�; L
�5

�Ç
�Ã �5

�Ç�?�5
�Ç
�Þ�@�5 �Ã �à�>� N  F�!�R�:�F�;  F � R� :� G� ;�!�?�Ç�?�5

�Ý�@�5 , (12) 

in which �à�>�®�? is the Heavside function, counting a pair of �I -th dimensional vector points 
whose distance is within �N over all pairs of points. Eq.(12) counts the probability that any 
pair of state space points meets within a length of �N in �I -th dimensional state space. The 
fractal dimension at �I -th dimensional state space is expressed by ( see Eq.(4)) 

 �&�6
�:�à�; L lim �å�\�4

log �¼�:�Ø�;�:�å�;

log �å
 (13) 

The optimal correlation dimension �&�6 for the attractor embedded in the optimal state space 

for the time series in quetion is defined as �&�6
�:�à�;���ƒ�–�������I L �I�• when the value of  �&�6

�:�à�;  ceases to 
increase as the increase of �I . This means that at a full embedding dimension, any points in  
state space of the attractor can not occupy same position by the no-intersection theorem of 
chaos [1]. The �&�6 is a fractional dimension and the  �I �q is the embedding dimension in which 
the system works (�I �q F � s  O � &�6  O � I�q) . 
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4.4. Other methods of analysis 

We introduce briefly three methods of analyz ing the characteristics of the flux density 
variation, in which the same data were also computed for reference. The results will cover 
different aspects of the variation. The first is the spectral index �= : The modulus of the 
fourier spectrum ���#��, the intensity of the fluctuations at frequency �B is computed over the 
period of 1024 days; the method of least squares was used for the pairs of the logarithms 

of ���#�� and �B in the frequency range of  
�5

�5�4�4
 Q � B� �  Q

�5

�5�4

�5

�b�_�w
  to eliminate the major error outside 

the frequency range. The power law ���#�� � ß � B�?�‘  was computed for all of the observed data. 
The second is the Higuchi’s fractal dimension �& [9]. The absolute change of the flux 
density at interval �G averaged over the period (1024 days) is computed. Given the 
averaged change �., the relationship � . � ß � G�½ stands for the interval   �s Q �G Q �s�r�r days. The 
detailed algorithm can be reffered in reference [9]. The dimension �& expresses a 
complexity of the variation in the range � s  Q � &  Q � t, that is, from liner, � &  L � s, to the 
plane,���& L �t, from fractal dimensional view. The third is the Hurst exponent �*  [10]. Given 
the ratio �4���P over the interval �R, with range �4 a difference from top to bottom levels of the 
reconstructed time series �;�:�P�; L� Ã � :�U�:�E�; F �U$�;�ç

�Ü�@�5 , �U$ and �P the average and the standard 
deviation of �U�:�E�;, respectively, in the interval �R. The relationship �4���ê �ß �:�ì���t�;�Á stands in 
the range of �s�r Q �R Q �s�r�r�r days.  

The detailed introductions for th e methods be referred in [9-11]2. The result analyzed in 
these methods will be shown later. The results computed in above principles are useful for 
cross-checking the knowledge of the result of source dynamics.  

5. Time series data 

The extragaractic radio sources generate the time series data of the radio wave flux density 
for us to observe and to analyze their system‘s dynamics to see a mechanism how the cosmic 
object has been evolved in the cosmological age from a dynamic aspect of view.[3] 

5.1. Monitored cosmic objects  

Compact extragaractic radio sources had been monitored daily by Waltmann et al. at GBI 
radio wave observatory over 3000 days from 1979 [5,6]. Waltmann et al were kind to send us 
the data of 46 extragalactic objects, from which 21 QSOs and 7 BL Lacs were selected for 
analysis. At the beginning we analyzed the data in the methods of the spectral index, of the 
Higuchi‘s fractal dimension and of the Hurst exponent. The methods will be explained 
briefly, and the result was published in [7].  

The monitored microwave frequencies were at 2.7 and 8.1GHz; and the red shift (the 
indicator of cosmological distance) of the monito red objects ranged from  0.15 to 2.22 ( from 
one billion to ten billions of light years). The name of the objects are shown in Table 1 as 
                                                                 
2 �s���B noise characterized as the power law events in the electronic circuit is  in reference [11]. 
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well as the red shifts. In Figure 7, the diagrams of the flux density variation over nine years 
are shown for several quasars. 
 

0133+476* 0202+319 0224+671 0235+164* 0237-234 0333+321 0336-019 
0.860 1.466 0.524 0.851 2.224 1.253 0.852 

0420-014 0552+398 0828+493 0851+202* 0923+392 0954+658 1245-197 
0.915 2.365 0.548 0.306 0.699 0.368 1.275 

1328+254 1328+307 1502+106 1555+001 1611+343 1641+399 1741-038 
1.055 0.849 1.833 1.770 1.404 0.595 1.054 

1749+096* 1749+701* 1821+107 2134+004 2200+420* 2234+282 2251+158* 
0.322 0.760 1.036 1.936 0.070 0.795 0.859 

Symbol * BL Lac (7) ; QSO (21)  ;   

Table 1. The Name of the extragalactic objects selected for analysis and the red shift [7,8]. Data used for 
analysis is of 1024 days (start from 2 Feb.1984 observed on daily basis. 

 
Figure 7.  Radio wave flux density variation  at 8.1GHz  monitored daily over three thousand days. 
Panels listed in descending order of the magnitude of the red shift. Abscissa: Julian date from 44000 to 
47000; ordinate: flux density Jy (�s�r�?�6�<W/�• �6�����œ) from a few Jy to ten Jy. 

5.2. Process of analysis 

5.2.1. Correlation dimension 

The method of estimating the correlation dimens ion of the flux density time series of the 
quasars listed in Table 1 is plainly described here.  The correlation sum for the time series 
data is calculated in the method given in Eq.(12). The time series for the quasar 0224+671, for 
example, is reconstracted in the way given in subsection 4.2 and embedded in the 
reconstructed state space (at � I  L � u, for example) as shown at the left diagram  (state space 
diagram) in Fig. 8. The correlation sum is plotted in log scales of abscissa and ordinate 
according to the diameter �N changing its size step by step at each dimension �I  as shown at 
the middle diagram in the figure. The correlation  exponent is estimeted from the inclination 
of the correlation sum graph in the way descr ibed in Fig. 8. The correlation exponent 
increase as the increase of the embedding dimension, as shown at the right diagram in Fig. 
8, up to the state space dimension to become enough for the original attractor to be 
contained in the state space. If the exponent stops to increase at an embedding dimension, 
the exponent, a magnitude less than the embedding dimension, is called the correlation 
dimension, the fractal dimensio n, which is thought to reflec t the active number of the 
variables with which the object’s system works. It should be taken care that the reliability of 
the estimated fractal dimension is limited by the number of the data [12]. In our case, the 
dimension seems to be appropriate values and useful because it will bring cosmological 
information on the dynamics of object system wh ich is expected to vary with the red shift. 
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Figure 8.  Left diagram: Attractor of the flux density time series for quasar 0224+571 embedded in the 
reconstructed state space at � I  L � u (�ì L �u�á �0 L �s�r�r�r), using different colours at time span clarifying the 
change of state with the passage of time. Middle diagram: Correlation sum computed by using Eq.(12)  
for each embedding dimension �I  (parameter from 2 to 10). Right diagram: The correlation exponent 
was estimated by the inclination of the each curve in the middle diagram at the first order fitting of the 
least square in the range �æ�u�ä�rO���‘�‰���NO�æ�s�ä�w. The correlation exponent increases with the increase of the 
dimension �I .  

Other indices 

A process of analyzing the data with other meth ods introduced in subsection 4.4 is shown in 
Fig.9.  The diagrams gives us an insight of the way how each index is derived. We will show 
all of the result analyzed in these methods for a cross reference with the correlation 
dimension. 

 
Figure 9.  A computing process of analyzing other indices as an example for the time series of the radio 
wave at  8.1GHz  of  QSO 1641+399. Left diagram : Spectral index, Middle diagram : Higuchi’s fractal 
dimension, Right diagram : Hurst exponent. 

6. Result of analysis 

6.1. Correlation dimension   

The correlation dimension reflects the dimension of a dynamical function  �B�:�T�;, which is  
thought to relate closely to the dynamics of monitored radio source. The observation map 
function �C includes the path of radio wave �L of the cosmic space and the observation system 
(antenna) �C�"; consequently � C  L � C� ï� L��stands for the observation map. In Fig.10 we show the 
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analysis result of the correlation dimension ve rsus the red shift of the object for the data 
given in Table 1. The result shows a tendency for the both microwaves (2.7 and 8.1GHz) that 
the correlation dimension increases as the increase of red shift �V. It could be said that the 
complexity of the system’s dynamics is increasing as the distance to the quasar is farther. 
The cosmic spatial map���L is unknown for us; on the other hand the data is accessed by 
�C�/ L �C�ï�L�/, then the system’s complexity can be said to depend on the path (map �L). In this 
point, as far as I learned from a radio astronomer at National Astronomical Observatory 
(Japan), his view was that the influence of �L must be weak; if we admit this view, the order 
in the source dynamics becomes less as the cosmological distance is closer to the Big Bang 
because the correlation dimension of the system’s dynamics can be considered to be a 
complexity of the system’s behavior. 

 

 
Figure 10.  Correlation dimension of the reconstructed attractor for the flux density time series of the 
quasars given in Table 1 versus the quasar’s red shift. Left diagram : 2.7 GH, Right diagram : 8.1 GHz. 
Horizontal and vertical bars : Running means with error bars at 5 steps along both axes (the red shift 
and the correlation dimension). 

It may be taken care to see the diagram in Fig.10 that the radio wave frequency (2.7 or 8.1 
GHz) from which the correlation dimension wa s derived is the value on the earth; the 
frequency at the radio wave source must be modified by the red shift (See Table 2); the 
second is that the sampling rate (one day on the earth) must be also modified on the quasar 
by the theory of relativity (See Table 2). [7] 
 

����������������� �  0.1 0.5 1.0 1.5 2.0 2.5 


 Ú  E �   1.1 1.5 2.0 2.5 3.0 3.5 

¥
 Ú  F � ¼
Û 0.99 0.92 0.80 0.68 0.60 0.52 

Table 2. The Doppler and the relativistic effects. The radio wave frequency is multiplied by � s  E � V on a 

quasar at �V and the sampling rate on it is multiplied by ¥� s  F � Ú�6, where �Ú is the ratio of the recession 
velocity to light velocity.  
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Figure 11.  The indices of the flux density time series versus the red shift [7]. 
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6.2. Other indices 

Figure 12 shows the result of the indices analyzed in the methods intr oduced in subsections 
4.4 and subsubsection 5.2.2: the diagrams of the spectral index �=, the Higuchi’s fractal 
dimension �& and the Hurst exponent �*  versus the red shift �V��with the holizontal and 
vertical error bars by calculating the running means over seven points. It may be clear that 
the indices, �Ù�á �&���ƒ�•�†���*, vary  according to the increase of the red shift in the manner not 
inconsistent with the correlation dimension �&�6 versus �V��(see Fig. 10). It must be taken in 
consideration that the indices have their each reflection to the characteristic period due to 
the algorithm of analysis.  It is interesting to see in the graphs of the indices that a typical 
discontinuity is present at red shift close to � V  N � s ( �Ù�á �*) and the indices do not vary beyond 
red shift 1.2,  ���V P �s�ä�t (�Ù�á �&�á �*). The indices relate to the complexity of how the flux density 
varies with time; the complexity,  �Ù in the frequency domain, �& in the fractal dimension of 
the graph for the density variation and �*  in the trend persistency. It is useful for us in the 
empirical way to see the relationship among three indices in our case (see Fig. 12). It may be 
interesting to see that the relationship between �*���ƒ�•�†���& has a systematic dependence despite 
of the different period concerned, in which the index is based, ten times as much (see 
Fig.12). 

 
Figure 12.  The relationship between the indices �&���ƒ�•�†���Ù (top), and between the indices �*���ƒ�•�†���& 
(bottom) for the 2.7 GHz (left column) and the 8.1 GHz (right column) [7]. 
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6.3. Incident angles of  the radio wave to the solar system and to our galaxy 

It is natural to have a question that the radio wave flux may be strongly scattered by the 
matters whose density may be high around the earth (our solar system) and our galaxy; if it 
is true, there may be a possibility that the indi ces may affected by the insident angles to our 
solar system and to our galaxy. The distributions the index �& versus right ascension, vs. 
declination, vs. galactic longitude and vs. galactic latitude are shown in Fig. 13 and Fig. 14. 
The distributions of the indices other than �& may be inferred from the relationships given in 
Fig. 12. As shown at the bottom ranks in Fig. 13 and Fig. 14,  the distribution of the red shift 
versus the insident angles is almost the same as the distribution of the index versus the 
insident angles. This became clear from the view in the moving average as give above.  We 
infer that the flux density variation may not be  caused by the matters around the earth (our 
solar system) nor our galaxy, but by any factors related with the red shift (the radio wave 
path as long as the cosmological distances) and by the system of the radio wave source, the 
quasar.[13] 

 

 
 

Figure 13.  The distribution of the fractal dimension �& versus the declination (top, left) and vs. the 
galactic latitude (top, right)  for the radio wave at 8.1GHz, and the distribution of  the red shift versus 
the declination (bottom, left) and vs. the galactic latitude (bottom, right). The vertical and horizontal 
error bars are of the running means for the numeri cal values computed by every seven steps. [7] 
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Figure 14.  The distribution of the fractal dimension �& versus the right ascention (top, left) and vs. the 
galactic longitude (top, right) for the radio wave at 8.1GHz , and the distribution of the red shift versus 
the right ascention (bottom, left) and vs. the galactic longitude (bottom, right). The vertical and 
horizontal error bars are of the running means computed by every seven steps.[7] 

7. Conclusion 

The correlation dimension �&�6 of the flux density variatio n of the quasar radio wave 
increases, on average, with the increase in the red shift of quasar up to � V  N � s and reaches a 
limit at � V  N � s, and the dimension depends mainly on the red shift and seems to be not 
affected, on average, by the incident angles to the earth and to our galaxy, from the view 
based on our analysis. The result is important because the numerical value of the correlation 
dimension includes the dynamical dimension of the flux density variation monitored over a 
thousand days, which reflects a source dynamics as considered in the theory given in 
section 4 and the dependence on the red shift does not conflict with the dependency of other 
indices, though we have not yet the knowle dge of the external modulation, or the map �L, 
transfering the source dynamics to the antenna. We could not help using such task because 
of the limitation of the data monitored unintended for our analysis. A systematic and 
designed observation will be needed to collect data for our analysis. If the analysis will be 
possible to make based on the purposed data, we will have more reliable reflection of the 
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system‘s dynamics, �R�ç�>�5 L � B�í�:�R�ç�;, where �B�í is the function at red shift �V, in a form of the 
manifold but not of the equation, and infer a mo re exact view of the cosmological evolution. 

For readers from different fields the literatu re on the radio galaxies and quasars may be 
referred in reference[3]. 

As discussed in section 2., the nonlinear dynamics is sensitive to the initial condition and the 
parameter. Our hope is to infer a definite dyna mical function �B�í at red sfift �V. The difficulty 
comes from the following notion due to noise inevitable in the actual system;  �ß�:�P�; : noise 
added to the genuin dynamics, and �æ�:�P�; : noise added to the observation system;[2] 

 �T�:� P  E � s�;  L � B�í�:�T�:�P�;�;  E � ß� :� P� ; (14) 

 �U�:�P�;  L � C�:�T�:�P�;�;  E � æ� :� P� ; (15) 

We may need to take in mind that our accessed data might have added by noise of Eq.(15) 
and the analyzed attractor (a reflection of �B�í) might have been added by noise of Eq.(14). 
After all a more complicated process might have been taken into account to estimate our 
result and study on the evolution of cosmic system. 

Author details 

Noboru Tanizuka 
Complex Systems Laboratory, Tondabayashi, Japan 

Acknowledgement 

I would like to thank many Japanese princi pal radio astrophysicists for giving their 
knowledges on this field, comments and freq uent encouragements in meetings, Dr. E.B. 
Waltmann and her group for sending their data to  the computer center at Osaka Prefecture 
University, Mr. M. Takano and Dr. M.R. Kh an for their computing works as graduate 
students at OPU.  

8. References 

[1] Hilborn RC. Chaos and Nonlinear Dynami cs. Oxford: Oxford Univ. Press; 2000. 
[2] Aihara K. Fundamentals and Applications  for Chaos Time Series Analysis. Tokyo: 

Sangyo Tosho; 2000. 
[3] Kellermann KI., Owen FN. Radio Galaxies and Quasars. In: Verschuur GL., Kellermann 

KI. (eds.) Galactic and Extragalactic Radio Astronomy. New York: Springer-Verlag; 
1988, p563-602. 

[4] Akabane K., Kaifu N., Tahara H. Cosmic Radio Astronomy. Tokyo: Kyoritsu; 1988.  
[5] Waltmann EB., Fiedler RL., Johnston KJ., Spencer JH.,Florkowski DR., Josties FJ., 

McCarthy DD., Matsakis DN. Daily Observatio ns of Compact Radio Sources at 2.7 and 
8.1GHz: 1979-1987. Astrophys. J. Suppl. Ser. 1991;77(Nov)  379-404.   



 
Fractal Analysis and Chaos in Geosciences 

 

64 

[6] http://www.gb.nrao.edu/fgdocs/gbi/gbint.html (accessed 14 May 2012)  
[7] Tanizuka N., Takano M. Observational Study on a Process of Evolution of Galaxies.     

IEE J Trans. C 2000;120-C(8/9) 1149-1156.  
[8] Tanizuka N., Khan MR. Knowledge from the Time Series of Quasar Radio-Wave Flux 

Density. Systems and Computers in Japan 2003; 34(10) 56-62. 
[9] Higuchi T. Approach to an irregular time series on the basis of the fractal theory. 

Physica 1988; 31 (D)277-283. 
[10] Feder J. Fractals. New York: Plenum; 1989. 
[11] Gupta MS., editor. Electrical Noise: Fundamentals & Sources. New York: IEEE Press; 

1977. 
[12] Ruelle D. Deterministic Chaos: The Science and the Fiction. Proc. R. Soc. London 1990; 

427 A: 241-248.  
[13] Tanizuka N. Analysis of Quasar Radio Wave Flux Density Fluctuations and its 

Cosmological Meanings. In Macucci M, Basso G. (eds) Noise and Fluctuations, 20th 
International Conference on Noise and Fluctuations, ICNF2009,  14-19 June 2009, Pisa, 
Italy.  Melville, New York, AIP Co nference Proceedings 1129: 2009 . 


