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1. Introduction 

In the last several decades, cable-stayed bridges have become popular due to their aesthetic 
appeal, structural efficiency, ease of construction and economic advantage. This type of 
bridge, however, is light and flexible, and has a low level of inherent damping. 
Consequently, they are susceptible to ambient excitations from seismic, wind and traffic 
loads. Since the geometric and dynamic properties of the bridges as well as the 
characteristics of the excitations are complex, it is necessary to fully understand the 
mechanism of the interaction among the structural components with reasonable bridge 
shapes, which is used to provide the essential information to accurately calculate the 
dynamic responses of the bridges under the complicated excitations. 

In the previous studies of bridge dynamics, th e responses of a cable-stayed bridge can be 
categorized into global, local and coupled modes [1]. The global modes are primarily 
dominated by the deformations of the deck-tow er system with the quasi-static motions of 
the stay cables; the local modes predominantly consist of the stay cable motions with 
negligible deformations of the deck-tower system; the coupled modes have substantial 
contributions from both the deck-tower system and stay cables. Since the towers are usually 
designed with a high rigidity to obtain an ad equate efficiency of the system, the significant 
tower deformations do not occur in the lower mo des sensitive to the ambient excitations [2]. 
Consequently, the coupled modes are considered to be dominated by the deck-stay 
interaction, while the contribution from the towers can be neglected. Numerical approaches 
based on the finite element method have been widely used to investigate the deck-stay 
interaction. The finite-element models of a cable-stayed bridge can be classified into two 
categories [1]: the one-element cable system (OECS), in which each stay cable is represented 
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by a single cable element, and the multi-element cable system (MECS), in which each stay 
cable is discretized into multiple cable elements. 

The deck-stay interaction has attracted much attention, because it not only significantly 
complicates both the natural frequency and mode shape characteristics of a cable-stayed 
bridge, but also potentially results in the larg e-amplitude stay cable vibrations even under 
the low-level deck oscillations. In the previous literature, the deck-stay interaction is due to 
the linear coupling (primary resonance) [3-8 , 11] or the nonlinear coupling (secondary 
resonance), which can be further categorized into the subharmonic resonance of order 1/2 
(two-to-one resonance) [3-9] and the superharmonic resonance of order 2 (one-to-two 
resonance) [6, 9, 10]. The primary, two-to-one and one-to-two resonances individually result 
in the fact that the global modes induce the direct, parametric and angle variation 
excitations of the local modes. Two types of simplified models: the single cable with moving 
anchorage [5-7] and the cable-supported cantilever beam [3, 4, 8-11], have been presented to 
theoretically investigate the deck-stay interact ion. To extend the results of the simplified 
models, the OECS and MECS models of full cable-stayed bridges based on the finite element 
method have been widely used to explore such coupled phenomena of real structures [1, 11-
16]. By focusing on the analytical and numerical study of the linear coupling, the 
localization factor was introduced to reveal  the frequency veering phenomenon and to 
evaluate the mode hybridization level of a cable-stayed bridge [11]. On the basis of this 
research, the ambient vibration measurements were conducted to investigate the deck-stay 
interaction. It was suggested that the nonlinear coupling is not consistent with the 
measurement data. In contrast, the linear coupling is recognized as the critical excitation 
source of the coupled modes [16]. 

In parallel to the previous work [11, 16], the authors of the present paper also studied the 
deck-stay interaction of cable-stayed bridges based on the analytical and numerical 
methods as well as the long-term comprehensive full-scale measurements [17]. The 
measurement data indicated that the deck oscillations of small to moderate amplitudes 
are coupled with the large-amplitude stay cable vibrations due to the linear coupling 
between these two components. An analytical model of the single cable with spring-mass 
oscillator was presented to explain such mechanism attributed to the frequency loci 
veering and mode localization. Furthermore, the “pure” deck modes, “pure” cable 
modes and coupled modes are successfully captured by the proposed model. These 
phenomena are verified by the numerical simulations of the OECS and MECS models of 
a full cable-stayed bridge. The concepts of the indices for quantita tively assessing the 
degree of coupling among the structural components were also appeared in this 
research. 

It is important to investigate the deck-stay inte raction with the appropriate initial shape of a 
cable-stayed bridge. This is because such initial shape not only reasonably provides the 
geometric configuration as well as the prestress distribution of the bridge under the weight 
of the deck-tower system and the pretension forces in the stay cables, but also definitely 
ensures the satisfaction of the relations for the equilibrium conditions, boundary conditions 
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and architectural design requir ements [18-21]. The computational procedures for the initial 
shape analyses of the OECS and MECS models were presented for this reason [22, 23]. 
However, few researchers have studied the deck-stay interaction with the initial shape 
effect. 

The objective of this study is to fully unders tand the mechanism of the deck-stay interaction 
with the appropriate initial shapes of cabl e-stayed bridges. Based on the smooth and 
convergent bridge shapes obtained by the initial shape analysis [22, 23], the OECS and 
MECS models of the Kao Ping Hsi Bridge in southern Taiwan are developed to verify the 
applicability of the analytical model and nume rical formulation from the field observations 
[17]. For this purpose, the modal analyses of the two finite element models are conducted to 
calculate the natural frequency and normalized mode shape of the individual modes of the 
bridge. The modal coupling assessment is also performed to obtain the generalized mass 
ratios among the structural components for each mode of the bridge [24]. To further 
investigate the deck-stay interaction characteristics of cable-stayed bridges under 
earthquake excitations, the dynamic displacements and internal forces of the two finite 
element models are calculated based on the seismic analyses. These results can be used to 
provide a variety of viewpoints to illustrate the mechanism of the deck-stay interaction with 
the appropriate initial shapes  of cable-stayed bridges. 

2. Finite element formulation 

On the basis of the finite element concepts, a cable-stayed bridge can be considered as an 
assembly of a finite number of cable elements for the stay cables and beam-column elements 
for both the decks and towers. Several assumptions are adopted in this study: the material is 
homogeneous and isotropic; the stress-strain relationship of the material remains within the 
linear elastic range during the whole non linear response; the external forces are 
displacement independent; large displacements and large rotations are allowed, but strains 
are small; each stay cable is fixed to both the deck and tower at their joints of attachment. 
Based on the system equations with the consideration of geometric nonlinearities, the initial 
shape analysis, modal analysis, modal coupling assessment and seismic analysis of cable-
stayed bridges are conducted in this study. 

2.1. Geometric nonlinearities 

To reasonably simulate cable-stayed bridges, three types of geometric nonlinearities: the 
cable sag, beam-column and large displacement effects, are considered in this study. 

A stay cable will sag into a catenary shape due to its weight and tensile force. Such cable sag 
effect has to be taken into consideration when the stay cable is represented by a single 
straight cable element. A stay cable with tensile stiffness is assumed to be perfectly elastic. 
The compressive, shear and bending stiffnesses of the stay cable are negligible. The cable 
sag nonlinearity can be simulated based on the equivalent modulus of elasticity of the stay 
cable [25] 
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where cE , cA  and cl  are the effective modulus of elasticity, the cross-sectional area and the 
horizontal projected length of the stay cable, respectively; w  is the weight of the stay cable 
per unit length; T  is the tension in the stay cable. The stiffness matrix of a cable element in 
Figure 1 can be expressed as 
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where 1u  is the element coordinate for the relative axial deformation; cL  is the chord length 
of the stay cable. 

 
Figure 1.  Cable element for simulating the stiffness of each stay cable. 

High pretension forces in the stay cables can result in large compressive forces in the deck-
tower system of a cable-stayed bridge. For this reason, the beam-column effect between such 
compressive forces and bending moments has to be considered when beam-column 
elements are used to simulate both the decks and towers. For a beam-column element based 
on the Euler-Bernoulli beam theory in Figure 2, shear strains of the element are neglected. 

1u , 2u  and 3u  are the element coordinates for the left end rotation, the right end rotation 
and the relative axial deformation, respective ly. The stiffness matrix of the beam-column 
element can be written as 
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where bE , bA , bI  and bL  are the modulus of elasticity, the cross-sectional area, the moment 
of inertia and the length of the beam-column element, respectively; sC , tC  and tR  are the 
stability functions representing the interaction between the axial and bending stiffnesses of 
the beam-column element [26]. 

 
Figure 2.  Beam-column element for simulating the stiffness of each deck and tower. 

In general, large displacements occur in the deck-tower system due to the large span and 
less weight of a cable-stayed bridge. Such effect has to be taken into consideration when the 
equilibrium equations are derived from the de formed position. Under these conditions, the 
element coordinate ju  can be expressed as a nonlinear function of the system coordinate q�D 
in both Figure 1 and Figure 2, i.e., �� ��j ju u q�D� . By differentiating ju  with respect to q�D, the 
first-order and second-order coordinate transf ormation coefficients can be individually 
written as 

 j
j

u
a

q�D
�D

�w
� 

�w
, (4) 
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,
j j

j

a u
a

q q q
�D

� D � E
�E � D � E

� w � w
�  �  

�w � w � w
. (5) 

ja �D  and ,ja �D �E for the stiffness matrices of the cable and beam-column elements can be found 
in [18], which are provided to develop the tangent system stiffness matrix in Chapter 2.2. 
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In addition to the element st iffness matrices, the element mass matrices are introduced to 
fully understand the essential properties of a cable-stayed bridge. Based on the consistent 
mass model, the mass distribution of each stay cable and that of each deck and tower can be 
simulated by a cable element and a beam-column element, respectively. The mass matrix of 
the former with four element coordinates ju  �� ��1 4j � ��  in Figure 3 and that of the latter 
with six element coordinates ju  �� ��1 6j � ��  in Figure 4 can be individually expressed as 
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where c�U  and b�U  are the mass densities of the cable and beam-column elements, 
respectively. The coordinate transformation coefficient ja �D  connected between ju  and q�D 
for the mass matrices of the cable and beam-column elements can be found in [20]. 

 
Figure 3.  Cable element for simulating the mass of each stay cable. 
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Figure 4.  Beam-column element for simulating the mass of each deck and tower. 

2.2. System equations 

The system equations in generalized coordinates of a nonlinear finite element model of a 
cable-stayed bridge can be derived from the Lagrange’s virtual work principle 
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where M �D�E  and D�D�E are the system mass and damping matrices, respectively, which both 
are assumed to be constant; jS  is the element force vector; P�D  is the external force vector; 

0
jS  is the initial element force vector; jK

�K
 is the external nodal force vector; jb�D

�K
 is the basis 

vector; jW
�K

 is the displacement vector corresponding to jK
�K

; q�D��  and q�D����  are the system 
velocity and acceleration vectors, respectively; t  is the time; N  is the number of degrees of 
freedom; the subscripts �D and �E denote the numbers of the system coordinates; the 
subscripts j  and k  represent the numbers of the element coordinates; the superscript j  
denotes the nodal number; 

EL
�¦ represents the summation over all elements. 

Under consideration of three types of geometric nonlinearities mentioned in Chapter 2.1, 

jkKE  of a cable element and that of a beam-column element can be individually obtained 
from Eq. (2) and Eq. (3). The former and the latter are due to the cable sag effect and the 
beam-column effect, respectively. Similarly, jkME  of the cable element and that of the beam-
column element can be individually ob tained from Eq. (6) and Eq. (7). ju , ja �D  and jb�D

�K
 are 

nonlinear functions of q�D when the large displacement effect occurs. jK
�K

 can be written as a 
function of q�D if they are displacement dependent forces. M �D�E  and D�D�E are both assumed 
to be constant, because only nonlinearities in stiffness are considered in this system. 

Eq. (8) is a set of simultaneous second-order nonlinear ordinary differential equations. In 
order to incrementally solve these equations, the linearized system equations in a small time 
(or force) interval are derived based on the first-order Taylor series expansion of Eq. (8) 
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where 2 nK�D�E is the tangent system stiffness matrix; n
u P�D  is the unbalanced force vector; nP�D�'  

is the increment of the external force vector; nq�D�' , nq�D�' ��  and nq�D�' ����  are the increments of the 
system coordinate, velocity and acceleration vectors, respectively; nt�'  is the time increment; 
the superscript n  and 1n ��  denote the numbers of the time (or force) steps; the superscript 
2  represents the second-order iteration matrix. 

2 nK�D�E in Eq. (16) consists of four terms. The first term is the elastic stiffness matrix, while the 
second and third terms are the geometric stiffness matrices induced by large displacements. 
Furthermore, the fourth term is the geometric stiffness matrix induced by displacement 
dependent forces, which is neglected in this study. 

Eq. (15) is a set of simultaneous second-order linear ordinary differential equations in a 
small time interval, which can be solved by the direct integration method [20]. 

2.3. Initial shape analysis 

The initial shape of a cable-stayed bridge provides the geometric configuration as well as the 
prestress distribution of such bridge under the weight of the deck-tower system and the 
pretension forces in the stay cables. The relations for the equilibrium conditions, boundary 
conditions and architectural design requirements should be satisfied. Under consideration 
of three types of geometric nonlinearities, i.e., the cable sag, beam-column and large 
displacement effects, the initial shape analyses of an OECS model and a MECS model are 
presented in this study. 

For the initial shape analysis of the OECS model, the weight of the deck-tower system is 
considered, whereas the weight of the stay cables is neglected. The shape finding 
computation is performed using a two-loop iteration method: an equilibrium iteration and a 
shape iteration [18-23]. It can be started with an estimated initial element force (pretension 
force) in the stay cables. Based on the reference configuration (architectural design form) 
with no deflection and zero prestress in  the deck-tower system, the equilibrium 
configuration of the whole bridge under the we ight of the deck-tower system can be first 
determined by incrementally solvin g the linearized system equations 

 2 ,n n n n
uK q P P�D� E � E � D � D� ' �  � � � ' 1,n nP P P� D � D � D

��� d � d  (25) 

 ,n n n n
u j j

EL
P P S a�D � D � D�  � ��¦     (26) 

which are individually derived from Eq. (15) and Eq. (19) with negligible inertial and 
damping effects due to the static case. On the basis of Eq. (25) and Eq. (26), the equilibrium 
iteration is performed using the Newton-Raphson method [18-23]. 

After the above equilibrium iteration, the brid ge configuration satisfies the equilibrium and 
boundary conditions, however, the architectura l design requirements are, in general, not 
fulfilled. This is because large displacements and variable bending moments occur in the 
deck-tower system due to the large bridge span. Under these conditions, the shape iteration 
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is conducted to reduce the displacements and to smooth the bending moments, and the 
appropriate initial shape can therefore be obtained. 

A number of control points are selected for insuring that both  the deck and tower 
displacements satisfy the architectural design requirements in the shape iteration 

 ,r
r

q

L
�D �H�d     (27) 

where q�D is the displacement in a certain direction of the control point; rL  is the reference 
length; r�H  is the convergence tolerance. For checking the deck displacement, each control 
point is the node intersected by the deck and the stay cable. q�D and rL  individually denote 
the vertical displacement of the control point and the main span length. Similarly, each node 
intersected by the tower and the stay cable, or located on the top of the tower is chosen as 
the control point for checking the tower displacement. q�D and rL  represent the horizontal 
displacement of the control point and the tower height, respectively. 

If Eq. (27) is not achieved, the element axial forces calculated in the previous equilibrium 
iteration will be taken as the initial element fo rces in the new equilibrium iteration, and the 
corresponding equilibrium configuration of the whole bridge under the weight of the deck-
tower system will be determined again. The shape iteration will then be repeated until Eq. 
(27) is reached. Under these conditions, the convergent configuration can be regarded as the 
initial shape of the OECS model. 

The initial shape analysis of the MECS model is also performed to reasonably simulate the 
bridge configuration. Based on the initial shap e of the OECS model obtained previously, the 
both end coordinates and pretension force in each single stay cable can be used for the shape 
finding computation of the corresponding stay  cable discretized into multiple elements 
using the catenary function method [22, 23]. Incorporating the interior nodal coordinates 
and pretension forces in each discrete stay cable into the bridge model, and then conducting 
the two-loop iteration method again, the conv ergent configuration can be regarded as the 
initial shape of the MECS model. 

2.4. Modal analysis 

Under the assumption that the system vibrates with a small amplitude around a certain 
nonlinear static state, in which the variation in such state induced by the vibration is 
negligible, the modal analysis of a cable-stayed bridge can be conducted based on the 
linearized system equation 

 2 0,A AM q K q�D�E �E �D�E �E�� � ����      (28) 

where AM �D�E  and 2 AK�D�E are the system mass and tangent system stiffness matrices with 
respect to the nonlinear static state Aq�D , respectively. The initial shape obtained in Chapter 
2.3 can be regarded as Aq�D . Eq. (28) is derived from Eq. (15) with negligible damping and 
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force effects. On the basis of Eq. (28) representing the free vibration of the undamped 
system, the natural frequency nf  and the normalized mode shape nY  of the n th mode can 
be calculated by the subspace iteration method [20]. 

2.5. Modal coupling assessment 

According to the results of both the initial shape analysis (Chapter 2.3) and modal analysis 
(Chapter 2.4) with the consideration of geometri c nonlinearities (Chapter 2.1) in the system 
equations (Chapter 2.2), three indices for quantitatively assessing the degree of coupling 
among the stay cables, decks and towers of a cable-stayed bridge in each mode are 
presented [24] as 
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where j
nM  �� ��, ,j s d t�  are the generalized mass ratios of the n th mode; jM  �� ��, ,j s d t�  are 

the submatrices of AM �D�E ; j
nY  �� ��, ,j s d t�  are the subvectors of nY  in the n th mode; the 

superscripts s, d  and t  denote the quantities of the stay cable, the deck and the tower, 
respectively. The sum of s

nM , d
nM  and t

nM  is 1 for the corresponding n . 

2.6. Seismic analysis 

According to the assumption that  the system is under the uniform earthquake excitation, the 
seismic analysis of a cable-stayed bridge with respect to the initial shape obtained in 
Chapter 2.3 can be conducted based on the equivalent difference equations 

 * 1 * ,n n nQ K q�D �D�E �E
�� �  � ' ,n n nt t t t�d � d � � � '     (32) 

 * 1 1 * * ,n n n n n n
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 * 2
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 *
4 6 ,n n nq I q I q�D � D � D�  � � � �� � � � � �� �     (36) 
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 1 ,n n nq q q�D � D � D
�� �  � � � '     (38) 

 1 *
2 ,n n nq q I q�D � D � D

�� �  � � � '� � � �     (39) 

 1 *
1 ,n n nq q I q�D � D � D

�� �  � � � '���� ����      (40) 
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where these equations are derived from Eq. (15) and Eq. (19) using the Newmark method 
[27]; * 1nQ�D

��  is the effective force vector; * nK�D�E is the effective system stiffness matrix; g nq����  is 
the earthquake-induced ground acceleration; I �E is the column vector in which each element 
is either zero or unity depending on the direction of g nq���� ; 1�E  and 1�J  are the parameters 
defining the variation of acceleration over a time increment and determining the stability 
and accuracy characteristics of the Newmark method; * nq�D�� , * nq�D����  and jI  �� ��1 6j � ��  are the 
coefficients of the seismic analysis. 

2. Finite element models 

To understand the deck-stay interaction with th e appropriate initial shapes of cable-stayed 
bridges, an OECS model and a MECS model of the full Kao Ping Hsi Bridge are developed, 
as shown in Figure 5(a) and 5(b), respectively. This bridge is an unsymmetrical single-deck 
cable-stayed bridge with a main span of 330 m and a side span of 184 m. The deck, which 
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consists of steel box girders in the main span and concrete box girders in the side span, is 
supported by a total of 28 stay cables (S1-S28), arranged in a central plane originated at the 
184 m tall, inverted Y-shaped, concrete tower. A more detailed description of the Kao Ping 
Hsi Bridge can be found in [28]. 

Figure 5(a) and 5(b) illustrate the two-dimensional finite element models of the bridge. The 
OECS and MECS models both contain 48 beam-column elements that simulate the deck and 
tower. For the MECS model, each stay cable is discretized into 10 cable elements, whereas a 
single cable element is used to simulate each stay cable in the OECS model. This fact 
indicates that the OECS and MECS models individually include 28 and 280 cable elements. 
Figure 5(a) and 5(b) also show that 49 and 301 nodes are involved in the OECS and MECS 
models, respectively. A hinge, roller and fixe d supports are used to model the boundary 
conditions of the left and right ends of the deck and the tower, respectively, and a rigid joint 
is employed to simulate the deck-tower connection. On the basis of the OECS and MECS 
models, the initial shape analysis, modal analysis, modal coupling assessment and seismic 
analysis of the Kao Ping Hsi Bridge are conducted in this study. 

 
Figure 5.  Finite element models of the Kao Ping Hsi Bridge. 
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4. Numerical results 

Based on the OECS and MECS models of the Kao Ping Hsi Bridge developed in Chapter 3, 
the initial shape analysis, modal analysis, modal coupling assessment and seismic analysis 
are conducted using the finite element formul ation presented in Chapter 2. The numerical 
results can be used to fully understand the mechanism of the deck-stay interaction with the 
appropriate initial shapes of cable-stayed bridges. 

4.1. Initial shape analysis 

Based on the finite element procedures presented in Chapter 2.3, the initial shape analyses 
of the OECS and MECS models are conducted to reasonably provide the geometric 
configuration of the Kao Ping Hsi Bridge. In bo th Figure 5(a) and 5(b), nodes 37, 38, 40, 45 
and 46 are selected as the control points for checking the deck displacement in the vertical 
direction, while node 19 is chosen as the control point for checking the tower displacement 
in the horizontal direction. The convergence tolerance r�H  is set to 10-4 in this study. 

Figure 6(a) shows the initial shape of the OECS model of the Kao Ping Hsi Bridge (solid 
line), indicating that the maximum vertical an d horizontal displacements measured from the 
reference configuration (short dashed line) are 0.038 m at node 36 in the main span of the 
deck and -0.021 m at node 8 in the tower, respectively. The shape of each stay cable 
represented by a single cable element is straight as expected. Figure 6(a) also illustrates that 
the overall displacement obtained by the two-loop iteration method, i.e., the equilibrium 
and shape iterations, is comparatively smaller than that only from the equilibrium iteration 
(long dashed line). Consequently, the initial shape based on the two-loop iteration method 
appears to be able to appropriately describe the geometric configurations of cable-stayed 
bridges. 

Figure 6(b) shows the initial shape of the MECS model of the Kao Ping Hsi Bridge (solid 
line), indicating that the maximum vertical an d horizontal displacements measured from the 
reference configuration (short dashed line) are 0.068 m at node 34 in the main span of the 
deck and -0.049 m at node 8 in the tower, respectively. The sagged shape occurs in the stay 
cables due to the fact that each stay cable is simulated by multiple cable elements. 

4.2. Modal analysis and modal coupling assessment 

According to the results of the initial shape analysis presented in Chapter 4.1, the modal 
analyses of the OECS and MECS models using the finite element computations developed in 
Chapter 2.4 are conducted to calculate the natural frequency and normalized mode shape of 
the individual modes of the Kao Ping Hsi Br idge. The modal coupling assessment based on 
the proposed formulas in Chapter 2.5 is also performed to obtain the generalized mass ratios 
among the structural components for each mode of such bridge. These results can be used to 
provide a variety of viewpoints to illustrate the mechanism of the deck-stay interaction with 
the appropriate initial shapes  of cable-stayed bridges. 
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Figure 6.  Initial shapes of the Kao Ping Hsi Bridge. 

Table 1 summarizes the modal properties of the Kao Ping Hsi Bridge based on the OECS 
model (modes 1 to 3) and the MECS model (modes 1 to 24). In this table, nf  and nY  
represent the natural frequency and the normalized mode shape of the n th mode, 
respectively. As expected, the MECS model reveals the global, local and coupled modes, 
whereas the OECS model only yields the global modes. The modal properties of modes 1 
and 2 in the OECS model are individually similar to those of modes 1 and 12 in the MECS 
model, because these modes represent the global modes. While mode 3 in the OECS model 
is identified as the global mode, mode 19 in the MECS model is the coupled mode. The other 
coupled mode can also be observed in mode 18 in the MECS model. These results suggest 
that the interaction between the deck-tower system and stay cables can be captured by the 
MECS model, but not by the OECS model. Also due to the limitations of the OECS model, 
modes 2 to 11, modes 13 to 17 and modes 20 to 24, which represent the local modes of the 
stay cables, are successfully captured by the MECS model, but not by the OECS model. 
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OECS MECS 

n  nf  (Hz) nY  Type n  nf  (Hz) nY  Type 

1 0.2877 1st DT G 1 0.3053 1st DT G 

    2 0.3382 1st S28 L 

    3 0.3852 1st S27 L 

    4 0.4274 1st S26 L 

    5 0.4554 1st S1 L 

    6 0.4653 1st S25 L 

    7 0.4899 1st S24 L 

    8 0.5067 1st S23 L 

    9 0.5269 1st S22 L 

    10 0.5378 1st S2 L 

    11 0.5471 1st S21 L 

2 0.5455 2nd DT G 12 0.5686 2nd DT G 

    13 0.5944 1st S3 L 

    14 0.6040 1st S20 L 

    15 0.6333 1st S4 L 

    16 0.6346 2nd S28 L 

    17 0.6835 1st S5 L 

    18 0.6850 
3rd DT 
1st S19 

C 

3 0.6854 3rd DT G 19 0.7171 
3rd DT 
1st S19 

C 

    20 0.7269 1st S6 L 

    21 0.7500 2nd S27 L 

    22 0.7590 1st S7 L 

    23 0.8008 1st S8 L 

    24 0.8184 1st S18 L 

DT: Deck-tower system 
S: Stay cable 
G: Global mode 
L: Local mode 
C: Coupled mode 

Table 1. Comparisons between corresponding modal proper ties of the OECS and MECS models of the 
Kao Ping Hsi Bridge. 
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Figure 7 shows the relationship between the natural frequency and the mode number for the 
first 24 modes of the MECS model of the Kao Ping Hsi Bridge. For reference, the 
fundamental frequency of stay S19 (0.6908 Hz) is also included. This frequency is calculated 
based on the assumption that stay S19 is clamped at both ends [29]. 
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Figure 7.  Relationships between natural frequencies and mode numbers of the MECS model of the Kao 
Ping Hsi Bridge. 

Figure 8(a) and 8(b) illustrate the normalized mode shapes of the individual modes of the 
OECS model (modes 1 to 3) and the MECS model (modes 1 to 24) of the Kao Ping Hsi 
Bridge, respectively. Each normalized mode shape (solid line) is measured from the initial 
shape (dashed line) obtained in Chapter 4.1. 

To quantitatively assess the degree of coupling for each mode, Figure 9 depicts the 
variations in the generalized mass ratios with respect to the mode number for the first 24 
modes of the MECS model of the Kao Ping Hsi Bridge. In this figure, s

nM , d
nM  and t

nM  
represent the generalized mass ratios of the stay cable, the deck and the tower of the n th 
mode, respectively. The sum of s

nM , d
nM  and t

nM  is 1 for the corresponding n  �� ��1 24n �  � � . 
It is evident that t

nM  �� ��1 24n �  � �  approaches 0 for the first 24 modes due to the high rigidity 
of the concrete tower, resulting in the insignificant tower deformations in the lower modes 
sensitive to the ambient excitations, as can also be seen in Figure 8(b). These results are in 
agreement with the literature [2]. 
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Figure 8.  Normalized mode shapes of the Kao Ping Hsi Bridge. 
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Figure 9.  Variations in generalized mass ratios with respect to mode numbers of the MECS model of 
the Kao Ping Hsi Bridge. 

It can be seen in Table 1, Figure 7, Figure 8(a) and 8(b) that for the global modes, nf  and nY  

�� ��1,2n �  in the OECS model are individually similar to nf  and nY  �� ��1,12n �  in the MECS 
model. It is consistent with the results in Figure 9 that for modes 1 and 12 in the MECS 
model, the sum of d

nM  and t
nM  �� ��1,12n �  is close to 0.9, whereas s

nM  � � � �1,12n �  
approaches 0.1. Consequently, these modes are primarily dominated by the deformations of 
the deck-tower system with the quasi-static motions of the stay cables. This type of response 
can be identified as the “pure” deck  mode in the analytical model [17]. 

It also can be seen in Figure 9 that for modes 2 to 11, modes 13 to 17 and modes 20 to 24 in 
the MECS model, s

nM  �� ��2 11,13 17,20 24n �  � � � � � � is close to 1, whereas the sum of d
nM  and 

t
nM  �� ��2 11,13 17,20 24n �  � � � � � � approaches 0. It is consistent with the results in Table 1, 

Figure 7 and Figure 8(b) that nY  �� ��2 11,13 17,20 24n �  � � � � � � in the MECS model is the local 
mode predominantly consisting of the stay cable motions with negligible deformations of 
the deck-tower system. This type of response can be recognized as the “pure” cable mode in 
the analytical model [17]. 

As shown in Table 1, Figure 7, Figure 8(a) and 8(b), the difference between 19f  in the MECS 
model (0.7171 Hz) and 3f  in the OECS model (0.6854 Hz) is evident due to the fact that 19Y  
in the MECS model is the coupled mode, but 3Y  in the OECS model is the global mode, i.e., 
the “pure” deck-tower mode. Similarly, 18f  in the MECS model (0.6850 Hz) branches from 
the fundamental frequency of stay S19 clamped at both ends (0.6908 Hz). This is because 
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18Y  in the MECS model is the coupled mode, while the fundamental mode shape of stay S19 
can be regarded as the “pure” stay cable mode. These observations are attributed to the 
frequency loci veering when the natural freque ncy of the “pure” deck-tower mode (0.6854 
Hz) approaches that of the “pure” stay cable mode (0.6908 Hz). As illustrated in Figure 9, 
the sum of 19

dM  and 19
tM  is relatively higher than 19

sM , whereas the sum of 18
dM  and 18

tM  
is comparatively lower than 18

sM . Consequently, 18Y  and 19Y  in the MECS model are the 
pair of coupled modes with the similar config urations, which have substantial contributions 
from both the deck-tower syst em and stay cables. These phenomena correspond to the mode 
localization. This type of response coincides with the coupled mode in the analytical model 
[17]. 

In summary, the coupled modes are attributed  to the frequency loci veering and mode 
localization when the “pure” deck-tower freq uency and the “pure” stay cable frequency 
approach one another, implying that the mode  shapes of such coupled modes are simply 
different from those of the deck -tower system or stay cables alone. The distribution of the 
generalized mass ratios between the deck-tower system and stay cables are useful indices 
for quantitatively assessing the degree of coupling for each mode. These results are 
demonstrated to fully understand the mechan ism of the deck-stay interaction with the 
appropriate initial shapes of cable-stayed bridges. 

4.3. Seismic analysis 

According to the results of the initial shape analysis presented in Chapter 4.1, the seismic 
analyses of the OECS and MECS models using the finite element computations developed in 
Chapter 2.6 are conducted to obtain the dynamic responses of the Kao Ping Hsi Bridge. 
Figure 10 shows the vertical component of the Chi-Chi earthquake accelerogram recorded in 
Mid-Taiwan on September 21, 1999 [30], which is selected as the earthquake-induced 
ground acceleration in this study. Un der the excitation, the Newmark method 

�� ��1 11 4 , 1 2� E � J�  �   is used to calculate the displacement and internal force time histories of 
the system. The duration of the simulation is set to 30.0 s. 

 
Figure 10.  The Chi-Chi earthquake accelerogram. 
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Figure 11 shows the horizontal and vertical di splacement time histories of nodes 295, 297 
and 300 in stay S28 for the MECS model. The variations in th e dynamic responses among the 
three nodes for each direction and those between the horizontal and vertical directions for 
each node are observed in this figure. Consequently, the dynamic displacements of the stay 
cables are successfully captured by the MECS model, bu t not by the OECS model. Figure 12 
shows the vertical displacement time histor ies of nodes 35, 36 and 42 in the deck, the 
horizontal displacement time histories of node s 8 and 20 in the tower, and the horizontal 
time history of node 49 in the right end of the deck, for both the OECS and MECS models. 
The dynamic response of each node in the OECS model coincides with that of the 
corresponding node in the MECS model. Consequently, the dynamic displacements of the 
deck-tower system are reasonably simulated by both the OECS and MECS models. 

 
Figure 11.  Displacement time histories of the stay cable of the Kao Ping Hsi Bridge. 

The axial force, which is in the 1u  coordinate of the cable element in Figure 1, is the unique 
internal force of the stay cable. Figure 13 shows the internal force time history of element 28 
in stay S28 for the OECS model and those of the corresponding elements 271, 275 and 280 in 
stay S28 for the MECS model. The variations in the dynamic responses among the three 
elements of the MECS model are negligible. In addition, the dynamic response of each 
element in the MECS model is in agreement with that of the corresponding element in the 
OECS model, which can be considered as the “nominal” dynamic axia l force of the stay 
cable. Consequently, the dynamic internal forces of the stay cables are successfully captured 
by both the OECS and MECS models. The internal forces of the deck-tower system include 
the left moment, right moment and axial force, which are individually in the 1u , 2u  and 3u  
coordinates of the beam-column element in Figure 2. Figure 14 shows the internal force time 
histories of element 69 (321) in the deck and those of element 40 (292) in the tower for the 
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OECS (MECS) model. The dynamic responses of each element in the OECS model coincide 
with those of the correspondi ng element in the MECS model. Consequently, the dynamic 
internal forces of the deck-tower system are reasonably simulated by both the OECS and 
MECS models. 
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Figure 12.  Displacement time histories of the deck-tower system of the Kao Ping Hsi Bridge. 

 
Figure 13.  Internal force time histories of the stay cable of the Kao Ping Hsi Bridge. 
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Figure 14.  Internal force time histories of the deck-tower system of the Kao Ping Hsi Bridge. 

In summary, the dynamic displacements of the stay cables are successfully captured by the 
MECS model, but not by the OECS model. Furthermore, the dynamic displacements of the 
deck-tower system as well as the dynamic internal forces of the stay cables and those of the 
deck-tower system are reasonably simulated by both the OECS and MECS models. These 
results are demonstrated to fully understand the deck-stay in teraction characteristics of 
cable-stayed bridges under seismic excitations. 

5. Conclusions 

This study has provided a variety of viewpoints to illustrate the mechanism of the deck-stay 
interaction with the appropriate initial shapes of cable-stayed bridges. Based on the smooth 
and convergent bridge shapes obtained by the initial shape analysis, the OECS and MECS 
models of the Kao Ping Hsi Bridge are developed to verify the applicability of the analytical 
model and numerical formulation from the field observations in the authors’ previous work. 
For this purpose, the modal analyses of the two finite element models are conducted to 
calculate the natural frequency and normalized mode shape of the individual modes of the 
bridge. The modal coupling assessment is also performed to obtain the generalized mass 
ratios among the structural components for each mode of the bridge. To further investigate 
the deck-stay interaction characteristics of cable-stayed bridges under earthquake 
excitations, the dynamic displacements and internal forces of the two finite element models 
are calculated based on the seismic analyses. 

The findings indicate that the coupled modes are attributed to the frequency loci veering 
and mode localization when the “pure” deck-t ower frequency and the “pure” stay cable 
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frequency approach one another, implying that the mode shapes of such coupled modes are 
simply different from those of the deck-tower system or stay cables alone. The distribution 
of the generalized mass ratios between the deck-tower system and stay cables are useful 
indices for quantitatively assessing the degree of coupling for each mode. To extend the two 
finite element models to be under the seismic excitation, it is evident that the dynamic 
displacements of the stay cables are successfully captured by the MECS model, but not by 
the OECS model. In addition, the dynamic disp lacements of the deck-tower system as well 
as the dynamic internal forces of the stay cables and those of the deck-tower system are 
reasonably simulated by both the OECS and MECS models. These results are demonstrated 
to fully understand the mechan ism of the deck-stay interaction with the appropriate initial 
shapes of cable-stayed bridges. 
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