
���������������������������������������������������
�����

���	����������������������������������
�

����������������������������������
��������
	��������������������	��

���������������������•������������������������������������•�

•��������������������•�����••••����������•���

•������������������•�������

��������� �� � ��•���� ��� ����������������������•  ����•��������


������������ ��� ������ �� �� �� ������

•���������� �� �� ��� ����� �

���������������������

€�•������

���#�����0�#����,�2�#�!�&���.�#�,�A
�2�&�#���5�-�0�*�"�a�1���*�#���"�'�,�%���.�3� �*�'�1�&�#�0���-�$

���.�#�,�����!�!�#�1�1��� �-�-�)�1
���3�'�*�2��� �7���1�!�'�#�,�2�'�1�2�1�A���$�-�0���1�!�'�#�,�2�'�1�2�1

12.2%

133,000 165M

TOP 1%154

5,400



Chapter 12 

 

 

 
 

© 2012 Yogeswaran and Payeur, licensee InTech. This is an open access chapter distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

3D Surface Analysis for Automated Detection  
of Deformations on Automotive Body Panels 

Arjun Yogeswaran and Pierre Payeur 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/45790 

1. Introduction 

1.1. Context and motivation 

Quality control in the manufacturing industry  has traditionally been performed manually 
by workers. As manufacturing increases in speed and volume through the introduction of 
automation, the human worker becomes a limiting factor in speed, accuracy, and 
consistency. In the automotive industry, quality control is critical to ensure that automotive 
body parts meet predefined standards. Identi fying deformations, such as undesired dings 
and dents on panels, and marking them so that they are repaired while still on the assembly 
line is essential. In current industrial settings, the procedure for identifying surface defects 
on automotive body panels often requires a laborious manual surface rubbing operation. 
This time-consuming process is difficult for a human, especially when dealing with small 
deformations that require close inspection, and may result in a decreased accuracy when the 
repetitive task is performed over the course of an entire work shift. Automation of quality 
control could significantly improve the accuracy and speed of the assembly line, thus 
increasing the number of panels inspected within an allotted time, maximizing the number 
of accurately detected defects, and minimizing the number of false detections.  

To fully automate this process, a system would have to analyze the surface of the body part 
to be inspected, determine the position of deformations, and mark those deformations on 
the body part. This chapter focuses on the analysis of 3D surfaces and automatic detection of 
deformations. One important contribution of this work comes from the imposed 
requirement that this system mu st be able to detect deformations without knowledge of the 
ideal shape of the part, meaning it cannot use a master work or CAD model for comparison. 
Some automated deformation detection techniques focus on the difference between the 
scanned model and an existing ideal model or master work (Newman & Jain 1995; 
Lilienblum et al. 2000). Certain challenges lie within this approach. The first constraint is 
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that a very precise ideal model must be available, because small faults in the master work 
can result in erroneously detected defects during execution. The second challenge is related 
to the registration of the scanned part with  the ideal model. Due to vibrations on the 
assembly line and slight inconsistencies in the acquired model, inaccurate registration may 
occur resulting in incorrectly detected defect s. Also, if panels of different models are 
processed on the same assembly line, or a new piece is introduced to the system, significant 
calibration and set up is required to synchron ize the master work with the acquired model. 
Because of these difficulties, this chapter introduces a more generic and robust technique 
which does not require an ideal model. 

1.2. Objectives 

This chapter deals primarily with the design of a deformation detection system. Its 
requirements are to identify de formations of interest over the surface of automotive body 
parts, with minimal human interaction and in dependently from the type of acquisition 
system used. The deformations of interest are dings and dents, where dings are surface 
deformations which protrude from the surface and dents are depressions into the surface. 
This chapter focuses on deformation detection when no ideal model of the automotive part 
is provided, similar to an approach which is alluded to by Döring et al. (Döring et al. 2004) 
and explored by Chen (Chen 2008). Since there is no CAD model of a master work to 
compare the measured model to, the deformation detection must be done without 
knowledge of the expected surface and requires certain assumptions to be made based on 
common characteristics of surface deformations compared to the characteristics of an 
undeformed surface. However, not all characteristics can be assumed, known, or easily 
defined. Therefore some basic parameters need to be set by the operator to provide the 
system with a minimal knowledge of the approxim ate size or scale of the deformations that 
the manufacturer wants to detect and eliminate fr om its products. This is not unrealistic, as 
the operator generally has a clear idea of the approximate range of sizes for the 
deformations to be detected.  

Given these requirements, a system is proposed which analyzes the digital 3D model of an 
automotive part collected along the assembly line, determines the locations of only the 
deformations of interest, and classifies them as dings or dents. Areas of significant surface 
variation could be deformations. But other feat ures of an automotive body panel such as 
aesthetic curves and door handles, or inaccurate surface measurements such as acquisition 
artifacts and noise, also represent surface curves that must not be falsely detected as dings 
or dents. The deformation detection system is comprised of a surface shape analysis phase 
to extract areas of interest, a segmentation phase to group areas containing pieces of 
deformations together into segments, and a classification phase to determine which 
segments contain deformations and which contain design features.  

A deformation detection pipeline is proposed , which combines an enhanced octree-based 
feature extraction, with segmentation and classification to extract deformations from a 3D 
mesh of an automotive surface panel. This pipeline supports multi-resolution analysis of 3D 
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models, providing the capability of extracting deformations regardless of the resolution or 
scale of the model, and relies on intuitively adju stable parameters for the operator to target 
the feature extraction towards desired characteristics of the deformations.  

2. Literature review 

The process to automatically determine the location of a defect on an automotive body part 
requires several steps, some of which are still complex research topics. This section reviews 
important research that is relevant to the topic of automated deformation detection 
proposed in this chapter. In order to analyz e the surface for automotive body parts, the 
latter must first be digitally represented as a 3-dimensional object. Various techniques in 3D 
acquisition are explored in section 2.1. To determine the location of deformations in the 
digitized 3-dimensional surface, the surface must be analyzed for certain characteristics. 
Surface shape analysis is discussed in section 2.2.  

2.1. 3D acquisition 

In order to analyze the surface of a real-world  object in 3-dimensions, it must be scanned 
and converted into digital 3-dimensional data . Laser scanners are very common and highly 
accurate 3D acquisition tools (Parthasarathy et al. 1982; Sequeira et al. 1995; Marszalec & 
Myllyla 1997; Gokturk et al. 2004; Blais et al. 2007). The latter are able to produce high 
resolution, high accuracy scans. However they are usually expensive systems that take a 
long time to complete a full scan, and often require some mechanical system to move the 
laser and acquire readings before accumulation into a point cloud. For lower cost, lower 
scan times, and minimal mechanical complexity , stereoscopic vision systems are a very 
popular way of digitizing a 3-dimensional scene (Murray & Jennings 1997; Murray & Little 
2000; Se et al. 2001). If prominent features are lacking in a scene, such as on the surface of a 
smooth automotive body part, these construction techniques may fail due to a lack of usable 
points. One popular technique to overcome the limitations of using traditional stereoscopic 
imaging is to acquire 3-dimensional models using structured light scanners. This type of 
sensor projects a set of artificial features onto a model or scene that is being scanned, and 
then uses a vision system to acquire the model in 3D. Most structured lighting systems use a 
single camera along with a projector to acquire the 3D points (Rocchini et al. 2001; Zhang et 
al. 2002), or combine a pattern projector with a standard stereo pair of cameras to avoid 
calibration with the projector (Payeur & Desjardins 2009).  

A recent trend in 3D sensing is the use of Microsoft’s Kinect, which is a low-cost portable 
sensor that provides 3D visualization of a scene. Using structured light principles, an 
infrared laser projector generates artificial features onto a scene (which are invisible to the 
human eye), and a CMOS sensor reconstructs a scene through vision techniques. High 
quality scene reconstruction using the Kinect sensor has been studied (Shahram et al. 2011; 
Yan & Didier 2011). Relatively high quality re construction of real-world scenes can be 
achieved, yet its accuracy is still too low to detect the slight variations in an automotive 



 
New Advances in Vehicular Technology and Automotive Engineering 306 

panel surface that constitute deformations. Also, due to possible holes and inaccuracies in 
reconstruction using a single image, several frames of reconstructed scenes must be stitched 
together and heavily post-processed to provide a full reconstruction of an automotive part. 
Though preliminary work with the Kinect is promising, more research must be done to 
adapt its use to detecting the fine contours of an automotive panel for deformation 
detection. Given the current state of the technology, and the purposes of this work, the laser 
scanner remains to be the most accurate way to scan 3D models. 

2.2. 3D surface shape analysis 

The most critical component of a surface deformation detection system is surface analysis to 
locate the defects in question. In the current context, no ideal model of the automotive part 
is provided, therefore the algorithm has no a priori knowledge of what the surface should 
look like without deformations. Advanced su rface shape analysis techniques must be 
performed to determine the locations of probable deformations.  

Given that the 3-dimensional data can be converted from a range image to a 2-dimensional 
image where each pixel intensity represents the depth of that point on the object from the 
viewpoint, features can be extracted and images can be segmented using traditional 2D 
image processing techniques. Well-known edge detectors, such as the Sobel and Canny 
operators, can highlight the areas that belong to features (Faugeras 1993). The efficacy of 
such algorithms varies greatly, since determining the peaks and valleys in histograms with 
significant noise or varying characteristics is difficult.  

The k-means algorithm is a very well-known clustering algorithm that partitions a dataset 
into a specified number, k, of clusters (Plataniotis & Venetsanopoulos 2000). However, 
selecting the value of k is most important, and in the case of an unknown number of 
deformations, this value cannot be known for sure. Unseeded region growing (Plataniotis & 
Venetsanopoulos 2000) can overcome some of the problems with k-means algorithms by not 
requiring any initial knowledge. Similar to the limitations of thresholding in edge detection, 
gradually changing pixel intensities between actual regions of the image may not be 
sufficient for accurate segmentation.  

These techniques can all be extended to 3 dimensions by using points or voxels instead of 
pixels, and adjacency can be determined by distance or connectivity in a grid or tree, as is 
done by Palagyi and Kuba (Palagyi & Kuba 1999). Also, the data being used as the intensity 
value in an image can be redefined as distance in a range image or 3-dimensional surface 
deformation metrics such as standard deviation of normals or a curvedness value 
(Koenderink & Doorn 1992; Dorai & Jain 1997).  

Various techniques from the field of 3D data analysis can be used for the purpose of 
deformation detection. Simple deformations in a mesh can resemble outliers on a smooth 
surface. Using noise removal techniques to identify areas of noise-like characteristics can be 
beneficial to determining the location of the defect. Schall et al. propose a noise removal 
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method that also provides applications in out lier removal (Schall et al. 2005). The statistical 
method estimates the density of each area of the point cloud, and uses the neighbouring 
points to adapt a probable surface to each point. Since points are moved to their most 
probable location along a surface, the spatial density of the resulting point cloud is relatively 
consistent throughout the surface of the object. An outlier point exists where the spatial 
density in a surrounding is too low. Theref ore a basic threshold can determine outliers. 
Though effective, this algorithm is dependent on the sampling density, its parameter 
selection is not intuitive and may cause unpredictable performance, and will fail when 
deformations do not resemble outliers.  

The moving least-squares surface reconstruction technique proposed by Mederos et al. 
(Mederos et al. 2003) uses a hierarchical segmentation technique that finds redundant points 
such that the point cloud density can be reduced before surface reconstruction. This 
segmentation technique results in clusters of points, where the surface variation within each 
cluster is minimal and the boundaries between  those clusters could define a significant 
deformation on the surface. Though computat ionally expensive, analyzing the eigenvalues 
and eigenvectors of the covariance matrix of a cluster of points can estimate local surface 
properties (Hoppe et al. 1992; Shaffer & Garland 2001). A binary space partitioning tree is 
used to segment the model into clusters of points that lie on surfaces of low variation, where 
subdivision is based on the flatness criterion, which represents variation within a group of 
points, as described by Pauly et al. (Pauly et al. 2002). Such an algorithm is effective at 
determining the characteristics of a model for surface reconstruction or resampling, but 
requires an extension to be used for efficient feature extraction, since the boundaries must be 
determined instead of just the clusters. The use of a binary space partitioning tree is very 
effective to separate the mesh, but tends to become too deep of a tree to traverse efficiently, 
since each node can only be subdivided into 2 nodes at a time.  

Woo et al. (Woo et al. 2002) introduce a technique based on octree structures, and use 
recursive subdivision of the volume of a 3D mesh to identify features. It removes segments 
of the mesh as the octree is generated, and leaves parts of the mesh that belong to features in 
the final octree data structure. It requires a model with a reconstructed surface and 
partitions the model into subsections which repr esent varying levels, or scales, of features. 
Surface normal vectors can be calculated for all triangles composing the surface, and 
ultimately for each point by averaging the norm als of the triangles that the point belongs to. 
Variations in the orientation of the surface within a given region are estimated from the 
standard deviation of normal vectors within  that region. This method facilitates the 
partitioning process. All of the points that ma ke up the surface of the object are initially 
added to the root of the tree structure. The standard deviation of their normals is calculated, 
and compared to a threshold. First the mean normal is computed:  

 ��%L �Ã �� �g���•
�l
�g�@�4    (1) 

where n is the number of points at the node, ��%��is the mean normal, and �� �g is the unit normal 
of point i. Then the standard deviation, �— , of the normals can be estimated as:  
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A threshold must be defined for the subdivision as the maximum standard deviation 
allowed in a volume before it should be fu rther divided. This threshold is defined by 
the user. If the standard deviation is larger  than the threshold, the volume represented 
by the root is divided into 8 octants repres ented by 8 children being added to the root. 
The points from the root are redistributed based on their spatial location into each of 
the 8 octants, and thus into each of the 8 children of the root. This process is repeated 
recursively for each of the children, and for their children, and so on until either there 
are no children remaining, or a sufficient level of feature details is discovered. The 
depth of the tree determines how detailed the feature level is. Figure 1 details the 
recursive process of the feature segmentation at various scales. The final structure 
provides a tree where the points are distri buted amongst the tree nodes. Leaves at 
greater depths represent finer detailed features of the mesh contained in smaller 
volumes. Leaves at lesser depths represent larger scale features contained in larger 
volumes.  

Woo et al.‘s technique is effective, yet because it uses a single threshold value throughout the 
entire tree, its ability to detect features can be unpredictable. A feature has to sufficiently 
affect the standard deviation of the surface normals across the selected volume for the 
method to investigate the mesh at a higher resolution. If this is not the case then the feature 
is not identified. The criteria fo r setting the threshold is that it must be high enough such 
that smooth curvatures and noise are not detected, but low enough such that the 
deformation features are detected. This remains a subjective criterion that varies with the 
point cloud. Since standard deviation is used, it is hard to find values which meet the 
defined criteria. 

On the other hand, the technique generates broad shallow trees which are easier to traverse, 
as opposed to deep narrow trees generated by binary space partitioning methods such as 
those in (Shaffer & Garland 2001; Mederos et al. 2003). This allows analysis at higher 
resolutions, with reduced computational load. The octree representation allows features to 
be represented in the point cloud dataset as well as in a volumetric grid, giving the 
flexibility of using a variety of techniques for added segmentation.  

Pauly et al. present a technique that allows feature extraction from a 3D object composed of 
surfaces, at various detail levels (Pauly et al. 2003). Weights are assigned to each point in  
the point cloud, representing the amount of local variation in the surface normals. At 
different scales, different local neighbourhoo d sizes are used. Introducing the idea of feature 
persistence, a threshold can be selected, such that local maxima weights over that threshold 
can be considered feature nodes. As a feature persistently exceeds that threshold,  
across multiple scales, it can be classified as a strong feature, rather than only a small local 
feature.  
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Figure 1.  a) Octree segmentation subdivisioning flowchar t, b) an example octree where the top node 
represents the entire mesh, and nodes at deeper levels represent subdivisions of the mesh at 
proportionally higher resolutions. 

Results show that this method performs well under noise and is effective at identifying 
prominent features. Also, the idea of feature persistence is interesting, where prominent 
features appear over multiple scales, and can be very important in using multiresolution 
information to identify important features.  

Vosselman et al. (Vosselman et al. 2004) exploit the knowledge of ordered point clouds in the 
form of scan lines, and combine various techniques to segment point clouds by recognizing 
geometric shapes and flat smooth surfaces for the analysis of industrial and city scans from 
LIDAR data. Each scan line is broken into line segments based on orientation and proximity, 
and a plane-of-best-fit equation is calculated. Adjacent scan lines are compared based on 
some similarity criterion to be connected as a planar surface or other shapes such as spheres 
and cylinders. The dependency on ordered point cloud data is a limitation of the technique, 
since data can come from various sources and may not always be in the form of scan lines. 
Also, the very distinct shapes that are being extracted are effective in scans of a city or in an 
industrial setting, but th e techniques are less suited to the more curved and variable surfaces 
of automotive body parts, since such shapes do not fall into the category of basic geometric 
primitives.  

Jagannathan and Miller (Jagannathan & Miller 2007) use a metric known as curvedness 
(Koenderink & Doorn 1992; Dorai & Jain 1997) for segmentation, to extract regions of the 
mesh with high curvature. The curvedness is calculated for each point in the mesh. Using 
iterative graph dilation and filtering of outlier curvedness values, the mesh is broken up into 
sub-meshes with similar curvedness values. Based on the results shown, the algorithm has 

(a) (b)
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great success in segmenting 3D models with very large distinct form changes. However, it 
might be difficult to predict the success of th is algorithm when faced with finding subtle 
shallow deformations on the surface of a flat or curved mesh, especially when dealing with 
significant noise and acquisition artifacts.  

Döring et al. tackle a similar problem to this work, by detecting deformations on car body 
panels (Döring et al. 2004). The deformation extraction is only briefl y explained as finding 
the differences between the point cloud and an inertial su rface approximation of a low 
polynomial degree. The experiments in this paper work under similar assumptions to this 
chapter, in that there is no ideal model or a priori knowledge to compare to the model being 
analyzed. Surface deformations must be extracted by analysis of the model surface against 
what is assumed to be a smooth ideal surface instead of being compared to an existing 
model of what the surface should look like . This chapter is more concerned with the 
extraction of surface deformations than the classification, while Döring et al.’s work  
emphasizes the classification of the feature as one of many types of known deformations. 

3. Automated surface deformation detection 

3.1. General deformation detection framework 

The proposed system takes a 3D mesh as an input, and outputs the sections of the mesh which 
are deformations of interest along with whether they are a ding or a dent. Given that no CAD 
model of the ideal surface is considered available, the proposed system must locate and 
classify the deformations of interest using assumptions based on common characteristics of 
dings and dents. Since some assumptions regarding size and scale of deformations cannot be 
made without more information, a minimal and intuitive set of parameters must be set  by the 
operator to ensure accurate detection with minimal human intervention. This also ensures that 
design features of the automotive panel are not accidentally extracted as deformations, since 
they are generally much larger than the deformations of intere st and can easily be separated 
by size and scale. The outputs of the proposed system are passed onto a robotic deformation 
marking system briefly discussed in section 3.2.  

The proposed system contains 3 major components, as shown in Figure 2.The surface shape 
analysis component is tasked with dividing th e 3D mesh into sections and analyzing each 
one for the magnitude of the deformation contained in that section. The segmentation 
component combines sections from the surface shape analysis which seemingly belong to 
the same deformation. The classification component classifies each segment from the 
segmentation as either a ding or dent, and removes segments which do not meet the criteria 
of being a deformation of interest, such as vehicle design features and acquisition noise. 

 

Figure 2.  System diagram of proposed deformation detection system. 
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3.2. Experimental platform and setup 

The more extensive research project that this work is part of involves the development of an 
automated deformation detection and marking system (Borsu et al. 2010). The primary 
objective is to identify deformations over an automotive panel and physically mark those 
deformations while the automotive part moves along an assembly line.  

The 3D acquisition subsystem provides the deformation detection subsystem with 3D point 
cloud or mesh information. The deformation detection subsystem, which is the focus of this 
chapter, analyzes the surface of the automotive body panel and determines the locations and 
type of all deformations of interest. The robotic marking subsystem tracks the moving 
automotive panel along the assembly line, and marks the deformations with a robotic arm 
(Borsu 2010). The relationships between the subsystems are shown in Figure 3.  

 

Figure 3.  Relationship between subsystems for automated deformation detection and marking. 

The automated deformation detection and marking system is created on a smaller scale in a 
lab setting. This serves as a test bed for the developed techniques, and demonstrates that 
they can work in a real-world setting. An im age of the setup is shown in Figure 4.  

To represent the idea of a moving assembly line, a PC-operated sled system is used and 
simulates a shortened conveyor in a lab setting. One of several real or imitation automotive 
panels is mounted on the sled system to imitate a real automotive panel. At the beginning of 
the assembly line, when the automotive panel is static, a structured light sensor is used to 
generate a dense 3D reconstruction of the surface of the automotive panel (Boyer 2009; 
Boyer et al. 2009). The deformation detection subsystem processes this 3D data, and acquires 
the location of the deformations. The panel continues moving along the sled system and is 
tracked by the robotic markin g system (Borsu & Payeur 2009; Borsu 2010). Then, based on 
the locations automatically prov ided by the deformation dete ction subsystem, the robotic 
manipulator is positioned to smoothly mark defo rmations on the automotive panel surface.  

3.3. Data sets 

A 3D acquisition system provides the only input used by the deformation detection system 
to identify the location of deformations of in terest. A detailed discussion of the 3D sensing  
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Figure 4.  Experimental lab setup. 

systems used for acquiring the shape of the automotive body panels is beyond the scope of 
this chapter. For laboratory evaluation, a custom structured light sensor (Boyer 2009;  
Boyer et al. 2009; Payeur & Desjardins 2009) is used in combination with slightly enlarged 
dings and dents deformations artificially affixed on the test panels. Alternatively,  
higher resolution datasets collected by industri al partners with an active laser range sensor 
on real automotive panels is also used to demonstrate the capability of adaptation of the 
proposed approach to different scales and its independence from the 3D acquisition  
system. Surface reconstruction, performed with the ball-pivoting algorithm proposed by 
Bernadini et al. (Bernardini et al. 1999), is used to generate a mesh triangulation out of the 
acquired 3D points. The output of this modu le is provided as input to the deformation 
detection subsystem, which is the starting point for the original work presented in this 
chapter. 

Real-world test data is important to determ ine the effectiveness of the approach, since  
any 3D acquisition system does not provide ideal meshes for this application. The reflective 
characteristics of the surface, the subtle variations in its shape, and the large distance  
the panel is positioned from the sensor, cause the acquisition system to introduce  
an abundance of noise and acquisition artifacts. These real-world meshes serve as test  
cases for non-optimal acquisition and surface characteristics resulting from the acquisition  
errors.  

The first real-world mesh is a desktop computer casing panel modified by hammering 3 
dents into it. Though this is not an automotive part, it simulates real-world deformations on 
a relatively flat surface. The panel is 20cmx15cm and each dent is circular, with dimensions 
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of approximately 2cm in diameter and 0.25cm in depth. The computer casing panel was 
scanned at two different resolutions, with th e high resolution version containing 14 626 
points and the low resolution version containing  3647 points. Since it might be unrealistic to 
expect an accurate extraction of deformations from this mesh, a filtered version of the low 
resolution scan is created using a Laplacian smoothing filter to remove the noise while 
maintaining the deformations. The meshes are shown in Figure 5 with deformations circled. 
The amount of surface variation, holes along the boundaries, and noise are all visible in the 
images of the computer casing panel meshes.  

 
Figure 5.  a) Indented computer casing panel, b) high resolution scan, c) low resolution scan, and  
d) filtered low resolution scan, with deformations circled.  

A mock car door was crafted out of cardboard, consisting of a curved body, a door handle, 
and a window frame. The door is approxim ately 70cmx78cm. Three dings, made up of 
paper were stuck to the door at various positions, where each ding is circular and 
approximately 1cm in diameter and 1cm in depth. The scanned car door contains 32 202 
points. A Laplacian filtered version is also us ed. The filtered and unfiltered versions are 
shown in Figure 6 with deformations circled.  

The car door is acquired well, with the defo rmations, door handle, surface variation and 
window frame all appearing. There is lots of  surface variation along the borders due to 
acquisition errors, and a significant amount of noise, which may interfere with isolating the 
deformations from parts of the noise as the peaks of the noise are almost as high as the 
peaks of the deformations. The filtered version reduces noise levels by minimizing the peaks 
and further separating them fr om the deformation peaks.  

(a) (b)

(c) (d)
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Figure 6.  a) Car door sample, b) unfilt ered mesh with deformations circled, and c) filtered mesh. 

These real-world meshes are adequate to test the proposed system’s behavior when applied 
upon meshes with noise, acquisition artifacts, and real-world characteristics. However, it 
does not provide a comprehensive enough set of data to test the various situations that the 
system might be exposed to. For this reason, a set of artificial test meshes were generated, 
with characteristics that were  not found in the acquired re al-world meshes, but that may 
occur in other real-world meshes. These artificial meshes resemble deformations of interest, 
of various sizes and scale, under different surface conditions. These meshes also attempt to 
test the functionality of the system while wo rking under ideal acquisition scenarios where 
there is no noise and no acquisition artifacts.  

A flat mesh with a small dent was created as well as a flat mesh with a large ding, as shown 
in Figure 7. Similarly, a curved surface mesh with a small dent and a curved mesh with a 
large ding were created, as shown in Figure 8. The flat meshes are used to determine if the 
designed algorithms can detect small scale as well as large scale deformations. The curved 
meshes help determine if the designed algorithms can detect a deformation in spite of a 
curved or uneven surface around it.  

 

Figure 7.  a) Flat mesh with small dent, b) flat mesh with large ding. 

(a) (b) (c)

(a) (b)
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Figure 8.  a) Curved surface with small dent, b) curved surface with large ding. 

4. Octree-based surface shape analysis 

The criticial component of the proposed defect detection system is its surface shape analysis 
module. The goal of the latter is to break the mesh up into pieces and determine which of 
those pieces likely belong to the defects in question, as shown in Figure 9.  

The outcome of the methods presented in this section is the labeling of all parts of the mesh 
as either belonging to a feature or not. This module does not determine what collection of 
mesh pieces define a deformation, however it will determine which mesh pieces likely 
contain part of a deformation. The output of the shape analysis module is therefore passed 
to the segmentation phase, as depicted in Figure 2, to determine which collection of mesh 
pieces defines a deformation. 

 

Figure 9.  a) Mesh with oval feature, b) mesh broken into pieces, and c) feature extraction results. 

This chapter proposes an original surface shape analysis technique that is based on octrees 
for the automated deformation detection framew ork. The octree-based technique divides the 
mesh into cubic volumes and analyzes the mesh contained in those volumes to determine if 
they belong to a feature. Taking inspiratio n from the octree-based segmentation method 
proposed by Woo et al. (Woo et al. 2002), as explained in section 2.2, a number of 
improvements are proposed. 

The original technique represents the entire volume surroundi ng a point cloud in the root 
node of a tree. Then, by evaluating the standard deviation of the point normals, �—, against a 
threshold, it determines whether there should be a subdivision of that volume into eight 
octants. When subdivided, each of the resulting octants is a volume, and is represented by a 

(a) (b)

(a) (b) (c)
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child node. The points in the or iginal volume are redistributed into the new octants, based 
on their position, and stored in  the child node which represents the new volume it belongs 
to. This process is repeated for each node, until a tree of sufficient depth is generated or no 
more volumes require subdivision. 

The original technique is designed to find sign ificant changes in a 3D point cloud, such as 
sharp edges. However, deformation detection for dings and dents over automotive body 
panels requires detection of slight variatio ns over a smooth surface, which may not be 
consistent over multiple resolutions. For this reason, the original technique must be 
revisited. Two major aspects are introduced in this work to enhance the algorithm’s 
flexibility and performance for the purposes of  the application considered in the present 
work: i) using a triangle-based analysis rather than a point-based analysis of surface shape, 
and ii ) defining non-uniform weighting of surfac e normals. These enhancements will be 
discussed in sections 4.1 and 4.2, respectively. A third improvement is also proposed, that 
uses the octree to aggregate multi-resolution information into performing the feature 
extraction after the tree generation is complete. This will be discussed in section 4.3. 

4.1. Triangle-based analysis 

The original method (Woo et al. 2002) operates directly on the 3D point cloud, with 
knowledge of the reconstructed surface, to calculate the appropriate values for subdivision 
of the octree. The calculation of the point normal uses all the triangles surrounding  
the point, and the subdivision of  the octree relies on the standard deviation of the point  
normals contained inside each node. The triangles surrounding a point provide several  
pieces of information about the surface, yet reducing this information to a point normal  
using an averaging calculation acts as a smoothing filter, inherently inducing a loss of  
valuable surface information as shown in Figu re 10. In the context of the present work  
where deformations to be detected are of a small size compared to the remainder of the  
panel surface curves, such a filter should not be included directly in the feature extraction  

 
Figure 10.  a) Point normal describing a flat surface, b) same point normal describing a non-flat surface, 
c) triangle surface normals describing a flat surface, and d) different triangle surface normals describing 
a non-flat surface. 

a) b)

c) d)
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technique. For these reasons, a first improvement that is proposed consists of using more 
information to describe the surface of a model by relying on the triangles for surface 
calculations rather than on points.  

4.2. Non-uniform weighting of surface normals 

The second strategy to enhance the performance of the algorithm proposed in (Woo et al. 
2002) consists in using information about the size of the triangles represented by the surface 
normals to improve the standard deviation, �—, calculation from Eq. 2.  

When using 3D scanning that provide a non-uniform sampling density, the original 
technique will assign equal weight to every point. As a result, there might be more points to 
describe a certain region within a volume, and th e variation in that region is more strongly 
accounted for in the �— calculation than in other regions, even if there is no disparity in the 
surface area represented by these regions, as shown in Figure 11.  

 
Figure 11.  Non-uniformly distributed scan points. The right half of mesh contributes mo re to the 
standard deviation value than the left half due to higher density of points/triangles. 

A solution to this problem is achieved by usin g the area of each triangle as a weight to 
calculate the mean normal and �— values. This approach helps to minimize the effect of small 
noisy areas, to overcome the effect of non-uniformly distributed points, and to provide a 
more accurate representation of the surface variation over the region being analyzed.  

First, the area of each triangle is calculated: 
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where v i1 and vi2 are any two of the edge vectors that define a triangle, Ti. Then the weighted 
average normal is calculated over all the triangles that are contained within a given node of 
the octree, with the area of each triangle serving as a weight: 
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where n is the number of triangles contained in the volume represented by the node of 
interest in the octree, ����%is the weighted average normal, and �� �g is the unit normal of each 
triangle. Finally, the weighted standard deviation, �—, of the normals can be estimated as: 
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As in the original method, if �— is greater than the defined threshold for that resolution, the 
volume is subdivided for further investigation at a higher resolution, until the entire tree has 
been generated. This improvement makes the standard deviation values more accurately 
represent the amount of deformation within  a volume. Figure 12 compares non-uniform 
weighting to uniform weighting. Detected regions containing deformations are marked in 
red over surface maps corresponding to various levels of resolution in the octree. Deeper 
levels in the octree correspond to finer details in the 3D surface mesh. 

It can be seen that uniform weighting (upper line) is not as effective at extracting the 
complete set of deformations. By octree resolution level 10, none of the deformations are 
extracted with uniform weig hting. The non-uniform weighting scheme, with similar 
thresholding, more consistently  extracts the deformations across all resolution scales. 

 
Figure 12.  Deformation detection performance at octree resolution levels 4, 6, 8, and 10 under: uniform 
weighting (top), and non-uniform weighting (bottom) . Actual deformation locations are circled on left 
hand-side images, and detected deformations are marked in red. 

4.3. Aggregate standard deviation 

Even with the aforementioned improvements of triangle-bas ed analysis and non-uniform 
surface normal weighting, deformations extracti on using an octree-based distribution of 3D 
scan points requires the determination of the appropriate thresholds. Based on the 
thresholds alone, it is difficult to predict what  features will remain and what features will be 
removed by the time the deeper and higher resolution levels of the octree are reached. A 
slight threshold change can produce drastically different results. In general, a more robust 
technique is required to deal with meshes with varying characteristics, involving an 
intuitive relationship between the threshold and the results. 
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The proposed aggregate standard deviation variation of the octree-based technique allows 
the generation of the tree in its entirety, wi thout limiting subdivision to only nodes that 
meet a certain threshold. Then, all nodes at selected resolutions of the fully generated tree 
can be extracted and those with low surface variation can be removed. A new metric is 
introduced to measure multi-resolution surface variation.  

Before the new metric is detailed, it is impo rtant to show how the algorithm can be applied 
using the standard deviation, �—, as the main metric. Analyzing the histogram of the �— values 
can help in selecting a proper threshold to isolate feature nodes. Histograms are computed 
to separate the range between the lowest �— and highest �— values at a given octree resolution 
level into 256 equally divided bi ns. In the histograms, the x-axis represents the bins, where 
bin 1 is the lowest range of �— values and bin 256 is the highest, and the y-axis represents the 
number of nodes with �— values in each bin. In Figure 13, standard deviation values are 
mapped as a grayscale representation. Black pixels represent low deviation, and white 
pixels represent large deviation. Therefore, the nodes containing deformations appear in the 
higher bins. Over most surfaces, the majority of the nodes are mapped to non-feature nodes, 
such that the bulk of the normal  distribution gets classified as non-feature nodes, that is 
nodes with low �— values. Using the computer casing panel scan as an example, Figure 13 
represents the �— values on the mesh as intensity values, along with its histogram, a selected 
threshold, and the thresholding results. Nodes with �— values above the threshold are 
extracted as features, which leads to the extraction of the three deformations along with 
some extra noisy areas. 

 
Figure 13.  a) Image of surface shape standard deviation mapped as intensities for the low resolution 
computer casing panel sample encoded in octree at resolution level 6, b) corresponding histogram of �— 
values with selected threshold, and c) extracted features including three deformations. 

Relying on �— values alone does make use of the multi-resolution capabilities of the octree 
structure and places a lot of emphasis on the proper selection of the threshold at a given 
resolution. As described in section 2.2, Pauly et al. (Pauly et al. 2002) proposed the idea of 
multi-resolution feature persistence, where a strong feature can be retained only if it is 
persistently detected across multiple adjacent scales. In order to combine some of the key 
concepts of multi-resolution feature persistence with the octree-based feature extraction 
technique, it is proposed in this work that  the characteristics of nodes are accumulated 

(a) (b) (c) 
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across multiple resolution levels of the octr ee. The accumulated standard deviation of the 
surface normals for an octree node is estimated as follows:  

 �P�a�f�g�j�b�p�c�l L � ��Ã
�¢�_

�á
�l
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where s is the aggregate standard deviation value, �— is the standard deviation value of 
surface normals in the current node, �—�n�_�p�c�l�r is the standard deviation value of surface 

normals in the parent node, �—�g is the standard deviation value of surface normals in the i th 

child, and n is the number of children that are not empty, such that only nodes that contain 
3D points are considered not to bias the metric. �—�a�f�g�j�b�p�c�l is calculated as the average 
standard deviation value of the node ’s non-empty children. Note that �—��values are 
calculated using non-uniform weighting as deta iled in section 4.2. At any given scale, each 
node will contain a value representing  the accumulated standard deviation, s, of a certain 
volume of the mesh located under itself in the octree structure.  

Using the computer casing panel scan as an example, Figure 14 shows how thresholding the 
�O values at a single resolution can be successful in isolating areas of interest. The histogram 
shown is in the same format as the histogram of Figure 13, but maps s values into pixel 
intensities instead of �— values. 
 

 
Figure 14.  a) Intensities corresponding to aggregate standard deviation, �•, in low resolution computer 
casing panel sample at resolution level 6 of the octree, b) �O histogram with threshold, and c) extracted 
features including three deformations. 

The aggregate standard deviation, s, value provides a greater separation between feature 
nodes and non-feature nodes than the local standard deviation, �P, only. A more accurate 
separation also adds tolerance to non-optimal thresholds. To compare the tolerance to non-
optimal thresholds when using the �P value against using the s value for feature extraction, the 
algorithm is applied on the filtered low resolu tion computer casing panel mesh with both 
metrics at octree resolution level 5. A suitable threshold was determined such that the results 
are comparable between using the �P and s values respectively. Then, using the histogram, 
thresholds which are 50 bins in either direction of the selected threshold are used to determine 

(a) (b) (c) 
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how that affects the extraction results. When using the �P metric, a threshold of 0.223 is used, 
which corresponds to bin 163. Then, a threshold of 0.157, corresponding to bin 113, and a 
threshold of 0.289, aligned with bin 213 are also applied. When using the s metric, a threshold 
of 0.295 is used, which corresponds to bin 176. Then, a threshold of 0.214, corresponding to bin 
126, and a threshold of 0.377, aligned with bin 226 are also applied. Figure 15 shows the results 
using �P for feature extraction, and Figure 16 shows the results using s for feature extraction.  

 
Figure 15.  a) Deformed regions detected over computer casing panel at resolution level 5 of the octree 
with a) optimal �— threshold, b) optimal �— threshold minus 50 bins, and c) optimal �— threshold plus 50 
bins. 

 
Figure 16.  a) Deformed regions detected over computer casing panel at resolution level 5 of the octree 
with a) optimal s threshold, b) optimal s threshold minus 50 bins, and c) optimal s threshold plus 50 bins. 

This case demonstrates that a change in threshold setting affects the deformation detection 
method more extensively when using the local standard deviation, �—, value as a metric than 
when using the proposed aggregate standard deviation, s, value. When using the �— value as 
a metric, the surface analysis captures more noise and transient features when the threshold 
is lowered, and removes all of the deformatio ns when the threshold is increased. When 
using s as a metric, the outcome of the surface analysis does not change significantly with 
the different thresholds, as the deformations are all still present and no significant 
additional surface variation is detected. As a consequence, when thresholds need to be 
selected from experimentation, the expected results with aggregate standard deviation are 
much less sensitive to changes in threshold setting than with the en hancement described in 
section 4.2 alone. The increase in robustness when compared to non-optimal thresholding, 
and the significant separation between non-deformation areas and deformation areas in the 
s metric, justify the use of s over �— as a metric. 

Also, since only three levels of the octree need to be analyzed for thresholding, in 
accordance with Eq. 8, only the level of the octree at which the nodes are being extracted 

(a) (b) (c)

(b)(a) (c)
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and thresholded, along with the levels immediat ely above and below, must be generated. By 
selectively generating only the necessary levels of the tree from the 3D points cloud, the 
efficiency of the algorithm is improved signif icantly. The increase in intuitiveness of the 
thresholding parameter setting and the efficien cy over the original octree-based method of 
Woo et al. (Woo et al. 2002), which thresholds nodes during tree generation as opposed to 
after tree generation, also support the development and application of the algorithm 
introduced in this work.  

To demonstrate the effectiveness of the proposed algorithm, in addition to the results 
presented above on the computer casing panel, the method is applied to the more 
challenging unfiltered mesh of the car door wi th the aggregate standard deviation threshold 
set at 0.155, for the octree resolution level 6. The results are shown in Figure 17. The same 
algorithm is also applied to the artificial curv ed meshes, with the threshold set at 0.002, at 
resolution level 5 of the octree, and the results are shown in Figure 18.  

 

Figure 17.  a) Intensity map corresponding to s values on unfiltered car door  octree at resolution level 6, 
and b) features extracted including the three deformations of interest. 

 
 

Figure 18.  Feature extracted, at resolution level 5, on artificial curved mesh with a) small dent, and  
b) large ding. 

In terms of deformation extraction effectiven ess, provided that the correct threshold is 
selected, the algorithm performs similarly on both the filtered and unfiltered car door 
meshes. It also extracts many of the edges around the door and window frame. These edges 
are very rough areas in the meshes due to the limitations of the acquisition system, and 
generate large s values in their surroundings, resulting in them being extracted. Despite 
these small issues with the noisy data, the algorithm isolates the deformations well while 
increasing robustness and decreasing memory usage when compared to using only the 
previous octree-based method enhancements. 

(a) (b)

(a) (b)
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5. Segmentation and classification 

When using the octree-based surface shape analysis technique described in section 4, each 
node records information determining whether it belongs to a feature or not. Among the 
nodes that correspond to a deformation, those that contain pieces of a same deformation 
must eventually be grouped together to segment the deformation from the rest of the panel 
surface scan, as shown in Figure 19. 

Finally, before the entire system outputs the segments that contain deformations, each of 
them must be classified as a ding or a dent as that is one of the primary objectives of the 
proposed solution. The octree-based feature extraction requires the classification component 
to handle this task by receiving the segments containing the deformations of interest as an 
input and labeling them as dings or dents fo r the output. A two-step segmentation and 
classification strategy is proposed to achieve this goal.  

 
Figure 19.  a) Original deformation, b) octree-based surface shape analysis results, and c) octree-based 
segmentation. 

5.1. Single-resolution segmentation based on octrees 

If the scale of the desired deformations is known, an appropriate resolution of the octree can 
be selected to extract those deformations. Since different depths of the octree correspond to 
different spatial resolutions, selecting all nodes at a certain depth (defined as octree levels in 
the previous section) will provide a voxel repres entation of the object at that scale. However, 
the appropriate resolution level to segment th e deformation must generally be lower than 
the resolution level considered for the surface shape analysis described previously. Indeed 
small discontinuities in the deformation should not be detected and segmented as 
individual deformations based on the connectiv ity between nodes in the higher resolution 
version of that deformation. On the other hand, the segmentation resolution must be 
sufficiently high to avoid deformations be ing grouped with non-deformations, and to 
reduce the size of small segments defining features such as noise, in order to avoid 
confusion with the actual deformations during the classification phase.  

After the feature extraction removes all non -feature voxels at the desired resolution, 
grouping is performed. These remaining voxels are denoted as feature voxels. Sets of feature 
voxels are grouped together to define a deformation based on adjacency, since each voxel 

(a) (b) (c) 
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contains a piece of a deformation. Since the voxels are cells of a 3-dimensional grid, adjacent 
voxels can be determined based on their coordinates in the 3-dimensional grid and looking 
for voxels at adjacent coordinates to the current one. By extending the idea of blob 
extraction, which is a well-known 2-dimensional image processing algorithm, to three 
dimensions, adjacent feature voxels can be grouped together. The final result is a set of voxel 
groups, where each group represents a segment containing a deformation. 

The proposed octree-based method is applied on the flat mesh with a small deformation of 
Figure 7a to extract the small deformation until octree resolution level 8. The segmentation 
results are shown in Figure 20. Figure 21 shows the segmentation applied at octree 
resolution level 6 on feature extraction result s on the indented computer casing panel high 
resolution surface mesh. 

These results demonstrate that the segmentation can group the required voxels to properly 
define the deformations. On the artificial mesh , applying segmentation at resolution level 6 
segments the deformation clearly. On the other hand, the segmentation at resolution level 4 
shows that the deformation is still located, but covers a larger surface than the actual 
deformation. This is because the resolution considered is lower, therefore the voxel 
containing the deformation is larger and entirely marked. Similarly successful results are 
achieved on the computer casing panel, with all deformations being successful grouped. 

 
Figure 20.  a) Octree-based feature extraction, at octree resolution level 8, on the flat mesh with small 
deformation, b) bounding box of segmented deformat ion at octree resolution level 6, and c) bounding 
box of segmented deformation at octree resolution level 4. 

 
Figure 21.  Bounding boxes defining the areas segmented as actual deformations on the filtered high 
resolution computer casing panel surface mesh at resolution octree level 6. 

5.2. Classification 

Classification represents the final phase of the proposed deformation detection process. It 
helps determine whether the identified segments are dings or dents. It also provides abilities 

(a) (b) (c)
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to ensure that the extracted segments are indeed deformations of interest. Ideally, the 
previous steps of surface shape analysis and segmentation have already removed most non-
deformation areas. But in case some erroneous deformation areas remain, the classification 
phase provides the necessary filtering stage to remove those areas and reduce false 
positives. Complex classification methods, such as using neural networks as proposed by 
Döring et al. (Döring et al. 2004), or spin image signatures as attempted by Assfalg et al. 
(Assfalg et al. 2007), could be implemented at this stage. However this work focuses on 
simpler and more computationally efficient solu tions that take advantage of the fact that 
accurate results have already been obtained by the surface shape analysis and segmentation 
components.  

5.2.1. Classification of the type of deformation 

To measure the shape characteristics of the segments, a basic understanding of the 
orientation of the segment must be determined. A least-squares plane-of-best-fit fitted to the 
3D points contained in a segment, specifically the boundary points, is used to determine the 
orientation of the shape represented by a given segment. Since the boundary points are on 
the outside edges of the segment, they would more likely belong to the regular surface of 
the automotive panel than to the deformation. This leads to a plane best fitted to the surface 
of the automotive panel around the deformatio n, and determines the general orientation of 
the surface shape that is contained in the segment. A descriptor, called the point-count 
descriptor, uses the number of points that share a similar positional relationship to the 
plane-of-best-fit in estimating the direction of variation of the surface contained in the 
segment. If a majority of the points contained in the segment are above the plane-of-best-fit, 
that is, in the direction of the normal vector, the deformation is classified as a ding. If a 
majority of the points are below the plane-of-best -fit, that is in the opposite direction to the 
normal vector, the deformation is classified as a dent.  

In any classification, a certainty measure is also important. The percentage of the points that 
are above the plane-of-best-fit in the case of a ding, or below the plane-of-best-fit in the case 
of a dent, provides the certainty measure on the classification. This way, if there are a similar 
number of points that are above and below the plane-of-best-fit, the certainty measure is 
close to 50%, indicating uncertainty. 

To test the classification technique’s ability to determine whether a deformation is a ding or 
a dent, it is applied on deformation segments of every mesh using the point-count 
descriptor, and the results are compared. Non-ideal extraction and segmentation results are 
presented in Figure 22, while the resulting classifications are presented in Table 1.  

Over the artificial flat and curved meshes, it can be seen that the classification is correct. 
These results show that the classification behaves well on artificial models, corresponding to 
an acquisition system with minimal noise and acquisition artifacts. For the real world 
meshes (car door and computer panel), the descriptor accurately classifies each of the dents 
on the computer casing except for one, which is recognized as a ding rather than a dent. This 



 
New Advances in Vehicular Technology and Automotive Engineering 326 

can be attributed to the non-ideal feature extraction, as classification is dependent on the 
quality of the latter step. However, the certai nty measure reflects the inaccuracy of the 
classification by being close to 50%, lower than that of the correctly classified deformations. 
Overall, it can be seen that the classification provides proper results even when feature 
extraction and segmentation results are non-ideal.  

 

Figure 22.  Octree-based feature extraction and single-resolution segmentation applied on a) computer 
casing panel mesh with dent segments labeled, b) car door mesh with ding segments labeled, c) flat 
mesh with large ding segment labeled, d) flat mesh with small dent segment labeled, e) curved mesh 
with small dent segment labeled, and f) curv ed mesh with large ding segment labeled. 

 

Model 
Actual 

Point-Count Descriptor 
Estimates 

Type Type Certainty 
Car Door    

Def 1 Ding Ding 0.636 
Def 2 Ding Ding 0.644 
Def 3 Ding Ding 0.609 

Computer Casing Panel    
Def 1 Dent Ding 0.502 
Def 2 Dent Dent 0.511 
Def 3 Dent Dent 0.546 

Flat Mesh    
Small Dent Dent 0.583 

Large Ding Ding 0.896 

Curved Mesh    
Small Dent Dent 0.667 
Large Ding Ding 0.558 

Table 1. Comparison of actual deformation characteristic s and the results of classification following 
octree-based feature extraction and segmentation. 

(a) (b) (c)

(d) (e) (f)
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5.2.2. Additional classification 

Though it is not the primary goal  of the classification stage, the latter also allows fine-tuning 
of certain parameters by the operator as a final effort to ensure that only deformations of 
interest are outputted as marked segments. In the process of analyzing descriptors to 
determine whether a segment is a ding or a dent, segments that do not meet the 
characteristics of either can be removed. Certain well-known characteristics of deformations 
can be taken into account to remove non-deformation areas that remain.  

The combined surface area of the mesh contained in a segment makes a suitable 
descriptor of deformations of interest. Thresholding the surf ace area is another effective 
strategy for the removal of noise and acquisition artifacts, as those erroneous extracted 
segments typically cover only very small surface area. Similarly, thresholding surface area 
also proves effective in removing large surface features that do not correspond to 
deformations expected over an automotive body panel at the assembly stage, such as 
actual door handles or aesthetic curves. The latter cover much larger surface areas than 
dings and dents. 

After the orientation of the shape contained in the segment is determined, as detailed in 
section 5.2.1, and the plane-of-best-fit provides the shape its own local coordinate system, 
characteristics such as the deformation size in the x, y, and z directions can be measured 
relative to the shape’s local coordinate system to provide an estimate of the shape’s height, 
width, and depth. Noise typically has a small depth, while features like door handles have a 
larger depth and width relative to the deform ations of interest. Applying thresholds on 
these parameters further increases the reliability of isolating only segments that contain 
actual deformations.  

Though a certain dependency on the setting of threshold values remains, the combination of 
these descriptors that provide a large amount of information about the various shapes 
contained in the extracted segments proves to be an excellent technique to improve the 
reliability of the feature extraction process. In order to demonstrate the relevance of using 
the final classification phase to further refine the selection of  actual deformation segments, 
here focusing on dings and dents over smoothly curved surface meshes, some cases of poor 
feature extraction scenarios are artificially created using the experimental models described 
in section 3.3, but with non-optimal paramete rs for feature detection and segmentation. The 
resulting non-deformation areas that get includ ed into detected segments are used to test 
the classification system’s ability to distin guish between actual deformations and non-
deformations.  

Figure 23 depicts a non-optimal case where many false positives are detected and 
segmented as potential deformation areas over the car door surface mesh, and shows how 
the classification is able to remove them. By setting the parameters of the additional 
classification to remove depths less than 8.5mm or greater than 17mm, most of the broad 
curvatures on the panel, the door handle, and the small noisy areas are removed. Also, 
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setting the parameters to remove segments with surface area less than 2800 mm2 or 
segments with surface area greater than 5200 mm2 results in further non-deformation 
areas being removed. In spite of the non-optimal tuning of the quality inspection system, 
only one additional area, influenced by the boundary effect around the lower left-hand 
side of the panel, is preserved as a potential deformation segment in Figure 23b. This 
represents a major improvement from the 40+ erroneous segments initially identified in 
Figure 23a.  

 

Figure 23.  a) Deformation and non-deformation areas in itially segmented on the car door mesh,  
b) additional classification removes most non-deformation areas. 

6. Conclusion 

In this chapter, an original feature detectio n, segmentation and classification framework is 
proposed to process 3D point clouds and corresponding surface meshes in order to meet 
the advanced requirements of an automated deformation detection system for use in the 
context of automotive panels quality control over an assembly line. The requirements in 
place are that such a system must be able to detect deformations of interest, using 3D 
analysis, without knowledge of the ideal surface and without any comparative CAD 
models. The deformations must also be classified as dings or dents. The proposed 
approach assumes that the operator possesses a minimal knowledge about the 
approximate size and scale of these deformations of interest in the context of the specific 
application. The proposed technique then makes optimal use of this additional 
information to refine the de formation isolation process which leads to an accurate 
separation of ding and dent deformations from desirable aesthetic design features that 
typically appear over automotive panels. 

A variety of techniques were reviewed for the deformation detection pipeline. An octree-
based technique is revisited and refined for surface shape analysis. A single-resolution 
segmentation method is also presented to refine the location of deformations. Finally, a 
classification approach is proposed and a complete experimental evaluation is performed on 
every stage of the surface inspection procedure. The complete pipeline is effective in 
identifying the location of deformations of in terest, and classifying them as dents or dings 
when presented with a 3D mesh of a surface.  

(a) (b)
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Experiments were conducted on both artificial and real-world test data, offeri ng a set of 
meshes encompassing various characteristics. These experiments demonstrated that the 
proposed approach can be used in both ideal circumstances, such as finding a large 
deformation over a flat, noiseless mesh, as well as in more complex circumstances, such 
as finding small deformations over a noisy, smoothly curved surface, with acquisition 
artifacts and holes. The experimental results demonstrate that the proposed framework 
is scalable, effective and robust to meshes with noise and acquisition artifacts, along with 
non-ideal surfaces containing shape variations other than the deformations of interest. 
The proposed technique is therefore suitable for integration in an automated 
deformation detection and marking system fo r quality control on automotive panels 
assembly lines.  
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