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1. Introduction 

Reactive oxygen species (ROS) such as superoxide radical anion, singlet oxygen, hydrogen 

peroxide and hydroxyl radical are products of oxidative metabolism (Kourie, 1998). Low 

levels of ROS contribute to important signaling pathways to regulate key biological 

responses, including cell migration, mitosis and apoptosis (Goldschmidt-Clermont & 

Moldovan, 1999). For instance, endogenous oxidants protected the vasculature by inhibiting 

endothelial exocytosis that would otherwise lead to vascular inflammation and thrombosis, 

because endogenous hydrogen peroxide inhibited thrombin-induced exocytosis of granules 

from endothelial cells (Matsushita et al., 2005). In rat aortic smooth muscle cells, reduction in 

the intracellular concentration of hydrogen peroxide by the overexpression of catalase 

within cellular peroxisomes resulted in suppression of DNA synthesis and cell proliferation, 

and induction of apoptotic cell death (Brown et al., 1999). On the other hand, ROS are 

known to be pathogenic factors that induce cellular alterations in different cell types. For 

example, ROS are considered to be involved in the pathogenesis of postischemic endothelial 

dysfunction, because hydrogen peroxide induces Ca2+ oscillations in human aortic 

endothelial cells (Hu et al., 1998). In pancreatic ǃ cells, hydrogen peroxide interferences 

glucose metabolism, which leads to the inhibition of insulin secretion (Krippeit-Drews et al., 

1999). In mesangial cells, hydrogen peroxide disturbs Ca2+ mobilization, which is considered 

to be involved in renal injury (Meyer et al., 1996). In neurons, hydrogen peroxide induces 

apoptotic cell death (Whittemore et al., 1995). 

In salivary glands, ROS are involved in alteration of the functions. Oxidative stress 

demonstrated to induce alteration of secretory function of the rat submandibular gland, 

because reduction of submandibular saliva components such as protein and calcium was 

observed in the rat treated with lead acetate (Abdollahi et al., 1997, 2003), which induces 

oxidative stress (Pande & Flora, 2002). Irradiation, a major treatment modality administered 

for head and neck cancer, induces hypofunction of the salivary glands and consequent 

xerostomia (Nagler, 2002; de la Cal et al., 2006), in which ROS are believed to be involved in 

the hypofunction (Nagler et al., 1997, 2000; Takeda et al., 2003). Regarding Sjögren’s 

syndrome, an autoimmune disease which progressively destroys exocrine glands including 

the salivary glands, ROS has been suggested to be involved in the onset and pathology of 
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Sjögren’s syndrome (Fox, 2005; Ryo et al., 2006). These findings suggest that oxidative stress 

from ROS causes salivary gland dysfunction (Vitolo et al., 2004). 

Under conditions of oxidative stress, the thiols in cysteine residues within proteins are the 
most susceptible target among oxidant-sensitive molecules (Biswas et al., 2006; Jacob et al., 
2006). There are some thiol-modulating reagents by different mechanisms. Ethacrynic acid, a 
once commonly used loop diuretic drug, is highly electrophilic and preferentially conjugates 
with glutathione enzymatically and non-enzymatically, and decreases reduced glutathione 
(GSH) in the mitochondrial pool (Habig et al., 1974; Meredith & Reed, 1982; Yamamoto et 
al., 2002). L-buthionine-S,R-sulfoximine (BSO) is an irreversible inhibitor of Ǆ-
glutamylcysteine synthetase, a rate-limiting enzyme in GSH biosynthesis (Griffith & 
Meister, 1985). Such thiol-modulating reagents are useful for the study with effects of thiol-
oxidation on cell functions.     

In salivary parotid acinar cells, stimulation of ǃ-adrenergic receptors provokes release of 

amylase, a digestive enzyme. The receptor stimulation by ǃ-adrenergic agonists such as 

isoproterenol (IPR) activates adenylate cyclase via heterotrimeric GTP-binding protein (G-

protein), which leads to an increase in intracellular cAMP levels. The increased cAMP 

subsequently activates cAMP-dependent protein kinase, which has been well recognized to 

be essential for consequent exocytotic amylase release (Butcher & Putney, 1980; Quissell et 

al., 1982; Turner & Sugiya, 2002). In this study, we investigated effects of the thiol-

modulating reagents ethacrynic acid on amylase release induced by ǃ-adrenergic receptor 

activation in rat parotid gland cells.  

2. Materials and methods 

2.1 Materials 

Bovine serum albumin (Fraction V, BSA), collagenase A were obtained from Roche 

Diagnostics GmbH (Mannheim, Germany). Trypsin (type-I), trypsin inhibitor (type-IS), IPR, 

N(6),2′-O-dibutyryladenosine 3′,5′-cyclic monophosphate (db-cAMP), forskolin, ethacrynic 

acid, and 3-isobutyl-1-methylxanthine (IBMX) were obtained from Sigma (St. Louis, MO). 

Mastparan, cysteine, glutathione (reduced form, GSH), BSO, sodium sulfosalicylate (SSA) 

were obtained from Wako Pure Chemical Industries (Osaka, Japan). Vasoactive intestinal 

peptide (VIP) was obtained from Peptide Institute (Osaka, Japan). The GSSG/GSH 

Quantification Kit was obtained from Dojindo (Kumamoto, Japan).  

2.2 Preparation of parotid acinar cells 

All animal protocols were approved by the Laboratory Animal Committee of the Nihon 

University. Parotid acinar cells were prepared as previously described (Satoh et al., 2008). 

Sprague-Dawley rats (male, 200–250 g) were intraperitoneally anesthetized with 

pentobarbital (50 mg/kg), and the parotid glands were removed and placed in a small 

volume of Krebs-Ringer-bicarbonate (KRB) solution with the following composition (mM): 

116 NaCl, 5.4 KCl, 0.8 MgSO4, 1.8 CaCl2, 0.96 NaH2PO4, 25 NaHCO3, 5 Hepes (pH 7.4) and 

11.1 glucose. KRB solution was equilibrated with an atmosphere of 95% O2/5% CO2. After 

being minced with a razor, the parotid glands were treated with KRB solution containing 

0.5% BSA in the presence or absence of enzyme. First, the glands were incubated with 
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trypsin (0.2 mg/ml) at 37°C for 5 min, after which the trypsin-treated glands were removed 

by centrifugation at 200 g for 1 min. The glands were subsequently incubated in Ca2+-Mg2+-

free KRB solution containing 2 mM EGTA and trypsin inhibitor (0.2 mg/ml) at 37°C for 5 

min. After the solution was removed by centrifugation (200 g for 1 min), the glands were 

incubated in Ca2+-Mg2+-free KRB solution without trypsin inhibitor at 37°C for 5 min. After 

the solution was removed by centrifugation (200 g for 1 min), the glands were incubated in 

KRB solution with collagenase A (0.75 mg/ml) at 37°C for 20 min. The suspension was 

passed through eight layers of nylon mesh to separate the dispersed cells from undigested 

connective tissue and then was placed on KRB solution containing 4% BSA. After 

centrifugation (50 g for 5 min), the cells were suspended in appropriate amounts of KRB 

solution containing 0.5% BSA and 0.02% trypsin inhibitor. 

2.3 Amylase release  

Parotid acinar cells prepared as described above were stimulated by IPR (1 μM), forskolin 

(100 μM), mastoparan (50 μM), IBMX (1 mM), db-cAMP (100 μM), carbachol (10 μM), or VIP 

(10 μM) at 37°C for 20 min. When the effects of the thiol-modulating agents (EA and BSO) 

were examined, cells were preincubated with the agents for 10 min, and then stimulated. 

The cell suspensions were passed through a filter paper (Whatmann #1). Amylase activity in 

the filtrates was measured according to the method described previously (Bernfeld, 1955). 

Total amylase activity was measured in acinar cells homogenized in 0.01% Triton X-100, and 

amylase released was described as % of total. 

2.4 Total glutathione measurement 

Dispersed parotid acinar cells were collected by centrifugation at 10,000 g for 15 s and 

immediately mixed with 160 μl of 10 mM HCl. The mixture was frozen and thawed three 

times over, mixed with 40 μl of 5% SSA and then centrifuged at 8,000 g for 10 min. The 

supernatant was collected and diluted twice for further analysis. Total glutathione was 

measured by Dojindo GSSG/GSH Quantification Kit. Samples were incubated at 37°C for 10 

min and then measured optical density at 405 nm by a micro plate reader (Bio-Rad). Total 

protein concentrations were determined by the Lowry method (1951).  

3. Results 

3.1 Effect of ethacrynic acid on IPR-Induced amylase release in parotid acinar cells 

We first examined effect of the thiol-modulating reagent ethacrynic acid on amylase release 

in rat parotid acinar cells. After preincubation in the absence or presence of ethacrynic acid 

(250 μM) for 10 min, the cells were stimulated with the ǃ-agonist IPR (1 μM) or vehicle 

(control) for 20 min. As Fig. 1 summarizes, IPR induced amylase release in a time dependent 

manner in the absence of ethacrynic acid, but the IPR-induced amylase release was partially 

inhibited in the presence of ethacrynic acid. Ethacrynic acid had no effect on amylase release 

from the cell non-stimulated. In the cells preincubated with 100, 250 or 500 μM ethacrynic 

acid and then stimulated with IPR for 20 min, ethacrynic acid inhibited the IPR-induced 

amylase release in a dose dependent manner, as Fig. 2 shows. These results suggest that the 

amylase release regulated by ǃ-receptor activation is reduced by thiol-modulation. 
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Fig. 1. Inhibition of IPR-induced amylase release by ethacrynic acid in rat parotid acinar 
cells. After pretreatment of ethacrynic acid (250 μM, EA) or vehicle for 10 min, cells were 
incubated with (triangles) or without (circles) 1 μM IPR. Value are means ± SE from 5 
independent experiments. *P < 0.05 

 

Fig. 2. Dose-dependent effect of ethacrynic acid on IPR-induced amylase release. 
After preincubation with 0, 100, 250 or 500 μM ethacrynic acid (EA) for 10 min, rat parotid 
acinar cells were incubated with (closed columns) or without (open column) 1 uM IPR for 20 
min. Values are means ± SE from 3 independent experiments. **P < 0.01 

3.2 Relief of the inhibitory effect of ethacrynic acid on IPR-induced amylase release 
by GSH 

To confirm the contribution of thiol-modulation to the inhibition of IPR-induced amylase 
release by ethacrynic acid, we examined effect of thiol-reducing reagents on the effect of 
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ethacrynic acid. When parotid acinar cells pretreated with ethacrynic acid (250 μM) in 
absence or presence of GSH (10 mM) or cysteine (10 mM) were stimulated with IPR (1 μM) 
for 20 min, GSH relieved the inhibitory effect of ethacrynic acid on IPR-induced amylase 
release, but less cysteine, as Fig. 3 summarizes. These results support that thiol-modulation 
causes the inhibitory effect of ethacrynic acid on IPR-induced amylase release, although the 
less effect of cysteine is obscure. GSH and cysteine had no effect on amylase release in the 
cells non-stimulated (data not shown). 

 

Fig. 3. Relief of the inhibitory effect of ethacrynic acid on the IPR-induced release of amylase 
by GSH. After pretreatment with 10 mM GSH or 10 mM cysteine in the presence of 
ethacrynic acid (EA) for 10 min, rat parotid acinar cells were stimulated with 1 μM IPR for 
20 min. Values are means ± SE from 3 independent experiments. *P < 0.05 

3.3 No effect of ethacrynic acid on VIP- and carbachol-induced amylase release 

Although ǃ-receptor stimulation dominantly provokes amylase release, stimulation of VIP 

and muscarinic receptors also evokes amylase release via the increases in intracellular cAMP 

and Ca2+ concentrations, respectively, in rat parotid acinar cells (Scott & Baum, 1985; 

Yoshimura & Nezu, 1991). Then we next examined the effect of ethacrynic acid on amylase 

release induced by VIP and carbachol, a muscarinic agonist. When the cells were stimulated 

with VIP (10 μM) and carbachol (10 μM) for 20 min, amylase release was evoked, although 

the responses of both secretagogues were lower than that of IPR. However, ethacrynic acid 

(250 μM) had no effect on VIP- and carbachol-induced amylase release, as shown in Table 1. 
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Table 1. No effect of ethacrynic acid on VIP- and carbachol-induced amylase release in rat 
parotid acinar cells. After pretreatment of ethacrynic acid (250 μM, EA) or vehicle for 10 
min, cells were stimulated with 1 μM IPR, 10 μM VIP or 10 μM carbachol (CCh) for 20 min. 
Value are means ± SE from 5 independent experiments. *P < 0.05 

3.4 No effect of ethacrynic acid on amylase release induced by activators of cAMP 
signaling pathway 

It is well known that ǃ-receptor stimulation provokes amylase release via the increase in 
intracellular cAMP levels in rat parotid acinar cells (Turner & Sugiya, 2002). Then we 
examined the effect of ethacrynic acid on amylase release induced by activators of cAMP 
signaling pathway. When parotid acinar cells were incubated with forskolin (100 μM), 
mastoparan (50 μM), db-cAMP (1 mM) and IBMX (1 mM), a cell-permeable cAMP analogue, 
an adenylate cyclase activator, a G-protein activator and a cyclic nucleotide 
phosphodiesterase inhibitor, respectively, for 20 min, amylase release was induced. 
However, the effects of these drugs on amylase release were not changed even in the cells 
treated with ethacrynic acid (250 μM), as shown in Table 2. These observations imply that 
ethacrynic acid has no effect on the cAMP signaling pathway in rat parotid acinar cells. 

 

Table 2. No effect of ethacrynic acid on amylase release induced by cAMP signaling 
activators. After pretreatment of ethacrynic acid (250 μM, EA) or vehicle for 10 min, rat 
parotid acinar cells were incubated with forskolin (100 μM), mastoparan (50 μM), db-cAMP 
(1 mM) or IBMX (1 mM) for 20 min. Value are means ± SE from 5 independent experiments.  
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3.5 No effect of ethacrynic acid on the intracellular glutathione level 

Since EA has been reported to deplete the intracellular glutathione (GSH) (Meredith & Reed, 
1982; Dhanbhoora & Babson, 1992), we determined total amount of glutathione in the rat 
parotid acinar cells treated with ethacrynic acid (250 μM). As Table 3 shows, however, 
ethacrynic acid had no effect on total amount of glutathione in the cells. Then we next 
examined effect of the glutathione biosynthesis inhibitor BSO on IPR-induced amylase 
release. However, BSO (1 mM) had no effect on IPR-induced amylase release, as shown in 
Fig. 4. These observations suggest that the reduction of glutathione levels is not caused for 
the inhibitory effect of ethacrynic acid on IPR-induced amylase release. 

 

Table 3. No effect of ethacrynic acid on total glutathione contents. After treatment of 
ethacrynic acid (250 μM, EA) or vehicle for 30 min, total glutathione were measured. Values 
are means ± SE from 3 independent experiments.  

 

Fig. 4. No effect of BSO on IPR-induced amylase release. After preincubation with 1 mM 
BSO or vehicle for 10 min, rat parotid acinar cells were incubated with (triangles) or without 
(circles) 1 μM IPR. Values are means ± SE from 3 independent experiments. 

4. Discussion 

Amylase release in parotid acinar cells occurs via the two distinct processes, constitutive 
release and regulatory release (Turner & Sugiya, 2002). The regulatory release is induced by 
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the activation of receptors, whereas the constitutive release is continuously observed 
without receptor activation. In this study, we demonstrated that the thiol-modulating 
reagent ethacrynic acid inhibits regulatory amylase release provoked by ǃ-adrenergic 
receptor stimulation.  

Ethacrynic acid has been reported to induce a rapid depletion of glutathione (GSH), 
subsequent intracellular ROS elevation, and consequent cell injury (Miccadei et al., 1988; 
Dhanbhoora & Babson, 1992). In fact, deplation of glutathione by treatment with 2-
cyclohexene-1-one has been demonstrated to result in inhibition of carbachol-induced 
amylase release in guinea pig exocrine pancreatic acini (Stenson et al., 1983). In rat 
pancreatic acinar cells, thiol modulating agents including ethacrynic acid have been 
reported to reduce the intracellular glutathione levels and inhibition of caerulein-stimulated 
amylase release (Yu et al., 2002). However, we demonstrated here that ethacrynic acid had 
no effect on the level of glutathione. Furthermore, the glutathione biosynthesis inhibitor 
BSO had no effect on IPR-induced amylase release. These observations strongly suggest that 
the inhibitory effect of ethacrynic acid is not due to depletion of glutathione. Ethacrynic acid 
had no effect on amylase release induced by cAMP signaling activators and control release 
and failed to inhibit the effect of IPR in the presence of GSH. Over 90% of cell viability in the 
cells treated with ethacrynic acid was confirmed by trypan blue extrusion. Therefore, it is 
also unlikely that cell injury induced by ethacrynic acid causes the inhibition of IPR-induced 
amylase release.  

In the regulatory amylase release, cAMP-dependent signaling pathway is involved. Namely, 
stimulation of ǃ-adrenergic receptors activates adenylate cyclase via heterotrimeric G-
protein, which leads to an increase in intracellular cAMP level. Subsequently, cAMP-
dependent protein kinase is activated, which causes exocytotic amylase release (Butcher & 
Putney, 1980; Quissell et al., 1982; Turner & Sugiya, 2002). However, ethacrynic acid failed 
to inhibit amylase release induced by the G-protein activator mastparan, the adenylate 
cyclase activator forskolin, the cyclic nucleotide phosphodiesterase inhibitor IBMX and the 
cell-permeable cAMP analogue db-cAMP. These results suggest that the cause of the 
inhibition of IPR-induced amylase release by ethacrynic acid is distinct from the disturbance 
of cAMP signaling. VIP is another agonist, which induces amylase release via cAMP 
signaling in rat parotid acinar cells (Scott & Baum, 1985; Inoue et al., 1985). However, 
ethacrynic acid failed to inhibit VIP-induced amylase release, supporting that EA has no 
effect on cAMP signaling. Taken together, it is most likely that thiol-modulation of ǃ-
adrenergic receptors results in the inhibition of IPR-induced amylase release. 

In rat parotid acinar cells, the thiol-oxidizing compound diamide has been demonstrated to 
reduce the binding affinity of ǃ-adrenergic receptors for ligands and consequently inhibit 
IPR-induced amylase release (Guo et al., 2010). Diamide had also no effect on mastoparan- 
or forskolin-induced amylase release and failed to inhibit IPR-induced amylase release in 
the presence of thiol-reducing reagents, dithiothreitol and GSH, as well as ethacrynic acid 
described in this paper. Therefore, ethacrynic acid probably leads to thiol-oxidation of ǃ-
adrenergic receptors, which results in the reduction of IPR-induced amylase release. 
Conserved cysteine residues in an extracellular domain of the human ǃ-adrenergic receptor 
have been suggested to be involved in ligand binding assessed by site-directed mutagenesis 
(Fraser, 1989). Therefore, it is conceivable that such cysteine residues of ǃ-adrenergic 
receptor are oxidized by ethacrynic acid. It has been considered that ethacrynic acid is not 
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an oxidant but depletes glutathione by conjugation (Meredith & Reed, 1982). However, 
currently, independent effects on depletion of intracellular glutathione of ethacrynic acid 
have been demonstrated (Aizawa et al., 2003; Lu et al., 2009). Therefore, ethacrynic acid 
appears to have a direct effect as a thiol-oxidating reagent. 

Protein thiols are typically maintained in the reduced state. GSH is the most abundant 
intracellular SH and represents one of the major intracellular defense systems against 
mediators of oxidative stress (Meister & Tate, 1976). The reducing conditions in cells are 
primarily maintained by exceedingly large ratio of GSH to GSSG. IPR-induced amylase release 
inhibited by ethacrynic acid was restored by GSH. Therefore, the antioxidant system by GSH 
probably plays an important role in maintaining cellular defenses under oxidative stress in rat 
parotid acinar cells. On the other hand, despite this reducing environment, the formation of 
mixed disulfides between protein thiols and glutathione has been observed, a process known 
as S-glutathionylation (Dalle-Donne et al., 2005). S-glutathionylation is considered to occur 
under physiological conditions and is a reversible cellular response to mild oxidative stress. 
Involvement of S-glutathionylation in regulating ǃ-adrenergic receptor function under mild 
oxidative stress in rat parotid acinar cells would be a further study. 

5. Conclusion 

In this study, we demonstrated that ethacrynic acid, a thiol-modulating reagent, inhibited 
amylase release induced by ǃ-adrenergic agonist in rat parotid acinar cells. The effect of 
ethacrynic acid was independent of depletion of glutathione in the cells. Ethacrynic acid 
failed to inhibit amylase release induced by activators of cAMP signaling pathway, 
suggesting that the inhibitory effect of ethacrynic acid on amylase release induced by ǃ-
adrenergic agonist is caused by the thiol-modulation of ǃ-adrenergic receptors.  
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