
���
�����

���	����������������������������������
�

����������������������������������
��������
	��������������������	��

���������������������•������������������������������������•�

•��������������������•�����••••����������•���

•������������������•�������

��������� �� � ��•���� ��� ����������������������• ����•��������

������������ ��� ������ �� �� �� ������

•���������� �� �� ��� ����� �

���������������������

€�•������

���#�����0�#����,�2�#�!�&���.�#�,�A
�2�&�#���5�-�0�*�"�a�1���*�#���"�'�,�%���.�3� �*�'�1�&�#�0���-�$

���.�#�,�����!�!�#�1�1��� �-�-�)�1
���3�'�*�2��� �7���1�!�'�#�,�2�'�1�2�1�A���$�-�0���1�!�'�#�,�2�'�1�2�1

12.2%

142,000 180M

TOP 1%154

5,800

1. Introduction

Numerical models have been used extensively in the last decades to understand and predict
weather phenomena and the climate. In general, models are classi“ed according to their
operation domain: global (entire Earth) and regional (country, state, etc). Global models have
spatial resolution of about 0.2 to 1.5 degrees of latitude and therefore cannot represent very
well the scale of regional weather phenomena. Their main limitation is computing power.
On the other hand, regional models have higher resolution but are restricted to limited area
domains. Forecasting on limited domain demands the knowledge of future atmospheric
conditions at domain•s borders. Therefore, regional models require previous execution of
global models.

OLAM (Ocean-Land-Atmosphere Model), initially developed at Duke University (Walko &
Avissar, 2008), tries to combine these two approaches to provide a global grid that can
be locally re“ned, forming a single grid. This feature allows simultaneous representation
(and forecasting) of both the global and the local scale phenomena, as well as bi-directional
interactions between scales.

Due to the large computational demands and execution time constraints, these models rely
on parallel processing. They are executed on clusters or grids in order to bene“t from the
architecture•s parallelism and divide the simulation load. On the other hand, over the next
decade the degree of on-chip parallelism will signi“cantly increase and processors will contain
tens and even hundreds of cores, increasing the impact of levels of parallelism on clusters. In
this scenario, it is imperative to investigate the scale of programs on multilevel parallelism
environment.

Improving Atmospheric Model
Performance on a Multi-Core Cluster System

Carla Osthoff1, Roberto Pinto Souto1, Fabrício Vilasbôas1,
Pablo Grunmann1, Pedro L. Silva Dias1, Francieli Boito2, Rodrigo Kassick2,

Laércio Pilla2, Philippe Navaux 2, Claudio Schepke2, Nicolas Maillard 2,
Jairo Panetta3, Pedro Pais Lopes3 and Robert Walko4

1Laboratório Nacional de Computação Científica (LNCC)
2Universidade Federal do Rio Grande do Sul (UFRGS)

3Instituto Nacional de Pesquisas Espaciais (INPE)
4University of Miami

1,2,3Brazil
4USA

1

www.intechopen.com

2 Will-be-set-by-IN-TECH

This chapter is based on recent works from Atmosfera Massiva Research Group1 on evaluating
OLAM•s performance and scalability in multi-core environments - single node and cluster.

Large-scale simulations, as OLAM, need a high-throughput shared storage system so that
the distributed instances can access their input data and store the execution results for later
analysis. One characteristic of weather and climate forecast models is that data generated
during the execution is stored on a large amount of small “les. This has a large impact on
the scalability of the system, especially when executing using parallel “le systems: the large
amount of metadata operations for opening and closing “les, allied with small read and write
operations, can transform the I/O subroutines in a signi“cant bottleneck.

General Purpose computation on Graphics Processing Units (GPGPU) is a trend that uses
GPUs (Graphics Processing Units) for general-purpose computing. The modern GPUs• highly
parallel structure makes them often more effective than general-purpose CPUs for a range
of complex algorithms. GPUs are "many-core" processors, with hundreds of processing
elements.

In this chapter, we also present recent studies that evaluates a implementation of OLAM that
uses GPUs to accelerate its computations. Therefore, this chapter presents an overview on
OLAM•s performance and scalability. We aim at exploiting all levels of parallelism in the
architectures, and also at paying attention to important performance factors like I/O.

The remainder of this chapter is structured as follows. Section 2 presents the
Ocean-Land-Atmosphere Model, and Section 3 presents performance experiments and
analysis. Related works are shown in Section 4. The last section closes the chapter with “nal
remarks and future work.

2. The Ocean-Land-Atmosphere Model … OLAM

High performance implementation of atmospheric models is fundamental to operational
activities on weather forecast and climate prediction, due to execution time constraints „
there is a pre-de“ned, short time window to run the model. Model execution cannot begin
before input data arrives, and cannot end after the due time established by user contracts.
Experience in international weather forecast centers points to a two-hour window to predict
the behavior of the atmosphere in coming days.

In general, atmospheric and environmental models comprise a set of Partial Differential
Equations which include, among other features, the representation of transport phenomena
as hyperbolic equations. Their numerical solution involves time and space discretization
subject to the Courant Friedrichs Lewy (CFL) condition for stability. This imposes a certain
proportionality between the time and space resolutions, where the resolution is the inverse of
the distance between points in the domain mesh. For a 1-dimensional mesh, the number of
computing points n is given by L/ d, where L is the size of the domain to be solved and d is
the distance between points over this domain. In our case, the mesh is 4-dimensional (3 for
space and 1 for time). The computational cost is of O(n4) if the number of vertical points also
increases with n, where n is the number of latitude or longitude points in the geographical
domain of the model. The resolution strongly in”uences the accuracy of results.

1 http://gppd.inf.ufrgs.br/atmosferamassiva

2 Atmospheric Model Applications

www.intechopen.com

Improving Atmospheric Model Performance on a Multi-Core Cluster System 3

Operational models worldwide use the highest possible resolution that allow the model to run
at the established time window in the available computer system. New computer systems are
selected for their ability to run the model at even higher resolution during the available time
window. Given these limitations, the impact of multiple levels of parallelism and multi-core
architectures in the execution time of operational models is indispensable research.

This section presents the Ocean-Land-Atmosphere Model (OLAM). Its characteristics and
performance issues are discussed. We also discuss the parameters used in the performance
evaluation.

Fig. 1. OLAM•s subdivided icosahedral mesh and cartesian coordinate system with origin at
Earth center.

OLAM was developed to extend features of the Regional Atmospheric Modeling System
(RAMS) to the global domain (Pielke et al., 1992). OLAM uses many functions of RAMS,
including physical parameterizations, data assimilation, initialization methods, logic and
coding structure, and I/O formats (Walko & Avissar, 2008). OLAM introduces a new dynamic
core based on a global geodesic grid with triangular mesh cells. It also uses a “nite volume
discretization of the full compressible Navier Stokes equations. Local re“nements can be
de“ned to cover speci“c geographic areas with more resolution. Recursion may be applied to
a local re“nement. The global grid and its re“nements de“ne a single grid, as opposed to the
usual nested grids of regional models. Grid re“ned cells do not overlap with the global grid
cells - they substitute them.

The model consists essentially of a global triangular-cell grid mesh with local re“nement
capability, the full compressible nonhydrostatic Navier-Stokes equations, a “nite volume
formulation of conservation laws for mass, momentum, and potential temperature, and
numerical operators that include time splitting for acoustic terms. The global domain greatly
expands the range of atmospheric systems and scale interactions that can be represented in
the model, which was the primary motivation for developing OLAM.

OLAM was developed in FORTRAN 90 and parallelized with Message Passing Interface
(MPI) under the Single Program Multiple Data (SPMD) model.

3Improving Atmospheric Model Performance on a Multi-Core Cluster System

www.intechopen.com

4 Will-be-set-by-IN-TECH

Fig. 2. Icosahedron object.

2.1 OLAM•s global grid structure

OLAM•s global computational mesh consists of spherical triangles, a type of geodesic grid
that is a network of arcs that follow great circles on the sphere (Walko & Avissar, 2008). This
can be seen in Figure 1.

The geodesic grid offers important advantages over the commonly used latitude-longitude
grid. It allows mesh size to be approximately uniform over the globe, and avoids singularities
and grid cells of very high aspect ratio near the poles. OLAM•s grid construction begins
from an icosahedron inscribed in the spherical earth, as is the case for most other atmospheric
models that use geodesic grids. Icosahedron is a regular polyhedron that consists of 20
equilateral triangle faces, 30 triangle edges, and 12 vertices, with 5 edges meeting at each
vertex, as represented in Figure 2. The icosahedron is oriented such that one vertex is located
at each geographic pole, which places the remaining 10 vertices at latitudes of ± tanŠ1(1/2),
as shown in Figure 1. The numerical formulation allows for nonperpendicularity between
the line connecting the barycenters of two adjacent triangles and the common edge between
the triangles.

Fig. 3. Uniform subdivision of an icosahedron.

An uniform subdivision is performed in order to construct a mesh of higher resolution to any
degree desired. This is done by dividing each icosahedron triangle into N2 smaller triangles,

4 Atmospheric Model Applications

www.intechopen.com

Improving Atmospheric Model Performance on a Multi-Core Cluster System 5

where N is the number of divisions. The subdivision adds 30 (N2 Š 1) new edges to the
original 30 and 10(N2 Š 1) new vertices to the original 12, with 6 edges meeting at each new
vertex. This situation is represented in Figure 3. All newly constructed vertices and all edges
are then radially projected outward to the sphere to form geodesics.

Figure 1 shows an example of the OLAM subdivided icosahedral mesh and cartesian
coordinate system with origin at Earth center, using N = 10.

OLAM uses an unstructured approach and represents each grid cell with single horizontal
index (Walko & Avissar, 2008). Required information on local grid cell topology is stored
and accessed by means of linked lists. If a local horizontal mesh re“nement is required, it is
performed at this step of mesh construction. The re“nement follows a three-neighbor rule that
each triangle must share “nite edges length with exactly three others.

Fig. 4. Local mesh re“nement applied to South America.

An example of local mesh re“nement is shown in Figure 4, where resolution is exactly doubled
in a selected geographic area by uniformly subdividing each of the previously existing
triangles into 2 x2 smaller triangles. Auxiliary edges are inserted at the boundary between
the original and re“ned regions for adherence to the three-neighbor rule. Each auxiliary line
in this example connects a vertex that joins 7 edges with a vertex that joins 5 edges. More
generally, a transition from coarse to “ne resolution is achieved by use of vertices with more
than 6 edges on the coarser side and vertices with fewer than 6 edges on the “ner side of the
transition. For more mesh re“nement procedure details, refer to (Walko & Avissar, 2011),
that presents OLAM•s method for constructing a re“ned grid region for a global Delaunay
triangulation, or its dual Voronoi diagram, that is highly ef“cient, is direct (does not require
iteration to determine the topological connectivity although it typically does use iteration to
optimize grid cell shape), and allows the interior re“ned grid cells to remain stationary as
re“ned grid boundaries move dynamically. This latter property is important because any shift
in grid cell location requires re-mapping of prognoses quantities, which results in signi“cant
dispersion.

The “nal step of the mesh construction is the de“nition of its vertical levels. To do this, the
lattice of surface triangular cells is projected radially outward from the center of the earth to
a series of concentric spheres of increasing radius, as in Figure 5. The vertices on consecutive
spheres are connected with radial line segments. This creates prism-shaped grid cells having

5Improving Atmospheric Model Performance on a Multi-Core Cluster System

www.intechopen.com

6 Will-be-set-by-IN-TECH

Fig. 5. Local mesh re“nement (in the left portion of the image) and projection of a surface
triangle cell to larger concentric spheres (in the right portion of the image).

two horizontal faces (perpendicular to gravity) and three vertical faces. The horizontal cross
section of each grid cell and column expands gradually with height. The vertical grid spacing
between spherical shells may itself vary and usually is made to expand with increasing height.

OLAM uses a C-staggered grid discretization for an unstructured mesh of triangular
cells (Walko & Avissar, 2008). Scalar properties are de“ned and evaluated at triangle
barycenters, and velocity component normal to each triangle edge is de“ned and evaluated at
the center of each edge. The numerical formulation allows for nonperpendicularity between
the line connecting the barycenters of two adjacent triangles and the common edge between
the triangles.

Control volume surfaces for horizontal momentum are the same as for scalars in OLAM. This
is accomplished by de“ning the control volume for momentum at any triangle edge to be
the union of the two adjacent triangular mass control volumes. This means that no spatial
averaging is required to obtain mass ”ux across momentum control volume surfaces.

OLAM uses a rotating Cartesian system with origin at the Earth•s center, z-axis aligned with
the north geographic pole, and x- and y-axes intersecting the equator at 0 deg and 90 deg
E. longitude, respectively, as shown in the image of the Figure 1. The three-dimensional
geometry of the mesh, particularly relating to terms in the momentum equation and involving
relative angles between proximate grid cell surfaces, is worked out in this Cartesian system.

For more details regarding the OLAM•s physics parameterizations (radiative transfer, bulk
microphysics, cumulus parameterizations, turbulent transfer and surface exchange, and
water and energy budgets for the vegetation canopy and multiple soil layers) see (Cotton
et al., 2003) paper where most of RAMS development took place. The key point is that
these parameterizations are all programmed as column-based processes, with no horizontal
communication except possibly between adjacent grid columns. The importance of this is
that no horizontally-implicit equation needs to be solved, and in fact the same is true of the
dynamic core. This fact can have a huge impact on the communication between MPI processes
and the overall ef“ciency of this communication. Basically, avoidance of horizontal elliptic
solvers makes MPI much easier and more ef“cient.

6 Atmospheric Model Applications

www.intechopen.com

Improving Atmospheric Model Performance on a Multi-Core Cluster System 7

2.2 OLAM•s implementation

OLAM is an iterative model, where each timestep may result in the output of data as de“ned
in its parameters. Its work”ow is illustrated in Figure 6.

����������������������������

�	�
�������������������

�����������������

�	����������
���������������������
������������������������

Fig. 6. OLAM•s iterative organization.

OLAM input “les are not partitioned for parallel processing, as each process reads the
input “les entirely. Typical input “les are: global initial conditions at a certain date and
time and global maps describing topography, soil type, ice covered areas, Olson Global
Ecosystem (OGE) vegetation dataset, depth of the soil interacting with the root zone, sea
surface temperature and Normalized Difference Vegetation Index (NDVI). Reading data over
the entire globe is true only for “les that are read at the initialization time. For those “les that
also need to be read during model integration, namely SST and NDVI, because their values
are time dependent, the “les are organized into separate geographic areas of 30 x 30 degrees
each. An individual MPI process does not need to read in data for the entire globe.

After this phase, the processing and data output phases are executed alternately: during
each processing phase, OLAM simulates a number of timesteps, evolving the atmospheric
conditions on time-discrete units. After each timestep, processes exchange messages with
their neighbors to keep the atmospheric state consistent.

After executing a number of timesteps, the variables representing the atmosphere are written
to a history “le. During this phase, each MPI process opens its own history “le for that
superstep, writes the atmospheric state and closes the history “le. Each client executes these
three operations independently, since there is no collective I/O implemented in OLAM.

These generated “les are considered of small size for the standards of scienti“c applications:
each “le size ranges from 100KB to a few MB, depending on the grid de“nition and number
of MPI processes employed. The amount of written data varies with the number of processes
running the simulation (the number of independent output “les increases with the processes
count).

2.3 OLAM•s con“guration for the performance evaluation

In our experiments, the represented atmosphere was vertically-divided in 28 horizontal layers.
Each execution simulates 24 hours of integration of the equations of atmospheric dynamics
without any additional physical calculation (such as moisture and radiative processes)
because we have interest only in the impact on the cost of ”uid dynamics executions and
communications. Each integration timestep simulates 60 seconds of the real time.

We executed tests with resolutions of 40km and 200km and with three implementations of
OLAM:

1. The MPI implementation : The computation is divided among MPI processes.

7Improving Atmospheric Model Performance on a Multi-Core Cluster System

www.intechopen.com

8 Will-be-set-by-IN-TECH

2. The Hybrid MPI/OpenMP implementation 2: Each MPI process creates OpenMP threads
at the start of the timestep and destroy them after the results output. OpenMP threads
execute thedoloops from OLAM•s highest cache miss/hotspot routine, named progwrtu.
Therefore, this implementation uses a different level of parallelism, improving the
application memory usage and generating less “les. This happens because it maintains
the same parallelism degree, but with a smaller number of MPI processes (each of them
with a number of threads). As each output “le correspond to one MPI Rank, the total
number of generated “les decreases compared to the MPI-only implementation.

3. The Hybrid MPI/CUDA implementation 3: This implementation starts one MPI process
on each core of the platform, and each MPI process starts threads on the GPU device. Due
to development time reasons, we decided to implement for this work, only two CUDA
kernels out of nine do loops from the hotspot routine. Therefore, each MPI process starts
two kernel threads on the GPU device.

Fig. 7. OLAM•s algorithm ”uxogram.

We present some evaluations obtained with Vtune Performance Analyser. In order to
obtain, them, we divided the OLAM•s algorithm in three major parts: the initialization, the
atmospheric time state calculation and the output. Figure 7 presents this algorithm in details.
Finally, we inserted timestamps barriers on selected points of OLAM source (a few module
boundaries) in order to correctly assign partial execution times to OLAM main modules.

3. OLAM•s performance evaluation

The experiments evaluated the performance of the three implementations of OLAM version
3.3 (MPI, MPI/OpenMP, and MPI/CUDA). The tests were conducted in a multi-core cluster
system and in a single multi-core node.

2 Both the MPI and the Hybrid MPI/OpenMP implementations were developed by Robert Walko (Miami
University).

3 The Hybrid MPI/CUDA implementation was developed by Fabrício Vilasbôas and Roberto Pinto Souto
(LNCC).

8 Atmospheric Model Applications

www.intechopen.com

Improving Atmospheric Model Performance on a Multi-Core Cluster System 9

€ The multi-core cluster environment used in the performance measurements considering
the Network File System (NFS) in Section 3.1 is a multi-core SGI Altix-XE 340 cluster
platform (denoted Altix), located at LNCC. Altix-XE is composed of 30 nodes, where
each nodes has two quad-core Intel Xeon E5520 2.27GHz processors, with 128Kb L1
cache, 1024KB L2 cache, 8192KB L3 cache and 24GB of main memory. The nodes are
interconnected by an In“niband network. The used software includes MPICH version
2-1.4.1 and Vtune Performance Analyzer version 9.1. The results presented here are the
arithmetic average of four executions. The Hyperthread system is active and Turbo-boost
increases processor speed when only one core is active.

€ The environments used for the “le system (PVFS and NFS) tests in Sections 3.2 and 3.3
were part of the Grid•50004 infrastructure. The tests were executed on the clusters Griffon
(Nancy) … equipped with 96 bi-processed nodes with Intel Xeon (quad-core), 16 GB of RAM
and 320 GB of SATA II hard disks … and Genepi (Grenoble) … 34 bi-processed nodes with
Intel Xeon (quad-core), 8GB of RAM and 160GB GB of local SATA storage. Both clusters
have their nodes interconnected by Gigabit Ethernet.
For the tests with PVFS “le system, 30 clients were evenly distributed among 4 data servers
servers, and accessed the “le system through a Linux kernel module. We used PVFS
version 2.8.2 obtained from http://www.pvfs.org/. We modi“ed OLAM in order to obtain
the time spent by each I/O. The tests with the I/O optimization had up to 26 nodes (208
cores) using the shared NFS infrastructure present on the Genepi cluster.

€ The performance measurements for the Hybrid MPI/CUDA implementation in Section 3.4
were made on a multi-core/many-core node, denoted prjCuda, located at LNCC,
composed of a dual Quad-Core Xeon E5550, 2.67GHz, with 8 MB of L3 cache, 1MB L2
cache, 256KB L1 cache and 24 GB of RAM memory, GTX285 and Tesla C2050. The software
employed included MPICH version 2-1.2.p1, Vtune Performance Analyzer version 9.1,
CUDA toolkit version 4.0. and PGI Fortran version 11.2 compiler. The experiments
evaluate parallel performance of the three implementations of OLAM. As we are running
in one single node system, OLAM input and output phase execution times are the same
for all implementations. Therefore, they were not considered in our analysis. All single
node tests implement a 40km OLAM con“guration.

3.1 Experimental results and analysis with NFS on the multi-core cluster environment

We present two experimental analysis in two distinct OLAM workload con“gurations.

€ In the “rst experiment we performed a 200km OLAM con“guration analysis, a typical
horizontal resolution most commonly used for climate simulation.

€ The second experiment performed a 40km OLAM con“guration. This is a typical
resolution for global forecast. This experiment decreases 5 times the horizontal distance
between points in the globe, hence more points are necessary to cover the same area. The
other parameters remain the same as in the 200km con“guration. Since it is necessary
25 times the number of points as before to cover the same area at 5 times shorter space
intervals, the number of calculations per timestep is now increased 25 times with respect
to the previous experiment. Furthermore, it implies a 20-fold increase in the memory
workload, thus increasing the the proportion of computing time with respect to data
transfers.

4 http://www.grid5000.fr/

9Improving Atmospheric Model Performance on a Multi-Core Cluster System

www.intechopen.com

10 Will-be-set-by-IN-TECH

3.1.1 Experiments with resolution of 200km

Figure 8 presents the ideal and measured speedups from 1 to 80 cores for the experiments
with a 200km resolution. The results show the performance of the MPI and the Hybrid
MPI/OpenMP implementations of OLAM. We observe that the performance for both
implementations are similar up to 16 cores. As we increase the number of cores, the
Hybrid MPI/OpenMP implementation presents a better performance than the MPI-only
implementation.

Fig. 8. 200km-resolution ideal and measured speedups for the MPI and the MPI/OpenMP
implementations.

Previous works, (Osthoff et al., 2010) and (Schepke et al., 2010), evaluated the performance
of OLAM on a multi-core cluster environment and demonstrated that the scalability of the
system is limited by output operations performance. OLAM suffers signi“cantly due to the
creation of a large number of “les and the small requests.

3.1.2 Experiments with resolution of 40km

Figure 9 presents the ideal and measured speedups from 1 to 80 cores for the experiments
with a 40km resolution. The results show the performance of the MPI and the Hybrid
MPI/OpenMP implementations of OLAM. We observe that the performance of the MPI
implementation is better up to 32 cores. As we increase the number of cores, the Hybrid
MPI/OpenMP implementation performs better than the MPI-only one. This test shows that as
we increase the dependency relationship between computing time and data transfers, output
operations overhead decreases overall system performance impact.

In order to explain why the MPI implementation performs better than the Hybrid
MPI/OpenMP implementation at lower numbers of cores, we inserted VTUNE Analyser 5

5 http://www.intel.com

10 Atmospheric Model Applications

www.intechopen.com

Improving Atmospheric Model Performance on a Multi-Core Cluster System 11

Fig. 9. 40km-resolution ideal and measured speedups for the MPI and the MPI/OpenMP
implementations.

performance instrumentation in both codes and evaluated the memory usage in one node,
varying the number of processes/threads. We observed that, for this con“guration, the
memory usage of the MPI implementation grows from 2GB for one process to 5GB to 8
processes. In the other hand, the memory usage of the Hybrid MPI/OpenMP implementation
remains almost constant (2GB) as we increase the number of threads. These results con“rm
that the OpenMP global memory implementation improves OLAM•s memory usage on a
multi-core system.

The Hybrid MPI/OpenMP implementation parallelized the do loops from the subroutine
progwrtu, This subroutine was responsible for up to 70% of the cpu time of each timestep
(Osthoff et al., 2010; Schepke et al., 2010) and up to 75% of the cache misses. We observed that,
after the parallelization with OpenMP, the subroutine became responsible for only 28% of the
cpu time of each timestep. On the other hand, running with 8 cores, it means that only 28% of
the code is running in parallel. This explains why we did not obtained the ideal speedup for
the Hybrid MPI/OpenMP implementation.

3.2 Experimental results and analysis with PVFS on a multi-core cluster environment

This section presents the evaluation of the MPI and of the Hybrid MPI/OpenMP
implementations in a multi-core cluster regarding I/O performance. We instrumented OLAM
in order to obtain the time spent by each I/O operation. For each test instance, we considered
on each step the greatest values between the processes. The results presented here are the
arithmetic average of four executions. OLAM was con“gured to output history “les at every
simulated hour, resulting in 25 “les per process (there is one mandatory “le creation at the
start of the execution).

11Improving Atmospheric Model Performance on a Multi-Core Cluster System

www.intechopen.com

12 Will-be-set-by-IN-TECH

3.2.1 The MPI implementation•s analysis

Fig. 10. Execution times for the MPI implementation with PVFS.

Fig. 11. Execution times for the MPI implementation using local “les.

Figure 10 presents the test results for the MPI implementation using PVFS to store all the input
and output “les and Figure 11 presents the test results storing them in the local disks (Local
“les). For the second approach to work, the input “les (that are previously created in only one
node) have to be copied to all the nodes. Also, to work on a non-dedicated cluster, it may be
needed to gather the output “les on a master node.

Even when considering the times for scatter/gather operations on the input/output “les,
using the local disks had the best performance - around 36 times better (Figure 12). However,
besides the disadvantage of the need to move all these “les, the computing nodes do not have
local disks in some clusters. This may happen for reasons like power consumption, price, etc.
In the local “les approach (Figure 11), we can see that, as the number of processes grows, both
I/O and processing time decrease, bene“ted by the higher degree of parallelism. The lowest
time is achieved by the 120 processes (4 processes per machine) con“guration. PVFS results
show a different behavior. In the results (Figure 10) from 10 to 30 processes (one process in

12 Atmospheric Model Applications

www.intechopen.com

Improving Atmospheric Model Performance on a Multi-Core Cluster System 13

each machine), we can see that the processing time decreases (as the degree of parallelism
increases), but there is no speedup. This happens because I/O dominates the execution time
as the concurrency in the PFS grows.

Fig. 12. Execution times for the MPI and the MPI/OpenMP implementations with PVFS and
using local “les.

When the number of processes in each machine becomes bigger than 1, both I/O and
processing times increase. The “rst is affected by the high load on the “le system and by the
concurrent I/O requests from the processes on the same node. We believe that the rest of the
simulation has its performance impacted by two factors. First, as small write operations are
usually buffered, there may be concurrency in the access to the network when the processes
communicate. Additionally, when more than one process is located in each machine, there
may be competition for the available memory of the machine. We observed such phenomenon
in previous works (Schepke et al., 2010).

3.2.2 The hybrid MPI/OpenMP implementation•s analysis

Figure 13 shows the results for the Hybrid OLAM/OpenMP implementation with PVFS. The
observed behavior is similar to the one shown in Figure 10 in the sense that there is no
signi“cant speedup. However, the processing time dominated the execution time in this test,
not the I/O time. The time spent in I/O did not grow linearly with the number of processes,
indicating that, with this number of clients, the total capacity of the parallel “le system was
not reached. It is important to highlight that the use of OpenMP incurs in a smaller number
of processes to fully utilize the system, since 8 threads are being used per process. The system
is fully utilized with only 30 processes (240 threads). Comparing this con“guration with 240
processes with the MPI implementation, the MPI/OpenMP implementation is around 9 times
faster, and around 20 times faster considering only the I/O time.

This increase in performance happened due to the generation of a smaller number of “les
(one per process). Besides, there is no intra-node concurrency in the access to the “le system,
because there is only one process in each machine. This gain comes also from a better memory
usage by the application. Still, the time obtained for the the MPI/OpenMP implementation is
almost 4 times greater than the MPI-only implementation without the use of the parallel “le
system.

13Improving Atmospheric Model Performance on a Multi-Core Cluster System

www.intechopen.com

14 Will-be-set-by-IN-TECH

Fig. 13. Execution times for the MPI/OpenMP implementation with PVFS.

3.3 Trace visualization and close optimization for OLAM

To obtain the trace of OLAM we used the libRastro tracing library (Silva et al, 2003). LibRastro
is used to generate execution traces of applications with a minimal impact on its behavior.
To use the library, the source code of the target application must be modi“ed at the points of
interest in order to generate events. Beginning and end of these events are speci“ed by two
subroutine calls: IN and OUT, respectively. Each event has a name and optional parameters.

In the case of I/O operations of OLAM, the parameters are the name of the “le, amount of
data written/read, among others. Besides the I/O operations, we created events in all of the
most important subroutines of OLAM, with the goal of identifying portions of the execution
which are impaired by the I/O operations or other factors. Moreover, the detailed analysis of
the application can identify the parts that do not scale.

During execution with libRastro, each process of the application generates a binary trace
“le. These trace “les must be merged and converted to a higher level language by an
application-speci“c tool, because the semantics of the events change from one application
to the other.

One high-level event description language is Pajé (Kergommeaux et al, 2000). Pajé allows the
developer to describe events, states and messages between distinct containers (a container
being any element that may have states, events or be source or destination of a message).

The developer has a great ”exibility to create containers and the associated events in a way
which best describes his code.

In our OLAM•s modeling, each MPI Rank was represented by one Pajé container. The states
of this container are the events obtained from the trace. Therefore, there are states inside other
states (when one subroutine calls another).

Each event must be of a prede“ned type. Pajé groups events of the same type in an execution
”ow and automatically stacks one state inside the other as in the case of function calls. We
de“ned the APP_STATEtype in which we map events related to the OLAM application. There
are also the P_STATEtype, which corresponds to I/O utility functions, and the MPI_STATE
type to which MPI events are mapped.

14 Atmospheric Model Applications

www.intechopen.com

Improving Atmospheric Model Performance on a Multi-Core Cluster System 15

(a) Local “les

(b) NFS

�����������������	�

����������������

����������������	��

���������������������	

�������	�����	��

���������������	������

��������������������
�	��������

Fig. 14. OLAM execution with 8 Processes, 8 Threads each (64 cores)

The visualization was done via the Pajé Visualization Tool. It allows for a gantt-chart style,
time based visualization of the events and states of the containers. The next section presents
the results obtained.

In order to obtain traces from OLAM, we executed the instrumented version of the application
on the clusters Adonisand Edelof Grid•5000. The tests were executed with 8 nodes using either
the local “le system or the shared NFS volume to store the execution output. We tested OLAM
with and without OpenMP threads.

Figure 14 presents part of the Pajé visualization for the execution of OLAM with 8 processes,
each with 8 threads, over local “les and NFS. The rectangles on the left of the graph show
the APP_STATE and P_STATE, as discussed in before. When the application enters the

15Improving Atmospheric Model Performance on a Multi-Core Cluster System

www.intechopen.com

