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1. Introduction

The pivotal role of unmanned aerial vehicles (UAVs) in modern aircraft technology is
evidenced by the large number of civil and military applications they are employed in. For
example, UAVs successfully serve as platforms carrying payloads aimed at land monitoring
(Ramage et al., 2009), wildfire detection and management (Ambrosia & Hinkley, 2008), law
enforcement (Haddal & Gertler, 2010), pollution monitoring (Oyekan & Huosheng, 2009), and
communication broadcast relay (Majewski, 1999), to name just a few.

A formation of UAVs, defined by a set of vehicles whose states are coupled through a common
control law (Scharf et al., 2003b), is often more valuable than a single aircraft because it can
accomplish several tasks concurrently. In particular, UAV formations can guarantee higher
flexibility and redundancy, as well as increased capability of distributed payloads (Scharf
et al., 2003a). For example, an aircraft formation can successfully intercept a vehicle which
is faster than its chasers (Jang & Tomlin, 2005). Alternatively, a UAV formation equipped
with interferometic synthetic aperture radar (In-SAR) antennas can pursue both along-track
and cross-track interferometry, which allow harvesting information that a single radar cannot
detect otherwise (Lillesand et al., 2007).

Path planning is one of the main problems when designing missions involving multiple
vehicles; a UAV formation typically needs to accomplish diverse tasks while meeting some
assigned constraints. For example, a UAV formation may need to intercept given targets while
its members maintain an assigned relative attitude. Trajectories should also be optimized
with respect to some performance measure capturing minimum time or minimum fuel
expenditure. In particular, trajectory optimization is critical for mini and micro UAVs (µUAVs)
because they often operate independently from remote human controllers for extended
periods of time (Shanmugavel et al., 2010) and also because of limited amount of available
energy sources (Plnes & Bohorquez, 2006).

The scope of the present paper is to provide a rigorous and sufficiently broad formulation of
the optimal path planning problem for UAV formations, modeled as a system of n 6-degrees of
freedom (DoF) rigid bodies subject to a constant gravitational acceleration and aerodynamic
forces and moments. Specifically, system trajectories are optimized in terms of control effort,
that is, we design a control law that minimizes the forces and moments needed to operate
a UAV formation, while meeting all the mission objectives. Minimizing the control effort is
equivalent to minimizing the formation‘s fuel consumption in the case of vehicles equipped
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with conventional fuel-based propulsion systems (Schouwenaars et al., 2006) and is a suitable
indicator of the energy consumption for vehicles powered by batteries or other power sources.

In this paper, we derive an optimal control law which is independent of the size of the
formation, the system constraints, and the environmental model adopted, and hence, our
framework applies to aircraft, spacecraft, autonomous marine vehicles, and robot formations.
The direction and magnitude of the optimal control forces and moments is a function of the
dynamics of two vectors, namely the translational and rotational primer vectors. In general,
finding the dynamics of these two vectors over a given time interval is a demanding task
that does not allow for an analytical closed-form solution, and hence, a numerical approach
is required. Our main result involves necessary conditions for optimality of the formations’
trajectories.

The contents of this paper are as follows. In Section 2, we present notation and definitions of
the physical variables needed to formulate the fuel optimization problem. Section 3 gives
a problem statement of the UAV path planning optimization problem, whereas Section 4
provides the necessary mathematical background for this problem. Next, in Section 5, we
survey the relevant literature and highlight the advantages related to the proposed approach.
Section 6 discusses results achieved by applying the theoretical framework developed in
Section 4. In Section 7, we present an illustrative numerical example that highlights the
efficacy of the proposed approach. Finally, in Section 8, we draw conclusions and highlight
future research directions.

2. Notation and definitions

The notation used in this paper is fairly standard. When a word is defined in the text, the
concept defined is italicized and it should be understood as an “if and only if“ statement.
Mathematical definitions are introduced by the symbol “�.” The symbol N denotes the set of
positive integers, R denotes the set of real numbers, R+ denotes the set of nonnegative real
numbers, R

n denotes the set of n × 1 column vectors on the field of real numbers, and R
n×m

denotes the set of real n × m matrices. Both natural and real numbers are denoted by lower
case letters, e.g., j ∈ N and a ∈ R, vectors are denoted by bold lower case letters, e.g., x ∈ R

n,
and matrices are denoted by bold upper case letters, e.g., A ∈ R

n×m. Subsets of R
n and R

n×m

are denoted by italicized upper case letters, e.g., A ⊆ R
n and B ⊆ R

n×m. The interior of the
set A is denoted by int(A). The zero vector in R

n is denoted by 0n, the zero matrix in R
n×m is

denoted by 0n×m, and the identity matrix in R
n×n is denoted by In.

For x ∈ R
n we write x ≥≥ 0n (respectively, x >> 0n) to indicate that every component of

x is nonnegative (respectively, positive). We write || · ||p for the p-norm of a vector and its
corresponding equi-induced matrix norm, e.g., ||x||p and ||A||p. The transpose of a vector or

of a matrix is denoted by the superscript (·)T, e.g., xT and AT. The cross product between two
vectors a and b is denoted by a ∧ b. Given x ∈ R

3 such that x � [x1, x2, x3]
T, we define

x× �

⎡
⎣

0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤
⎦ .
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A Variational Approach to the Fuel Optimal Control Problem for UAV Formations 3

The inverse of a square matrix A is denoted by A−1, the transpose of A−1 is denoted by A−T,
the determinant of A is denoted by det(A), the diagonal of A is denoted by diag(A), and the
nullspace of a matrix A is denoted by N (A).

Functions are always introduced by specifying their domain and codomain, e.g., h : A1 ×
A2 → B. The arguments of a function will not be indicated in the text unless necessary, e.g.,
h(x, y) is simply denoted by h. If a function is dependent on some unspecified variables,
then its arguments will be replaced by dots, e.g., h(·, ·). The same convention is used for
functionals; however, their arguments are embraced by square brackets, i.e., J [x, y].

The first derivative with respect to time of a differentiable function q : [t1, t2] → R
n is denoted

by the a dot on top of the function, e.g., q̇(t). Given g : A → R
m, where A ⊂ R

n is an open set,
we say that g(·) is of class Ck, that is, g(·) ∈ Ck(A), if g(·) is continuous on A with k-continuous
derivatives. If g(·) ∈ C1(A), then g(·) is continuously differentiable.

Throughout the paper we use two types of mathematical statements, namely, existential and
universal statements. An existential statement has the form: “there exist x ∈ A such that
condition Φ is satisfied.” A universal statement has the form: “condition Φ is satisfied for all
x ∈ A.” For universal statements we often omit the words “for all” and write: “condition Φ

holds, x ∈ A.”

Time is the only independent variable used in this paper and is denoted by t. In this paper,
t ∈ [t1, t2], where [t1, t2] ⊂ R is a fixed time interval and is a priori assigned. A generic
member of a formation of n ∈ N UAVs is identified by the subscript i and, hence, i = 1, ..., n.
We define ri : [t1, t2] → R

3 as the position vector of the center of mass of the i-th vehicle in
a given inertial reference frame, σi : [t1, t2] → R

3 as the attitude vector of the i-th vehicle in
modified rodrigues parameters (MRPs) (Shuster, 1993), and xi � [rT

i , σT
i ]

T as the state vector

of the i-th vehicle. The system’s configuration at time t is defined by
[
xT

1 (t), ..., xT
n(t)

]T
.

The vector vi : [t1, t2] → R
3 denotes the velocity of the center of mass of the i-th vehicle,

ωi : [t1, t2] → R
3 denotes the angular velocity of the i-th vehicle in a principal body reference

frame, and x̃i �
[
rT

i , vT
i , σT

i , ωT
i

]T
is the augmented state vector of the i-th vehicle. For all

t ∈ [t1, t2], ri(t) =
∫ t

t1
vi(τ)dτ and σ̇i(t) = Rrod(σi(t))ωi(t), where Rrod(σi(t)) � 1

4 (1 −

σT
i (t)σi(t))I3 +

1
2σ

×
i (t) + 1

2σi(t)σ
T
i (t) (Neimark & Fufaev, 1972; Shuster, 1993). We assume

[
xT

1 (t), ..., xT
n(t)

]T
∈ Drel ⊆ R

6n and
[
x̃T

1 (t), ..., x̃T
n(t)

]T
∈ Dabs ⊆ R

12n, t ∈ [t1, t2].

We define ui,tran : [t1, t2] → Γi,tran (respectively, ui,rot : [t1, t2] → Γi,rot) as the translational
acceleration (respectively, the rotational acceleration) provided by the control system of the i-th
vehicle in the formation, e.g., ui,tran is the acceleration provided by the propulsion system
and ui,rot is the acceleration provided by the ailerons. The vector ui,tran (respectively, ui,rot)
is also referred to as the i-th translational control vector (respectively, the i-th rotational control
vector). For a given set of real constants ρi,1, ρi,2, ρi,3, and ρi,4 such that 0 ≤ ρi,1 < ρi,2 and
0 ≤ ρi,3 < ρi,4, Γi,tran and Γi,rot are defined as

Γi,tran �
{

a ∈ R
3 : ρi,1 ≤ ||a||2 ≤ ρi,2

}
∪ {03} ,

Γi,rot �
{

a ∈ R
3 : ρi,3 ≤ ||a||2 ≤ ρi,4

}
∪ {03} .
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Finally, for a given set Γ ⊂ R
p, u : [t1, t2] → Γ is an admissible control in Γ if i) u(·) is continuous

at the endpoints of [t1, t2], ii) u(·) is continuous for all t ∈ (t1, t2) with the exception of a
finite number of times t at which u(·) may have discontinuities of the first kind, and iii)
u(τ) = limt→τ− u(t), where τ ∈ [t1, t2] is a point of discontinuity of first kind for u(t)
(Pontryagin et al., 1962). We assume that ui,tran (respectively, ui,rot) is an admissible control in
Γi,tran (respectively, Γi,rot) for each i ∈ {1, . . . , n}.

3. Problem statement

3.1 Fuel consumption performance functional

A measure of the effort needed to control the i-th formation vehicle is given by the performance
functional

J [ui(·)] �
∫ t2

t1

||ui(t)||2 dt, (1)

where ui(t) � [uT
i,tran(t), cuT

i,rot(t)]
T and c is a real constant with units of distance. Without

loss of generality we assume that |c| = 1. The performance functional
∫ t2

t1
||ui,tran(t)||2 dt

represents a measure of the fuel consumed over the time interval [t1, t2] (Schouwenaars et al.,
2006). Path planning for UAV formations is sometimes addressed by minimizing the more

conservative performance functional
∫ t2

t1
||ui,tran(t)||1 dt (Blackmore, 2008). It is important to

note that ||ui,rot(t)||2 is much smaller than ||ui,tran(t)||2 for conventional aircraft and, hence,
its contribution to the performance functional (1) is negligible. However, this assumption does
not hold for the case of µUAVs (Bataillé et al., 2009).

The control effort for the entire formation can be captured by the performance measure

Jformation [ũ(·)] �
n

∑
i=1

µiJ [ui(·)] , (2)

where ũ(t) � [uT
1 (t), ..., uT

n(t)]
T and µi ∈ [0, 1], with ∑

n
i=1 µi = 1, which represents the relative

importance of minimizing the control effort of the i-th vehicle with respect to the others.

3.2 Aircraft dynamic equations

Aircraft are subject to external forces and moments from the environment. Specifically,
an aerial vehicle is subject to gravitational forces, aerodynamic forces, and aerodynamic
moments. Accelerations induced by external forces and external moments acting on a
formation vehicle are denoted by a : R

12 → R
3 and m : R

12 → R
3, respectively, where

a (x̃i) , m (x̃i) ∈ C1
(
R

12
)
.

The unconstrained dynamic equations for the i-th vehicle are given by (Greenwood, 2003)

d

dt
x̃i(t) =

⎡
⎢⎢⎣

vi(t)
a (x̃i(t))

Rrod(σi(t))ωi(t)

−I−1
in,iω

×
i (ωi(t)) Iin,iωi(t) + ω̃i (x̃i(t))

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

03

ui,tran(t)
03

ui,rot(t)

⎤
⎥⎥⎦ , (3)
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where Iin,i is the inertia matrix of the i-th vehicle in a principal body reference frame and

ω̃i (x̃i(t)) � I−1
in,im (x̃i(t)), t ∈ [t1, t2]. The boundary conditions for (3) are given by the

endpoint constraints discussed in Section 3.3.

3.3 Formation constraints

Given D1 ⊂ R
p and D2 ⊂ R

m, the function S : D1 → D2 is a continuously differentiable

manifold if S(y) = 0, m < p, S(y) ∈ C1(D1), and rank
∂S(y)

∂y = m (Pontryagin et al., 1962).

Let S1 : Dabs → R
n1 and S2 : Dabs → R

n2 be two continuously differentiable manifolds, and
define the endpoint constraints

S1

([
x̃T

1 (t1), ..., x̃T
n(t1)

]T
)
= 0r1 ,

S2

([
x̃T

1 (t2), ..., x̃T
n(t2)

]T
)
= 0r2 .

(4)

Endpoint constraints partly impose the formation’s configuration at times t1 and t2, and
hence, can model point-to-point or rendezvous maneuvers.

State inequality constraints are given by

fineq(x1(t), ..., xn(t)) ≤≤ 0r3 , (5)

where fineq : Drel → R
n3 and fineq(x1, ..., xn) ∈ C3(int (Drel)). State equality constraints are

given by
feq(t, x1(t), ..., xn(t)) = 0r4 , (6)

where feq : [t1, t2] × Drel → R
n4 and feq(t, x1, ..., xn) ∈ C2((t1, t2) × int (Drel)). Here we

assume that the constraints are compatible, that is, for all t ∈ [t1, t2] there exists at least one set
of 2n admissible controls {u1,tran(t), ..., un,tran(t); u1,rot(t), ..., un,rot(t)} that satisfies (3) – (6).

State constraints given in terms of x̃1(t),..., x̃n(t) that can be reduced to the form given by (5)
and (6) are called holonomic constraints. In particular, for n = 2 and t ∈ [t1, t2], the constraint
v1(t) = v2(t) is holonomic since it can be rewritten as r1(t) + r1 (t1) = r2(t) + r2 (t1), t ∈
[t1, t2]. It is important to note that the constraint ω1(t) ≤≤ ω2(t), t ∈ [t1, t2], is nonholonomic

since σi(t) 
=
∫ t

t1
ωi(τ)dτ +σi(t1), t ∈ [t1, t2] and i = 1, 2 (Greenwood, 2003).

State constraints can model collision avoidance, keeping the formation far from no-fly zones,
or the requirement of pointing payloads toward the same target. It is obvious that (6) is
a special case of (5); however, as noted in Section 4.2, this distinction is useful in reducing
computational complexity.

3.4 Path planning optimization problem

For all i = 1, ..., n and t ∈ [t1, t2] find the control vectors ui,tran(t) and ui,rot(t) among all
admissible controls in Γi,tran and Γi,tran such that the performance measure (2) is minimized
and x̃i(t) satisfies (3) – (6).
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4. Mathematical background

4.1 Slack variables

Inequality constraints (5) can be reduced to equality constraints by introducing s : [t1, t2] →
R

n3 such that s(t) ∈ C2(t1, t2) and fineq(t, x1(t), ..., xn(t)) +
1
2 diag

(
ssT
)

= 0r3 . The
components of s are called slack variables. Thus, (5) can be rewritten as (Valentine, 1937)

f̃ineq(s(t), x1(t), ..., xn(t)) = 0r3 , (7)

where f̃ineq (s(t), x1(t), ..., xn(t)) � fineq(x1(t), ..., xn(t)) +
1
2 diag

(
ssT
)
.

4.2 Lagrange coordinates

The following theorem is needed for the main results of this paper.

Theorem 4.1. (Pars, 1965) Let Dq ⊆ R
6n−n4 be an open connected set and let q : [t1, t2]× R

n3 ×

Drel → Dq be such that q (t, s(t), x1(t), ... , xn(t)) ∈ C2 ((t1, t2)× R
n3 × int (Drel)). Assume that

det

⎛
⎜⎝

∂
[
f̃T

ineq (s, x1, ..., xn) fT
eq (t, s, x1, ..., xn) qT (t, s, x1, ..., xn)

]T

∂
[
sT, xT

1 , ..., xT
n

]T

⎞
⎟⎠ 
= 0 (8)

for all (t, s, x1..., xn) ∈ I × ∆, where I ⊂ (t1, t2) and ∆ ⊂ R
n3 × Drel are open connected sets. Then

q can be rewritten as a function of t, that is, q : I → Dq, and s, x1, ...,xn, x̃1,..., x̃n can be rewritten as

unique functions of t and q, that is, s : I × Dq → R
n3 , xi : I × Dq → R

6, and x̃i : I × Dq → R
12

for all i = 1, ..., n and (t, s, x1..., xn) ∈ I × ∆. Furthermore, the components of q are independent and
uniquely characterize the system’s configuration.

Under the hypothesis of Theorem 4.1, the components of q(t) are called Lagrange coordinates.
As will be shown in Section 4.3, the key advantage of using Lagrange coordinates is that
the constraints (5) – (7) are automatically accounted for when rewriting the formation’s
dynamic equations in terms of t and q(t) (Pars, 1965). In this paper, we assume that
s, x1, . . . , xn, x̃1, . . . , x̃n are explicit functions of q only and not t, which occurs in most
practical applications (Pars, 1965). In practice, given constraints in the form of (6) and (7),
q is chosen such that Theorem 4.1 holds. As will be further discussed in Section 4.3, we select
q (t, s(t), x1(t), . . . , xn(t)) as an explicit function of (s(t), x1(t), . . . , xn(t)).

Given q (t, s(t), x1(t), . . . , xn(t)), q̇ is a function of s(t), ri(t), σi(t), i = 1, ..., n, and their first
time derivatives. In practice, however, we measure ωi(t) rather than σi(t), and hence, if the
assumptions of Theorem 4.1 hold, we define the kinematic equation

qdot(t) � Ψ (q(t)) q̇(t) +ψ (q(t)) , (9)

where ωi(t), i = 1, 2, . . . , n, explicitly appears in qdot(t), Ψ : Dq → R(6n−n4)×(6n−n4) is an

invertible continuously differentiable matrix function, and ψ : Dq → R
6n−n4 is continuously

differentiable. Consequently, s, x1, ..., xn, x̃1, ..., x̃n can be rewritten as unique functions of q

and qdot, that is, s : Dq ×R
6n−n4 → R

n3 , xi : Dq ×R
6n−n4 → R

6, and x̃i : Dq ×R
6n−n4 → R

12,
(t, s, x1..., xn) ∈ I × ∆ (Greenwood, 2003). Here, we assume that qdot satisfies (23) below.
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In the following we assume that the path planning optimization problem can be solved over
the time interval

[
t∗1 , t∗2

]
⊃ [t1, t2] and that the given set of Lagrange coordinates can be defined

on the open connected set Ĩ , where [t1, t2] ⊂ Ĩ ⊂
(
t∗1 , t∗2

)
. Thus, (4) can be rewritten as

S1

([
x̃T

1 (q(t1), qdot(q(t1))) , ..., x̃T
n (q(t1), qdot(q(t1)))

]T
)
= 0r1 , (10)

S2

([
x̃T

1 (q(t2), qdot(q(t2))) , ..., x̃T
n (q(t2), qdot(q(t2)))

]T
)
= 0r2 . (11)

Example 4.1. Consider a UAV formation with two vehicles so that n = 2. Assume that

fineq (x1(t), x2(t)) =

[
||r1(t)− r2(t)||

2
2 − rmax

rmin − ||r1(t)− r2(t)||
2
2

]
≤≤ 02, (12)

feq (t, x1(t), x2(t)) = σ1(t)−σ2(t) = 03, (13)

S1

([
x̃T

1 (t1) x̃T
2 (t1)

]T
)
=

[
||r1(t1)− r2(t1)||

2
2 −

( rmax+rmin
2

)

σ1(t1)−σ2(t1)

]
= 04, (14)

S2

([
x̃T

1 (t2) x̃T
2 (t2)

]T
)
=

[
||r1(t2)− r2(t2)||

2
2 −

2(rmax−rmin)
3

σ1(t2)−σ2(t2)

]
= 04, (15)

where rmin and rmax are real constants such that 0 < rmin < rmax. Equation (12) ensures that
rmin ≤ ||r1(t) − r2(t)||

2
2 ≤ rmax and (13) ensures that both vehicles always have the same

attitude: Drel =
{[

xT
1 (t) xT

2 (t)
]T

: rmin ≤ ||r1(t)− r2(t)||
2
2 ≤ rmax, σ1(t) = σ2(t), t ∈ [t1, t2]

}
.

Introducing the slack variables s1 : [t1, t2] → R and s2 : [t1, t2] → R, (12) becomes

f̃ineq(s(t), x1(t), x2(t)) =

[
||r1(t)− r2(t)||

2
2 − rmax +

1
2 s2

1(t)

rmin − ||r1(t)− r2(t)||
2
2 +

1
2 s2

2(t)

]
= 02. (16)

As noted in Section 3.3, the equality constraint (13) can be embedded into (12) to give

f̃ineq(s(t), x1(t), x2(t)) =

⎡
⎢⎢⎣

||r1(t)− r2(t)||
2
2 − rmax +

1
2 s2

1(t)

rmin − ||r1(t)− r2(t)||
2
2 +

1
2 s2

2(t)

σ1(t)−σ2(t) +
1
2 diag(s3sT

3 )

σ2(t)−σ1(t) +
1
2 diag(s4sT

4 )

⎤
⎥⎥⎦ = 08,

where sj : [t1, t2] → R
3, j = 3, 4. Note that in this case, the dimension of f̃ineq is increased

since six additional slack variables have been introduced, which increases computational
complexity.

Next, define ri,j : [t1, t2] → R (respectively, σi,j : [t1, t2] → R) as the j-th component of ri(t)

(respectively, σi(t)). If q(t) =
[
s1(t), s2(t), rT

1 (t), σ
T
1 (t), r2,1(t)

]T
, then (8) gives

det

⎛
⎜⎝

∂
[
f̃T

ineq (s, x1, x2) , fT
eq (t, s, x1, x2) , qT (t, s, x1, x2)

]T

∂
[
sT, xT

1 , xT
2

]T

⎞
⎟⎠ = 0.

227A Variational Approach to the Fuel Optimal Control Problem for UAV Formations

www.intechopen.com



8 Will-be-set-by-IN-TECH

Thus, by Theorem 4.1, the components of q are not Lagrange coordinates.

Alternatively, if q(t) =
[
s1(t), r1,1(t), r1,2(t), σ

T
1 (t), rT

2 (t)
]T

, then

det

⎛
⎜⎝

∂
[
f̃T

ineq (s, x1, x2) , fT
eq (t, s, x1, x2) , qT (t, s, x1, x2)

]T

∂
[
sT, xT

1 , xT
2

]T

⎞
⎟⎠ = −2s2(t) (r1,3(t)− r2,3(t)) ,

for all (t, s, x1, x2) ∈ (t1, t2) × R
2 × int (Drel) such that r1,3(t) 
= r2,3(t), and hence, the

components of q are suitable Lagrange coordinates if rmin < ||r1(t) − r2(t)||
2
2 and r1,3(t) 
=

r2,3(t). In this case, (9) gives

qdot(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ṡ1(t)

v1,1(t)

v1,2(t)

ω1(t)

v2(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎣

I3 03×3 03×3

03×3 R−1
rod(σ1(t)) 03×3

03×3 03×3 I3

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ṡ1(t)

v1,1(t)

v1,2(t)

σ̇1(t)

v2(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (17)

where v1,j : [t1, t2] → R is the j-th component of v1(t).

A more suitable choice of Lagrange coordinates is given by q(t) =
[
xT

1 (t), rT
2 (t)

]T
since

det

⎛
⎜⎝

∂
[
f̃T

ineq (s, x1, x2) , fT
eq (t, s, x1, x2) , qT (t, s, x1, x2)

]T

∂
[
sT xT

1 , xT
2

]T

⎞
⎟⎠ = s1(t)s2(t)

for all (t, s, x1, x2) ∈ (t1, t2) × R
2 × int (Drel), and hence, the components of q are suitable

Lagrange coordinates if rmin < ||r1(t)− r2(t)||
2
2 < rmax. In this case, (9) gives

qdot(t) =

⎡
⎢⎣

v1(t)

ω1(t)

v2(t)

⎤
⎥⎦ =

⎡
⎢⎣

I3 03×3 03×3

03×3 R−1
rod(σ1(t)) 03×3

03×3 03×3 I3

⎤
⎥⎦

⎡
⎢⎣

v1(t)

σ̇1(t)

v2(t)

⎤
⎥⎦ . (18)

Since we use this example throughout the paper, we define qdot,1 � [vT
1 , ωT

1 ]
T, qdot,2 � v2,

and

Ψ1(x1(t)) �

[
I3 03×3

03×3 R−1
rod(σ1(t))

]
.

Finally, note that if rmin < ||r1(t)− r2(t)||
2
2 < rmax for t ∈

(
t∗1 , t∗2

)
⊃ [t1, t2], then (14) and (15)

reduce to

||r1(t1)− r2(t1)||
2
2 −

(
rmax + rmin

2

)
= 0, (19)

||r1(t2)− r2(t2)||
2
2 −

2 (rmax − rmin)

3
= 0. (20)
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4.3 Constrained formation dynamic equations

The formation’s kinetic energy is given by König’s theorem (Pars, 1965) and for our problem
takes the form

k (q(t), qdot(t)) =
1

2

n

∑
i=1

miv
T
i (q(t), qdot(t)) vi (q(t), qdot(t))

+
1

2

n

∑
i=1

ωT
i (q(t), qdot(t)) Iin,iωi (q(t), qdot(t)) , (21)

where mi is the mass of the i-th vehicle, which is assumed to be constant. The dynamic
equations of the constrained formation can be written in terms of Lagrange coordinates by
applying the Boltzmann-Hammel equation (Greenwood, 2003) to give

d

dt

(
∂k (q, qdot)

∂qdot

)
=

n

∑
i=1

miv
T
i (q(t), qdot(t))

d

dt

∂vi (q, qdot)

∂qdot

+
n

∑
i=1

ωT
i (q(t), qdot(t)) Iin,i

d

dt

∂ωi (q, qdot)

∂qdot

+
n

∑
i=1

(a (x̃i (q(t), qdot(t))) + ui,tran(t))
∂vi (q, qdot)

∂qdot

+
n

∑
i=1

(m (x̃i (q(t), qdot(t))) + ui,rot(t))
∂ωi (q, qdot)

∂qdot
. (22)

Equations (10) and (11) are the boundary conditions for (22). It is important to note that the
dynamic equation (22) is written in terms of Lagrange coordinates, and hence, accounts for (5)
and (6).

Analytical optimization techniques such as Pontryagin’s minimum principle, Bellman’s
theorem, and calculus of variations require the dynamic equations to be written as a first-order
ordinary differential equation in explicit form. Therefore, using the hypothesis on qdot, the
second-order ordinary differential equation (22) needs to be written in a first-order form

q̇dot(t) = fdyn(q(t), qdot(t), ũ(t)), (23)

where ũ(t) � [uT
1 (t), . . . , uT

n(t)]
T and fdyn : Dq × R

6n−n4 × R
12n → R

6n−n4 . In order to

isolate the contribution of ũ in (24), we define f̂dyn(q(t), qdot(t)) � fdyn(q(t), qdot(t), ũ(t))−

ui,tran(t)
∂vi(q,qdot)

∂qdot
− ui,rot(t)

∂ωi(q,qdot)
∂qdot

.

Equation (22) or, equivalently, (23) gives a set of 6n − n4 equations in 2(6n − n4) unknowns,
which are q and qdot. Thus, (22) needs to be solved together with (9) (Greenwood, 2003) to
give [

qdot(t)

q̇dot(t)

]
=

[
Ψ (q(t)) q̇(t) +ψ (q(t))

fdyn(q(t), qdot(t), ũ(t))

]
. (24)
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From (21) it follows that the formation’s kinetic energy k is not an explicit function of s, and
hence, if q is chosen as an explicit function of p components of s(t) ∈ R

n3 , then p of the 6n−n4

equations in (22) cannot be straightforwardly recast in the explicit form given by (23). In this
case, assume, without loss of generality, that q explicitly depends on the first p components
of s and substitute the corresponding p equations in (24) with

sj(t)s̈j(t) = −ṡ2
j (t)−

d2

dt2
fineq,j(x1 (q(t), qdot(t)) , . . . , xn (q(t), qdot(t))), (25)

which is obtained by differentiating (7). In this case, the boundary conditions are given by

f̃ineq(s (q(t1), qdot(q(t1))) , x1 (q(t1), qdot(q(t1))) , ..., xn (q(t1), qdot(q(t1)))) = 0r3 , (26)

f̃ineq(s (q(t2), qdot(q(t2))) , x1 (q(t2), qdot(q(t2))) , ..., xn (q(t2), qdot(q(t2)))) = 0r3 , (27)

where fineq,j : R
n3 × Drel → R is the j-th component of fineq(s(t), x1(t), ..., xn(t)) (Jacobson &

Lele, 1969), for j = 1, . . . , p. If sj(t
∗) = 0 for some t∗ ∈ [t1, t2], then (25) can be replaced by

3ṡj(t)s̈j(t) + sj(t)
d3sj(t)

dt3
= −

d3

dt3
fineq,j(x1 (q(t), qdot(t)) , . . . , xn (q(t), qdot(t))), (28)

where s ∈ C3(t1, t2). In general, (7) must be differentiated so that s̈j(t), or one of its
higher-order derivatives, explicitly appears and is multiplied by a term that is non-zero for
all t ∈ [t1, t2]. In this case, the differentiability assumptions on s and fineq must be modified
accordingly.

Example 4.2. Consider Example 4.1 with q(t) =
[
s1(t), r1,1(t), r1,2(t), σ

T
1 (t), rT

2 (t)
]T

. In this
case, the formation’s kinetic energy is given by

k (q(t), qdot(t)) =
1

2
m1vT

1 (q(t), qdot(t)) v1 (q(t), qdot(t))

+
1

2
m2vT

2 (t)v2(t) +
1

2

2

∑
i=1

ωT
1 (t)Iin,iω1(t).

The dynamic equations can now be found by applying (22) and accounting for (17) giving

v1,j(t) =
dr1,j(t)

dt
, ω1(t) = R−1

rod(σ1(t))σ̇1(t), v2(t) =
dr2(t)

dt
, (29)

m1
dv1,1(t)

dt
= m1a1 (x̃1 (q(t), qdot(t))) + m1u1,tran,1(t), (30)

m1
dv1,2(t)

dt
= m1a2 (x̃1 (q(t), qdot(t))) + m1u1,tran,2(t), (31)

Iin,1
dω1(t)

dt
= −ω×

1 (ω1(t)) Iin,1ω1(t) + m (x̃1 (q(t), qdot(t, q(t)))) + Iin,1u1,rot(t), (32)

m2
dv2(t)

dt
= m2a (x̃2 (q(t), qdot(t))) + m2u2,tran(t), (33)
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where, for j = 1, 2, u1,tran,j : [t1, t2] → R (respectively, aj : R
12 → R) is the j-th component

of u1,tran(t) (respectively, a (x̃1 (t, q(t), qdot(t, q(t))))). Instead of deducing the dynamics of
s1(t) from

m1
dv1,3(t)

dt
= m1a3 (x̃1 (q(t), qdot(t))) + m1u1,tran,3(t),

we use (16) and (25) to obtain

ṡ2
1(t) + s1(t)s̈1(t) =− 2||v1(t)− v2(t)||

2
2

+ (r1(t)− r2(t))
T(a (x̃1 (q(t), qdot(t))) + u1,tran(t))

− (r1(t)− r2(t))
T(a (x̃2 (q(t), qdot(t))) + u2,tran(t)), (34)

which can be solved for s1(t) if ||r1(t)− r2(t)||
2
2 < rmax, t ∈ [t1, t2]. In this case , the boundary

conditions to (34) are given by

[
||r1(t1)− r2(t1)||

2
2 − rmax +

1
2 s2

1(t1)

rmin − ||r1(t1)− r2(t1)||
2
2 +

1
2 s2

2(t1)

]
= 02,

[
||r1(t2)− r2(t2)||

2
2 − rmax +

1
2 s2

1(t2)

rmin − ||r1(t2)− r2(t2)||
2
2 +

1
2 s2

2(t2)

]
= 02.

If, alternatively, q(t) =
[
xT

1 (t), rT
2 (t)

]T
, then the formation’s kinetic energy is given by

k (q(t), qdot(t)) =
1

2

2

∑
i=1

miv
T
i (t)vi(t) +

1

2

2

∑
i=1

ωT
1 (t)Iin,iω1(t) (35)

and the dynamic equations, obtained by applying (22) and (18), are given by

v1(t) =
dr1(t)

dt
, ω1(t) = R−1

rod(σ1(t))σ̇1(t), v2(t) =
dr2(t)

dt
, (36)

m1
d

dt
v1(t) = m1a (x̃1(t)) + m1u1,tran(t), (37)

Iin,1
d

dt
ω1(t) = −ω×

1 (ω1(t)) Iin,1ω1(t) + m (x̃1(t)) + Iin,1u1,rot(t), (38)

m2
d

dt
v2(t) = m2a

([
rT

2 (t), vT
2 (t), σ

T
1 (t), ω

T
1 (t)

]T
)
+ m2u2,tran(t). (39)

The Lagrange coordinates chosen imply that the first vehicle can be considered as
unconstrained, that is, subject to (3), (14), and (15) only, and therefore, the dynamic equations
(36) – (38) can be directly deduced from (3). Similarly, the translational dynamics of the
second vehicle can be considered as unconstrained. Thus, (39) can be directly obtained from
(3). Recall from Example 4.1 that the components of q are suitable Lagrange coordinates if
rmin < ||r1(t) − r2(t)||

2
2 < rmax, whereas (29) – (33) hold if rmin < ||r1(t) − r2(t)||

2
2 < rmax

and r1,3(t) 
= r2,3(t). Thus, q(t) =
[
xT

1 (t), rT
2 (t)

]T
is a more convenient choice of Lagrange

coordinates than q(t) =
[
s1(t), r1,1(t), r1,2(t), σ

T
1 (t), rT

2 (t)
]T

.

231A Variational Approach to the Fuel Optimal Control Problem for UAV Formations

www.intechopen.com



12 Will-be-set-by-IN-TECH

This example will be further elaborated on in Section 6 for q(t) =
[
xT

1 (t), rT
2 (t)

]T
, and hence,

for notational convenience define fdyn,2 (x̃2(t), u2,tran(t)) � a (x̃2(t)) + u2,tran(t) and

fdyn,1(x1, qdot,1(x1), u1) �

[
a (x̃1(t)) + u1,tran(t)

−I−1
in,1ω

×
1 (ω1(t)) Iin,1ω1(t) + ω̃i (x̃1(t)) + u1,rot(t)

]
.

4.4 Path planning optimization problem revisited

The trajectory optimization problem defined in Section 3.4 can be reformulated as follows.
For all i = 1, ..., n and t ∈ [t1, t2], find ui,tran(t) (respectively, ui,rot(t)) among all admissible
controls in Γi,tran (respectively, Γi,rot) such that the performance measure (2) is minimized and
q(t) satisfies (24), (10), and (11).

By comparing this problem statement to the problem statement given in Section 3.4, it is clear
that (5) and (6) are not explicitly accounted for in the above reformulation of the optimization
problem. Hence, the constrained optimization problem has been reduced to an unconstrained
optimization problem by the introduction of slack variables and Lagrange coordinates.

4.5 Transversality condition

Let S : D1 → D2, where D1 ⊂ R
p and D2 ⊂ R

m, be a a continuously differentiable manifold
and let the manifold tangent to S at y0 be given by

∂S(y)

∂y

∣∣∣∣
y=y0

(y − y0) = 0m. (40)

Every vector v ∈ R
p that is normal to the manifold tangent to S at y0, that is, vTy = 0 for all

y ∈ R
p such that (40) holds, is said to verify the transversality condition for S at y0.

4.6 Pontryagin’s minimum principle

Assume that a set of Lagrange coordinates has been found and that the formation’s dynamic
equations can be written in the form given by (24). Define the costate vectors λdot : [t1, t2] →
R

6n−n4 and λdyn : [t1, t2] → R
6n−n4 so that the costate equation

d

dt

[
λdot(t)
λdyn(t)

]
= −

(
∂

∂[qT, qT
dot]

T

[
Ψ (q(t)) q̇(t) +ψ (q(t))
fdyn(q(t), qdot(t), ũ(t))

])T [
λdot(t)
λdyn(t)

]
(41)

holds. The boundary conditions for (41) are given in Theorem 4.2 below. Given λ0 ∈ R, define
the Hamiltonian function

h

(
q(t), qdot(t), ũ(t),λdyn(t),λdot(t)

)
� λ0

n

∑
i=1

µi||ui(t)||2 + λT
dot(t)qdot(t)

+ λT
dyn(t)fdyn(q(t), qdot(t), ũ(t)). (42)
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Finally, define

m

(
q(t), qdot(t),λdyn(t),λdot(t)

)
� min

ũ∈∏
n
i=1(Γi,tran×Γi,rot)

h

(
q(t), qdot(t), ũ(t),λdyn(t),λdot(t)

)
.

(43)
The following theorem is known as the Pontryagin minimum principle. For details on this
theorem and its numerous applications to optimal control, see Pontryagin et al. (1962).

Theorem 4.2. (Pontryagin et al., 1962) For all i = 1, ..., n, let u∗
i,tran(t) and u∗

i,rot(t), t ∈ [t1, t2],
be admissible controls in Γi,tran and Γi,rot, respectively, such that q∗(t) satisfies (24), (10), and (11).
If u∗

i,tran(t) and u∗
i,rot(t) solve the trajectory optimization problem stated in Section 4.4, then there

exist λ∗
0 ∈ R+, λ∗

dyn(t), and λ∗
dot(t) such that i) |λ∗

0 | + ||λ∗
dyn(t)||2 + ||λ∗

dot(t)||2 
= 0, t ∈

[t1, t2], ii) (41) holds, iii) h
(

q∗(t), ũ∗(t),λ∗
dyn(t),λ

∗
dot(t)

)
attains its minimum almost everywhere

on [t1, t2] except on a finite number of points, and iv) λ∗
dyn(t1) and λ∗

dot(t1) (respectively, λ∗
dyn(t2)

and λ∗
dot(t2)) satisfy the transversality condition for S1 (respectively, S2) at q∗(t1) (respectively,

q∗(t2)).

Pontryagin minimum principle is a necessary condition for optimality, and hence, it provides
candidate optimal control vectors. Sufficient conditions for optimality that are currently
available in the literature do not apply to the optimization problem discussed herein.

It is worth noting that, instead of introducing the Lagrange coordinates, the equality
constraints (7) and (5) can be accounted for by introducing Lagrange multipliers. This
approach requires modifying the assigned performance measure and introducing additional
costate vectors (Giaquinta & Hildebrandt, 1996; Lee & Markus, 1968). The dynamics of
the costate vectors are characterized by ordinary differential equations known as costate
equations, which need to be integrated numerically together with the dynamic equations of
the state vector. Therefore, the computational complexity of finding optimal trajectories for
large formations increases drastically when Lagrange multipliers are employed (L’Afflitto &
Sultan, 2010). Alternatively, finding a suitable set of Lagrange coordinates can be a demanding
task and in some cases the Lagrange coordinates may not have physical meaning (Pars, 1965);
however, this reduces the dimension of the costate equation and consequently reduces the
computational complexity.

Finally, we say the optimization problem is normal if λ0 
= 0, otherwise the optimization
problem is abnormal. Normality can be shown by using the Euler necessary condition

∂h
(

q(t), qdot(t), ũ(t),λdyn(t),λdot(t)
)

∂ũ

∣∣∣∣
ũ=ũ∗

= 0T
6n, (44)

where ũ∗(t) �
[
[u∗T

1,tran(t), u∗T
1,rot(t)]

T, ..., [u∗T
n,tran(t), u∗T

n,rot(t)]
T
]T

∈ int (∏n
i=1(Γi,tran × Γi,rot)).

In particular, assume, ad absurdum, that λ0 = 0. Now, if (41) and (44) imply that λdot(t) =
06n−n4

and λdyn(t) = 06n−n4
for some t ∈ [t1, t2], then assertion i) of Theorem 4.2 is

contradicted. Therefore, λ0 
= 0, and hence, the optimization problem is normal. In this
case, we assume without loss of generality that λ0 = 1.
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5. Analytical and numerical approaches to the optimal path planning problem

Finding minimizers to (2) subject to the constraints (3) – (6) can be formulated as a Lagrange
optimization problem (Ewing, 1969), which has been extensively studied both analytically
and numerically in the literature. Analytical methods rely on either Lagrange’s variational
approach using calculus of variations or on the direct approach. In the classical variational
approach, candidate minimizers for a given performance functional can be found by applying
the Euler necessary condition. In order to find the minimizers, candidate optimal solutions
need to be further tested by applying the Clebsh necessary condition, Jacobi necessary
condition, Weierstrass necessary condition, as well as the associated sufficient conditions
(Ewing, 1969; Giaquinta & Hildebrandt, 1996).

This classical analytical approach is not practical since applying the Euler necessary condition
involves solving a differential-algebraic boundary value problem, whose analytical solutions
are impossible to find for many practical problems of interest. Moreover, numerical solutions
to this boundary value problem are affected by a strong sensitivity to the boundary conditions
(Bryson, 1975). Furthermore, verifying the Jacobi necessary condition or the Weierstrass
necessary condition can be a dauting task (L’Afflitto & Sultan, 2010).

A variational approach to the optimal path planning problem for a single vehicle, known as
primer vector theory, was addressed by Lawden (1963). Lawden’s problem was formulated
using the assumptions that the acceleration vector a induced by external forces due to the
environment is function of only the position vector, the vehicle is a 3 DoF point mass, and the
state and control are only subject to equality constraints (Lawden, 1963). Primer vector theory
is successfully employed in spacecraft trajectory optimization (Jamison & Coverstone, 2010),
orbit transfers (Petropoulos & Russell, 2008), and optimal rendezvous problems (Zaitri et al.,
2010), however, vehicles are often assumed to be point masses subject to only gravitational
acceleration. Among the few studies on primer vector theory applied to vehicle formations,
it is worth noting the work of Mailhe & Guzman (2004), where the formation initialization
problem is addressed. Applications of primer vector theory to 6 DoF single vehicles have
been employed to optimize the descent on Mars (Topcu et al., 2007). These studies, however,
assume that the spacecraft is subject to a constant gravity acceleration, the control variables
are the translational acceleration and the angular rates, and the translational acceleration can
be pointed in any direction by rotating the vehicle.

Pontryagin’s minimum principle is a variational method that is equivalent to the Weierstrass
necessary condition with the advantage of addressing constraints on the control more
effectively than applying the classical variational approach. State constraints need to be
addressed by applying an optimal switching condition on the costate equation (Pontryagin
et al., 1962), which generally increases the complexity of the problem. In the present
formulation, the constraints on the formation are addressed by employing Lagrange
coordinates, which does not introduce further conditions on the costate vector dynamics.

The direct approach in the calculus of variations, which is more recent than the variational
approach, is based on defining a minimizing sequence of control functions un(t) in some
set Γ such that limn→+∞ un(t) = u(t) is a minimizer of the performance measure J[u(·)].
To this end, the following conditions should be met. i) Compactness of Γ, so that a
minimizing sequence contains a convergent subsequence, ii) closedness of Γ, so that the
limit of such a subsequence is contained in Γ, and iii) lower semicontinuity of the sequence
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{un(·)}∞
n=0, that is, if limn→+∞ un(t) = u(t), then J[u(t)] ≤ lim infn→+∞ J[un(t)], un ∈ Γ.

Finally, it is also worth noting that approximate analytical methods can be used to solve the
optimal path planning problem such as shape-based approximation methods (Petropoulos &
Longuski, 2004), which are generally less effective due to the arbitrary parameterization of the
minimizers (Wall, 2008).

Most of the results on the fuel consumption optimization employ numerical methods (Betts,
1998), which can be categorized as indirect or direct. Indirect numerical methods, which
mimic the variational approach, suffer from high computational complexity since adjoint
variables must be introduced. Alternatively, direct numerical methods are computationally
more efficient, however, they require casting the given problem into a parameter optimization
problem (Herman & Conway, 1987). Among the numerical methods commonly in use, it is
worth mentioning genetic algorithms (Seereram et al., 2000) and particle swarm optimizers
(Hassan et al., 2005).

One of the contributions of the present paper is that it extends Lawden’s results on primer
vector theory to formations of vehicles modeled as 6 DoF rigid bodies subject to generic
environmental forces and moments by applying Pontryagin’s minimum principle. As in all
classical variational methods, Pontryagin’s minimum principle is not suitable for numerically
computing the optimal trajectory of a formation. However, Pontryagin’s minimum principle
allows us to draw analytical conclusions since it provides a generalization of the necessary
conditions used by Lawden (1963), allows us to formally implement bounded integrable
functions as admissible controls, and allows us to account for control constraints. Prussing
(2010) and Marec (1979) have used Pontryagin’s minimum principle to address primer
vector theory using the same assumptions as Lawden (1963). In contrast, the present
work provides additional analytical results for generic mission scenarios and complex
environmental conditions for which numerical results can be verified. Furthermore, this paper
exploits some properties of the costate space and consequently provides further insight into
the formation system dynamics problem.

6. Necessary conditions for optimality of UAV formation trajectories

The following propositions are needed to develop the necessary conditions for optimality of
the UAV formation problem.

Proposition 6.1. Consider the performance measure Jformation [ũ(·)] given by (2). Then, there exists
at least one ũ∗ such that Jformation [ũ

∗(·)] ≤ Jformation [ũ(·)] for all ũ ∈ ∏
n
i=1(Γi,tran × Γi,rot).

Proof. Since the integrand of the performance measure (1) is a continuous function defined
on the compact set Γi,tran × Γi,rot, it follows from Weierstrass’ theorem that (1) has a global
minimizer on Γi,tran × Γi,rot. Now, since µi ∈ [0, 1] with ∑

n
i=1 µi = 1, the result is immediate.

Proposition 6.2. Assume that the hypothesis of Theorem 4.1 hold. If λ∗
dot(t) ∈ N

(
∂Ψ(q)

∂q

∣∣∣∣
q=q∗

q̇∗(t)

+ ∂ψ(q)
∂q

∣∣∣∣
q=q∗

)
, then the path planning problem is normal.
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Proof. First, note that the Hamiltonian function (42) can be rewritten as

h

(
q(t), qdot(t), ũ(t),λdyn(t),λdot(t)

)
=λ0

n

∑
i=1

µi||ui(t)||2

+
n

∑
i=1

ui,tran(t)
∂vi (q, qdot)

∂qdot
λdyn(t)

+
n

∑
i=1

ui,rot(t)
∂ωi (q, qdot)

∂qdot
λdyn(t)

+ λT
dyn(t)f̂dyn(q(t), qdot(t)) + λT

dot(t)qdot(t). (45)

Furthemore, note that (44) implies that

λ∗
0

n

∑
i=1

µi
u∗T

i (t)

||u∗
i (t)||2

= −
n

∑
i=1

[
∂vi (q, qdot)

∂qdot

∣∣∣∣
(q∗ ,q∗

dot)

λ∗
dyn(t),

∂ωi (q, qdot)

∂qdot

∣∣∣∣
(q∗ ,q∗

dot)

λ∗
dyn(t)

]
,

where ũ∗ ∈ int
(
Πn

i=1(Γi,tran × Γi,rot)
)

and where we use the subscript (q∗, q∗
dot) for

(q, qdot) = (q∗, q∗
dot). Now, assume, ad absurdum, that λ∗

0 = 0 and note that
∂vi(q,qdot)

∂qdot
=

∂vi(q,qdot)
∂q

∂q
∂qdot

and
∂ωi(q,qdot)

∂qdot
=

∂ωi(q,qdot)
∂q

∂q
∂qdot

. Since Ψ (q) is diffeomorphic and Theorem 4.1

holds, it follows that λ∗
dyn(t) = 06n−n4

. In this case, (41) can be explicitly written as

d

dt

[
λ∗

dot(t)
λ∗

dyn(t)

]
= −

⎡
⎣

∂Ψ(q)
∂q q̇(t) +

∂ψ(q)
∂q 0(6n−n4)×(6n−n4)

∂fdyn(q,qdot,ũ)
∂q

∂fdyn(q,qdot,ũ)
∂qdot

⎤
⎦

T

(q∗ ,q∗
dot)

[
λ∗

dot(t)
λ∗

dyn(t)

]
, (46)

and hence, λ∗
dot(t) = 06n−n4

, which contradicts i) of Theorem 4.2.

If follows from Proposition 6.2 that the path planning optimization problem for a constrained
formation is abnormal. Example 6.1 below, however, shows that this problem is normal for
unconstrained 3 DoF vehicles, which is a well known result in the literature (Lawden, 1963).

Theorem 6.1. Consider the path planning optimization problem. If
n
∑

i=1
u∗

i,tran(t)
∂vi(q,qdot)

∂qdot

∣∣∣∣
(q∗ ,q∗

dot)

+

n
∑

i=1
u∗

i,rot(t)
∂ωi(q,qdot)

∂qdot

∣∣∣∣
(q∗ ,q∗

dot)

and −λ∗
dyn(t) are parallel, then the performance measure (2) is

minimized. Moreover, for all i = 1, . . . , n, the following conditions hold.

i) If λ∗
0µi >

∣∣∣∣
∣∣∣∣

∂vi(q,qdot)
∂qdot

∣∣∣∣
(q∗ ,q∗

dot)

λ∗
dyn(t)

∣∣∣∣
∣∣∣∣
2

, then u∗
i,tran(t) = 03.

ii) If λ∗
0µi >

∣∣∣∣
∣∣∣∣

∂ωi(q,qdot)
∂qdot

∣∣∣∣
(q∗ ,q∗

dot)

λ∗
dyn(t)

∣∣∣∣
∣∣∣∣
2

, then u∗
i,rot(t) = 03.
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iii) If λ∗
0µi <

∣∣∣∣
∣∣∣∣

∂vi(q,qdot)
∂qdot

∣∣∣∣
(q∗ ,q∗

dot)

λ∗
dyn(t)

∣∣∣∣
∣∣∣∣
2

, then u∗
i,tran(t) = ρi,2.

iv) If λ∗
0µi <

∣∣∣∣
∣∣∣∣

∂ωi(q,qdot)
∂qdot

∣∣∣∣
(q∗ ,q∗

dot)

λ∗
dyn(t)

∣∣∣∣
∣∣∣∣
2

, then u∗
i,rot(t) = ρi,4.

v) If λ∗
0µi =

∣∣∣∣
∣∣∣∣

∂vi(q,qdot)
∂qdot

∣∣∣∣
(q∗ ,q∗

dot)

λ∗
dyn(t)

∣∣∣∣
∣∣∣∣
2

, then u∗
i,tran(t) is unspecified.

vi) If λ∗
0µi =

∣∣∣∣
∣∣∣∣

∂ωi(q,qdot)
∂qdot

∣∣∣∣
(q∗ ,q∗

dot)

λ∗
dyn(t)

∣∣∣∣
∣∣∣∣
2

, then u∗
i,rot(t) is unspecified.

Proof. It follows from (45) that h

(
q(t), ũ(t),λdyn(t),λdot(t)

)
is minimized if, for all i =

1, . . . , n, − ∂vi(q,qdot)
∂qdot

∣∣∣∣
(q∗ ,q∗

dot)

λ∗
dyn(t) is parallel to u∗

i,tran(t) and if − ∂ωi(q,qdot)
∂qdot

∣∣∣∣
(q∗ ,q∗

dot)

λ∗
dyn(t)

is parallel to u∗
i,rot(t). Thus, using the triangular inequality, it follows that

h

(
q∗(t), ũ∗(t),λ∗

dyn(t),λ
∗
dot(t)

)
− λ∗T

dot(t)qdot(q
∗(t))− λT

dyn(t)f̂dyn(q
∗(t), qdot(q

∗(t)))

≤
n

∑
i=1

[(
λ∗

0µi −

∣∣∣∣
∣∣∣∣
∂vi (q, qdot)

∂qdot

∣∣∣∣
(q∗ ,q∗

dot)

λ∗
dyn(t)

∣∣∣∣
∣∣∣∣
2

)
||u∗

i,tran(t)||2

]

+
n

∑
i=1

[(
λ∗

0µi −

∣∣∣∣
∣∣∣∣
∂ωi (q, qdot)

∂qdot

∣∣∣∣
(q∗ ,q∗

dot)

λ∗
dyn(t)

∣∣∣∣
∣∣∣∣
2

)
||u∗

i,rot(t)||2

]
, (47)

which proves i) – iv). Next, if λ∗
0µi =

∣∣∣∣
∣∣∣∣

∂vi(q,qdot)
∂qdot

∣∣∣∣
(q∗ ,q∗

dot)

λ∗
dyn(t)

∣∣∣∣
∣∣∣∣
2

(respectively, λ∗
0µi =

∣∣∣∣
∣∣∣∣

∂ωi(q,qdot)
∂qdot

∣∣∣∣
(q∗ ,q∗

dot)

λ∗
dyn(t)

∣∣∣∣
∣∣∣∣
2

), then Pontryagin’s minimum principle does not provide any

information about the optimal control, and hence, v) and vi) hold.

Analogous to Lawden’s (Lawden, 1963) primer vector theory,
∂vi(q,qdot)

∂qdot

∣∣∣∣
(q∗ ,q∗

dot)

λ∗
dyn(t) and

∂ωi(q,qdot)
∂qdot

∣∣∣∣
(q∗ ,q∗

dot)

λ∗
dyn(t) determine the magnitude and the direction of the control forces,

and hence, we denote them as the translational primer vector and the rotational primer vector,
respectively. Moreover, the trajectory given by each of the cases in Theorem 6.1 are called
arcs. For each i = 1, . . . , n, the arcs corresponding to i) (respectively, ii)) are called
maximum translational (respectively, rotational) thrust arcs. Similarly, arcs corresponding to iii)
(respectively, iv)) are called null translational (respectively, rotational) thrust arcs. Finally, arcs
corresponding to v) (respectively, vi)) are called singular translational (respectively, rotational)
thrust arcs. The optimal translational and rotational control vectors for v) and vi) in Theorem
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6.1 need to be deduced by applying the generalized Legendre-Clebsch condition (Giaquinta
& Hildebrandt, 1996).

Theorem 6.2. Consider the path planning optimization problem. Then, there exists c∗ ∈ R such that

m

(
q∗(t), q∗

dot(t),λ
∗
dyn(t),λ

∗
dot(t)

)
= c∗. (48)

Proof. It follows from the Weierstrass - Erdmann condition (Giaquinta & Hildebrandt, 1996)
that on an optimal trajectory,

d

dt
h

(
q∗(t), q∗

dot(t), ũ∗(t),λ∗
dyn(t),λ

∗
dot(t)

)
=

∂

∂t
h

(
q(t), q∗

dot(t), ũ∗(t),λ∗
dyn(t),λ

∗
dot(t)

)

holds for all t ∈ (t1, t2). Now, since h does not explicitly depend on t, it follows that there

exists c∗ ∈ R such that h
(

q∗(t), q∗
dot(t), 06n,λ∗

dyn(t),λ
∗
dot(t)

)
= c∗, which proves (48).

Proposition 6.3. Consider the costate dynamics given by (46). Then, the dynamics of λ∗
dyn(t) are

decoupled from the dynamics of λ∗
dot(t).

Proof. The result is immediate from the form of (46).

It follows from Proposition 6.3 that the translational primer vector and the rotational primer
vector dynamics are independent of the choice of qdot. Moreover, in solving for λ∗

dyn(t) we

need not integrate a system of 2(6n − n4) ordinary differential equations as in (41), but rather
a system of (6n − n4) ordinary differential equations, which is very advantageous for large
formations.

Proposition 6.4. The translational primer vector and the rotational primer vector are continuously
differentiable functions.

Proof. First, note that λ∗
dyn(·) and λ∗

dot(·) are continuous with continuous derivatives almost

everywhere on t ∈ (t1, t2) except for a finite number of points (Pontryagin et al., 1962). Next,
the differentiability assumption on the environmental model for a(·) and m(·) implies that the
matrix on the right-hand side of (41) is of class C1(R6n−n4 ×R

6n−n4 ×R
12n). Hence, d

dtλ
∗
dyn(·)

and d
dtλ

∗
dot(·) are continuous on (t1, t2).

In order to elucidate the translational primer vector and rotational primer vector dynamics for
a vehicle formation problem, we focus on specific formation configurations and on a specific
environmental model. Hence, in the reminder of the paper we concentrate on the case where
nv components of vi and nω components of ωi are also components of qdot. A justification for
this model is as follows. Assume that the i-th formation vehicle behaves as unconstrained, e.g.,
the first vehicle in Examples 4.1 and 4.2, or the dynamics of the i-th vehicle can be addressed as
partly unconstrained, e.g., the second formation vehicle in the aforementioned examples. In
either of these cases, it is natural to choose the unconstrained components of vi and ωi as some
of the components of qdot. This model includes the classical formation configuration known
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as the leader-follower model, whose trajectories are computed as a function of the leader’s path
(Wang, 1991).

To simplify the environmental model assume that

a (x̃i (q(t), qdot(t))) = a

([
0T

3 , vT
i (q(t), qdot(t)), 0T

3 , 0T
3

]T
)

, (49)

ω̃i (x̃i (q(t), qdot(t))) = ω̃i

([
0T

3 , vT
i (q(t), qdot(t)), 0T

3 , ωT
i (q(t), qdot(t))

]T
)

. (50)

For notational convenience, we will refer to (49) and (50) as a(vi(t)) and ω̃i(vi(t),ωi(t)),
respectively. This assumption on the accelerations induced by external forces and external
moments is justified by a common environmental model given by (Anderson, 2001)

a (x̃i (q(t), qdot(t))) = g + ||vi(t)||
2
2

(
−ki,Dv̂i(t) + ki,Lv̂L

i (t)− ki,Sv̂S
i (t)

)
, (51)

m (x̃i (q(t), qdot(t))) = ||vi(t)||
2
2

(
ki,Rω̂

R
i (t) + ki,Pω̂

p
i (t) + ki,Yω̂

Y
i (t)

)
, (52)

where g is the constant gravitational acceleration, v̂i � vi/||vi||2, v̂L
i : [t1, t2] → R

3

(respectively, v̂S
i : [t1, t2] → R

3) is the unit vector in the direction of the aerodynamic lift

(respectively, in the direction opposite to the aerodynamic side force), ω̂R
i : [t1, t2] → R

3

(respectively, ω̂
p
i : [t1, t2] → R

3 and ω̂Y
i : [t1, t2] → R

3) is the unit vector in the direction of roll
(respectively, pitch and yaw), and ki,D, ki,L, ki,S, ki,R, ki,P, and ki,Y, are the drag, lift, side force,
roll, pitch, and yaw coefficients, respectively.

Using the above assumptions, it follows from (22) that

˙̂vi(t) = â(vi(t)) + ûi,tran(t), (53)

˙̂ωi(t) = ˆ̃ωi(vi(t),ωi(t)) + ûi,rot(t), (54)

where v̂i : [t1, t2] → R
nv (respectively, ω̂i : [t1, t2] → R

nω ) represents the components of
vi(q(t), qdot(t)) (respectively, ωi(q(t), qdot(t))) that are also components of qdot(t), and â :
R

3 → R
nv and ûi,tran : [t1, t2] → R

nv (respectively, ˆ̃ωi : R
3 × R

3 → R
nω and ûi,rot : [t1, t2] →

R
nω ) are the corresponding components of a(vi(t)) and ui,tran(t) (respectively, ω̃i(vi(t),ωi(t))

and ui,rot(t)).

Next, it follows from (46), (53), and (54) that

d

dt

[
λ∗

dyn,i,v̂(t)

λ∗
dyn,i,ω̂(t)

]
= −

⎡
⎢⎣

(
∂â(vi)

∂v̂i

)T ( ∂ ˆ̃ωi(vi,ωi)
∂v̂i

)T

0nω×nv

(
∂ ˆ̃ωi(vi,ωi)

∂ω̂i

)T

⎤
⎥⎦
(v̂∗

i ,ω̂∗
i )

[
λ∗

dyn,i,v̂(t)

λ∗
dyn,i,ω̂(t)

]
, (55)

where λdyn,i,v̂ : [t1, t2] → R
nv and λdyn,i,ω̂(t) : [t1, t2] → R

nω are the nv and nω components of

λ∗
dyn,i(t) corresponding to the nv and nω components of v̇i(t) and ω̇i(t), respectively.
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Theorem 6.3. Assume that ||û∗
i,tran(t)||2 = ρ̂i,tran, ||û∗

i,rot(t)||2 = ρ̂i,rot, ||u
∗
i,tran(t)||2 = ρi,tran,

||u∗
i,rot(t)||2 = ρi,rot, where ρ̂i,tran and ρi,tran ∈ (ρi,1, ρi,2), ρi,rot and ρi,rot ∈ (ρi,3, ρi,4), and[

∂ ˆ̃ωi(vi,ωi)
∂ω̂i

]
(v∗

i ,ω∗
i )

is invertible. Then,

∣∣∣∣
∣∣∣∣

[
∂ ˆ̃ωi (vi,ωi)

∂ω̂i

]−T

(v∗
i ,ω∗

i )

(
I3 +

[
∂âi (vi)

∂v̂i

]T

v∗
i

)
u∗

i,tran(t)

∣∣∣∣
∣∣∣∣
2

≤
√

ρ2
i,tran + ρ2

i,rot, (56)

∣∣∣∣
∣∣∣∣

[
∂ ˆ̃ωi (vi,ωi)

∂ω̂i

]−T

(v∗
i ,ω∗

i )

u̇∗
i,rot(t)

∣∣∣∣
∣∣∣∣
2

≤
√

ρ2
i,tran + ρ2

i,rot. (57)

Proof. It follows from (44), (42), (53), and (54) that

λ∗
0µi

û∗
i,tran(t)

||ũ∗(t)||2
= −λ∗

dyn,i,v̂(t),

λ∗
0µi

û∗
i,rot(t)

||ũ∗(t)||2
= −λ∗

rot,i,ω̂(t)(t).

(58)

Recalling that

∣∣∣∣
∣∣∣∣

û∗
i,rot(t)

||ũ∗(t)||2

∣∣∣∣
∣∣∣∣
2

≤ 1 and using (55) and (58) we obtain

∣∣∣∣
∣∣∣∣λ

∗
0µi

[
∂ ˆ̃ωi (vi,ωi)

∂ω̂i

]−T

(v∗
i ,ω∗

i )

||ũ∗
i (t)||2 ˙̂u∗

i,tran(t) + ˙̃u∗T
i (t)ũ∗

i (t)û
∗
i,tran(t)

||ũ∗
i (t)||

2
2

+ λ∗
0µi

[
∂ ˆ̃ωi (vi,ωi)

∂ω̂i

]−T

(v∗
i ,ω∗

i )

[
∂âi (vi)

∂v̂i

]T

v∗
i

û∗
i,tran(t)

||ũ∗
i (t)||2

∣∣∣∣
∣∣∣∣
2

≤ λ∗
0µi,

∣∣∣∣
∣∣∣∣λ

∗
0µi

[
∂ ˆ̃ωi (vi,ωi)

∂ω̂i

]−T

(v∗
i ,ω∗

i )

||ũ∗
i (t)||2 ˙̂u∗

i,rot(t) + ˙̃u∗T
i (t)ũ∗

i (t)û
∗
i,rot(t)

||ũ∗
i (t)||

2
2

∣∣∣∣
∣∣∣∣
2

≤ λ∗
0µi.

Now, noting that ˙̃u∗T
i (t)ũ∗

i (t) = 0, the result follows.

Since Theorem 6.3 is proven using the Euler necessary condition, it follows that
(u∗

i,tran, u∗
i,rot) ∈ int(Γi,tran × int(Γi,rot)). However, the parameter bounds ρi,j, j = 1, 2, 3, 4,

are imposed by physical and not mathematical considerations, and hence, for practical
applications we can assume that there exists ǫ > 0 such that Theorem 6.3 holds for ρi,tran ∈
(ρi,1 − ǫ, ρi,2 + ǫ) and ρi,rot ∈ (ρi,3 − ǫ, ρi,4 + ǫ). Consequently, for engineering applications
we can assume that Theorem 6.3 also holds on arcs of maximum translational and rotational
thrust.
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Corollary 6.1. Assume that the hypothesis of Theorem 6.3 hold. If nω = 0, then

∣∣∣∣
∣∣∣∣
[

∂âi (vi)

∂v̂i

]−T

v∗
i

û∗
i,tran(t)

∣∣∣∣
∣∣∣∣
2

≤
√

ρ2
i,tran + ρ2

i,rot. (59)

Alternatively, if nv = 0, then

∣∣∣∣
∣∣∣∣

[
∂ ˆ̃ωi (vi,ωi)

∂ω̂i

]−T

(v∗
i ,ω∗

i )

û∗
i,rot(t)

∣∣∣∣
∣∣∣∣
2

≤
√

ρ2
i,tran + ρ2

i,rot. (60)

Proof. The proof is a direct consequence of Theorem 6.3.

Example 6.1. Consider the formation of the two vehicles addressed in Examples 4.1 and 4.2,

and assume that q(t) =
[
xT

1 (t), rT
2 (t)

]T
. As shown in Example 4.2, if rmin < ||r1(t)− r2(t)||

2
2 <

rmax, then the first vehicle and the translational dynamics of the second vehicle can be
considered unconstrained. Thus, the costate equation (41) can be rewritten as two decoupled
ordinary differential equations given by

d

dt

[
λdot,1(t)
λdyn,1(t)

]
= −

⎡
⎢⎢⎢⎣

[
03×3 03×3

03×3
∂R−1

rod(σ1)
∂σ1

σ̇1

]T

06×6

(
∂fdyn,1(x1,qdot,1(x1),u1)

∂x1

)T ( ∂fdyn,1(x1,qdot,1(q),u1)
∂qdot,1

)T

⎤
⎥⎥⎥⎦

[
λdot,1(t)
λdyn,1(t)

]
, (61)

d

dt

[
λdot,2(t)
λdyn,2(t)

]
= −

⎡
⎣03×3

∂fdyn,2(x̃2(t),u2,tran(t))
∂r2

03×3
∂fdyn,2(x̃2(t),u2,tran(t))

∂v2

⎤
⎦

T [
λdot,2(t)
λdyn,2(t)

]
, (62)

where λdyn(t) � [λT
dyn,1(t) λ

T
dyn,2(t)]

T, λdyn,1 : [t1, t2] → R
6, λdyn,2 : [t1, t2] → R

3, λdot(t) �

[λT
dot,1(t), λ

T
dot,2(t)]

T, λdot,1 : [t1, t2] → R
6, and λdot,2 : [t1, t2] → R

3.

From (61) and (62) it follows that the path planning optimization problem for the first vehicle
is possibly abnormal since we cannot verify a priori whether or not

λ∗
dot,1(t) ∈ N

⎛
⎜⎝

⎡
⎣

03×3 03×3

03×3
∂R−1

rod(σ1)
∂σ1

∣∣∣∣σ̇1(q(t)

⎤
⎦

q=q∗

⎞
⎟⎠ ,

whereas the path planning optimization problem for the second vehicle is normal since its
rotational dynamics are not expressed by (62). Normality for the second formation vehicle
can also be proven by rewriting the unconstrained dynamic equations (3) for a 3 DoF vehicle.
For details, see L’Afflitto & Sultan (2008).

Using (18) it follows that (45) can be written as

h

(
q(t), qdot(t), ũ(t),λdyn(t),λdot(t)

)
= h1

(
x1(t), u1(t),λdyn,1(t),λdot,1(t)

)

+ h2

(
x2(t), u2,tran(t),λdyn,2(t)

)
, (63)
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where

h1

(
x1(t), u1(t),λdyn,1(t),λdot,1(t)

)
= λ0µ1||u1(t)||2 + λT

dyn,1,1(t)u1,tran(t)

+ λT
dyn,1,2(t)u1,rot(t) + λT

dyn,1,1(t)a (x̃1(t))

+ λT
dyn,1,2(t)

(
ω̃1 (x̃1(t))− I−1

in,1ω
×
1 (ω1(t)) Iin,1ω1(t)

)

+ λT
dot,1,1v1(t)− λT

dot,1,2R−1
rod(σ1(t))σ̇1(t), (64)

h2

(
x2(t), u2,tran(t),λdyn,2(t)

)
= µ2||u2,tran(t)||2 + λT

dyn,2,1(t)u2,tran(t)

+ λT
dyn,2,1(t)a (x̃2(t)) + λT

dot,2,1v2(t), (65)

where λdyn,1(t) � [λT
dyn,1,1(t), λ

T
dyn,1,2(t)]

T, λdyn,2(t) � [λT
dyn,2,1(t), λ

T
dyn,2,2(t)]

T, and λdyn,j,k

: [t1, t2] → R
3, j, k = 1, 2. Now, using Theorem 6.3 we can construct a candidate optimal

control law. Remarkably, the same candidate optimal control law can be obtained by applying
Theorem 6.3 to (64) and (65) independently. The fact that the candidate optimal control
law for the the first vehicle can be found independently from the second vehicle is another
advantage in employing Lagrange coordinates. The minimization of h2 leads to the same
candidate optimal control law as given by primer vector theory with the only difference
being that the arcs of maximum, null, and singular thrust are not characterized by the
sign of ||λ∗

dyn,2,1(t)||2 − 1 as in Lawden’s work (Lawden, 1963) but rather by the sign of

||λ∗
dyn,2,1(t)||2 − µ2.

Singular translational thrust arcs for the first vehicle occur when

(λ0µ1)
2 = λT

dyn,1,1(t)λdyn,1,1(t) (66)

and, as shown in Theorem 6.3, u∗
2,tran cannot be found on singular arcs by applying

Pontryagin’s minimum principle. However, from (44) and (64), we note that λ0µ1
u∗

1,tran(t)

||u∗
1(t)||2

=

−λ∗
dyn,1,1(t), and hence, (66) yields

||u∗
1(t)||

2
2 = u∗T

1,tran(t)u
∗
1,tran(t). (67)

Thus, on singular translational thrust arcs for the first vehicle u∗
1,rot(t) = 03. Similarly, it can

be shown that u∗
1,tran(t) = 03 on singular rotational thrust arcs for the first vehicle. Finally,

singular arcs for the second vehicle occur when

µ2
2 = λ∗T

dyn,2,1(t)λ
∗
dyn,2,1(t). (68)

From (44) and (65) it follows that µ2
u∗

2,tran(t)

||u∗
2,tran(t)||2

= −λ∗
dyn,2,1(t), which satisfies (68). Hence, any

admissible u2,tran can be applied on singular arcs. This was first noted by Lawden (1963).

7. Illustrative numerical example

In this section, we present a numerical example to highlight the efficacy of the framework
presented in the paper. In particular, we consider the two vehicles presented in Examples
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4.1, 4.2, and 6.1 with masses 0.1kg and inertia matrices 0.40I3 kgm4 flying in an environment
modeled by (51) and (52), where g = [0, 0,−9.81]T m

s2 , ki,D = 0.20, ki,L = 1.20, ki,S = 0.50,
ki,R = 0.30, ki,P = 0.30, and ki,Y = 0.30, for i = 1, 2. Furthermore, we assume that
t1 = 0.00 s, t2 = 60.00 s, r1(t1) = [0.00, 0.00, 0.00]T m, r1(t2) = [0.90, −10.00, −1.80]T m,
σ1(t1) = [0.00, 0.00, 0.00]T, and σ1(t2) = [0.00, 0.00, 120.00 π

180.00 ]
T. For our simulation we

take ρi,1 = 10.00 m
s2 , ρi,2 = 45.00 m

s2 , ρi,3 = 10.00 1
s2 , and ρi,1 = 20.00 1

s2 , for i = 1, 2. The
boundary conditions for the second vehicle are deduced from (14) and (15) by assuming that
rmax = 21

25 m and rmin = 33
50 m. It can be easily verified that the constraints given by (12) and

(13) hold for all t ∈ [t1, t2]. Letting µ1 = µ2 = 1
2 and applying Theorem 6.1, we obtain

the optimal trajectory shown in Figure 1. Figures 2 and 3 show the optimal control as a
function of the norm of the translational primer vector and the rotational primer vector, as
well as time, respectively. For this example J [u1(·)] = 10.00 m

s and J [u2(·)] = 11.60 m
s . Since

m

(
q∗(t), q∗

dot(t),λ
∗
dyn(t),λ

∗
dot(t)

)
= 22.30 m

s2 , Theorem 6.2 holds. Finally, Figure 4 shows the

translational primer vector and the rotational primer vector of the first vehicle as a function of
time.
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Fig. 1. Optimal trajectories for vehicles 1 and 2. The cube represents the first vehicle and the
prism represents the second vehicle.
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Fig. 2. Optimal control for the first vehicle as function of the norm of the translational primer
vector and the rotational primer vector.
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Fig. 3. Optimal control for the first vehicle as function of time.
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Fig. 4. Translational and rotational primer vector norms as functions of time for the first
vehicle.

8. Conclusion and recommendations for future research

In this paper, we addressed the problem of minimizing the control effort needed to operate

a formation of n UAVs. Specifically, a candidate optimal control law as well as necessary

conditions for optimality that characterize the resulting optimal trajectories are derived and

discussed assuming that the formation vehicles are 6 DoF rigid bodies flying in generic

environmental conditions and subject to equality and inequality constraints. The results

presented extend Lawden’s seminal work (Lawden, 1963) and several papers predicated on

his work.

An illustrative numerical example involving a formation of two vehicles is provided to

illustrate the mathematical path planning optimization framework presented in the paper.

Furthermore, we show that our framework is not restricted to UAV formations and can be

applied to formations of robots, spacecraft, and underwater vehicles.

The results of the present paper can be further extended in several directions. Specifically,

an analytical study of the translational primer vector and the rotational primer vector can

be useful in identifying numerous properties of the formation’s optimal path. In particular,

the translational primer vector and the rotational primer vector can be used to measure the

sensitivity of the candidate optimal control law to uncertainties in the dynamical model. In

this paper, we provide a generic formulation to the optimal path planning problem in order

to address a large number of formation problems. However, specializing our results to a

particular formation and a particular environmental model can lead to analytical tools that can

be amenable to efficient numerical methods. Additionally, nonholonomic constraints have not

been accounted in our framework and can be addressed by modifying Theorem 4.1. Finally, in

this paper, we penalize vehicle control effort by tuning the constants µ1,...,µn in (2). In many

practical applications, however, it is preferable to trade-off the control effort in a formation of

vehicles by optimizing over the free parameters µ1,...,µn.
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