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1. Introduction 

Historically, the word diabetes was coined from the Greek word meaning a siphon by the 2nd 
century Greek physician, Aretus the Cappadocian. He used the word to connote a condition 
of passing water (urine) like a siphon. Later the Latin description mellitus meaning sweetened 
or honey-like was added. Put together, the term diabetes mellitus was literarily used to denote 
a disease condition which was associated with the persistent passage of sweetened urine (Krall 
& Braser, 1999). 
In 1999, the World Health Organization described diabetes mellitus as a metabolic disorder of 
multiple aetiology characterized by chronic hy perglycaemia (the fasting blood glucose level 
equal or above 200 mg/dl taken at least twice, on different occasions) with disturbances of 
carbohydrate, fat and protein metabolism resultin g from defects in insulin secretion, insulin 
action, or both. In other words, diabetes mellit us is a chronic disease with insidious onset in 
which the fasting blood glucose is persistently  raised above the normal range values, the 
normal range being between 60 to 120 mg/dl of blood [Krall & Braser, 1999]. It occurs either 
because of a lack of insulin (the hormone responsible for glucose metabolism), or due to the 
presence of certain factors opposing the action of insulin on the body tissues that are involved 
in glucose metabolism, particularly, the liver and the skeletal muscles.  
The consequence of insufficient insulin action is hyperglycaemia which may be associated 
with many associated metabolic abnormalitie s notably the development of hyperketonaemia 
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resulting from disordered protein metabolism , and derangements in fatty acid and lipids 
metabolism. If the fasting blood glucose lies between 100 to 130 mg/dl, it is referred to as 
Prediabetes which is associated with an increased tendency or potential of developing frank 
diabetes. A fasting blood glucose of 140 mg/dl or higher is consistent with either type of 
diabetes mellitus, particularly, when acco mpanied by classic symptoms of diabetes 
[Diabetes Control and Complicati on Trial Research Group, 1997]. 

2. Diabetes mechanisms 

Defects in glucose metabolizing machinery (such as defective insulin secretion, insulin 
action due to de-expression of insulin receptors or insensitivity of expressed insulin 
receptors and glucose transporters, decreased peripheral glucose utilization and defective 
glucose metabolizing enzymes, etc.) and consistent efforts of the physiological system to 
correct the imbalance in glucose metabolism or maintain glucose homeostasis (such as 
increased insulin secretion, lipolysi s, gluconeogenesis, glycogenolysis, etc.) place an over 
exertion on the endocrine system, resulting in hyperglycaemia. The persistent chronic 
exposure of pancreatic �Ã-cells to the supraphysiological glucose concentrations 
(hyperglycaemia) results in non-physiological and potentially irreversible �Ã-cell damage, a 
term known as glucose toxicity which is a gradua l, time-related onset of irreversible lesion 
to pancreatic �Ã-cellular components of insulin content and secretion.  
Multiple biochemical pathways and cellular mechanisms for glucose toxicity have been 
identified and these include glucose autoxidati on (resulting from oxidative stress in the 
presence of chronic hyperglycaemia), protein kinase C (PKC) activation, increased flux 
through the hexosamine biosynthesis pathway (HBP), formation of advanced glycation end-
products (AGEs), altered polyol pathway flux  and altered gene expression. However, all 
these pathways share in common the formation of highly reactive oxygen intermediates 
(ROIs) or reactive oxygen species (ROS) which in excess amount and on prolonged exposure 
induce chronic oxidative stress on the pancreatic �Ã-cell population, which in turn causes 
defective insulin gene expression and insulin secretion as well as increase pancreatic �Ã-cell 
death.  
Hyperglycaemia leads to the production of  ROS which modulates various biological 
functions by stimulating transduction sign als, some of which are involved in the 
pathogenesis of diabetes mellitus. Thus, redox-sensitive signalling pathways have been 
shown to play a pivotal role in the development, progression, and damaging effect on �Ã-
cells population within the pancreatic islet of Langerhans. In the pancreatic tissues, as 
hyperglycaemia worsens, the redox-sensitive signalling pathways mediating insulin 
synthesis, storage and release from the pancreatic �Ã-cells becomes compromised 
progressively. In addition, the oxidative stress induced by chronic hyperglycaemia 
promotes pancreatic �Ã-cells apoptosis which ultimately resu lting in an overt reduction in the 
insulin secreting pancreatic �Ã-cells population.  The hallmarks  of these molecular events are 
pancreatic �Ã-cells failure and hypoinsulinaemia, which constitute the major pathogenic 
factors in type 1 diabetes mellitus.  
Similarly, chronic hyperglycaemia-induced oxidative stress (the presence of an excess 
amount of reactive oxygen intermediates, due to an imbalance between their formation and 
degradation as a result of chronic hyperglycaemia) has been considered a proximate cause 
and common pathogenic factor for tissue/systemic complications of diabetes such as 
endothelial cells (micro- and macro-angiopathies), nerve cells (neuropathy), proximal renal 
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epithelial cell (nephropathy), pancreatic �Ã-cells (pancreatic �Ã-cell failure) through lipid 
peroxidation and glycation mechanisms in these organs. Hyperglycaemia has been shown to 
result in glycation (a non-enzymatic conjugat ion of glucose to proteins leading to the 
formation of advanced glycation (glycosylation) end-products (AGEs) and tissue damage.  
Increased glycation and build-up of tissue AGEs have been implicated in the aetiology of 
diabetes mellitus, its complications and progression because they alter glucose metabolizing 
enzyme activity, decrease ligand bindin g, modify protein half-life and alter 
immunogenicity.  
One mechanism by which the effects of glucose toxicity result in chronic hyperglycaemia are 
thought to be mediated is oxid ative stress [Baynes, 1991; Evans et al., 2002], and 
hyperglycaemia is known to be one of the main causes of oxidative stress in type 2 diabetes 
mellitus [Bonnefont-Rousselot, 2002; Robertson et al., 2003]. Oxidative stress is a state of 
imbalance between free radical generation and mopping up.  
Oxidative stress is known to play a pivotal role in the pathogenesis of insulin resistance 
which is itself is thought to be mediated via it s contribution to glucose toxicity, particularly, 
in insulin target tissues including the pancreatic �Ã-cells [Gleason et al., 2000; Fantus, 2004]. 
Tissues such as the mesangial cells (in the kidneys), retinal cells and pancreatic islets are 
least endowed with intrinsic antiox idant enzyme expression, including superoxidases-1 and -
2, catalase and glutathione peroxidase [Hayden & Tyagi, 2002; Robertson, 2004]. Prolonged 
exposure of pancreatic �Ã-cell to hyperglycaemia, as in diabetes, results in decreased 
expression of the antioxidant gene �Ä-glutamylcysteine ligase (�Ä-GCL) and down-regulation of 
the rate-limiting enzyme for glutathione synthesis [Robertson, 2004]. The �Ä-GCL catalyses 
the rate-limiting step in the synthesis of �Ä-glutamyl cysteine from cysteine, which forms the 
substrate for the second enzyme regulating glutathione synthesis [Yoshida et al., 1995; 
Tanaka et al., 2002]. Reduced gluthathione plasma and tissue concentrations, as marked by 
elevated levels of ceruloplasmin, promote fr ee radical generation, production of advanced 
glycation products (AGEs) and acute flunctuations in glucose concentrations.  
In addition, oxidative stress promotes the onset and development of diabetes mellitus by 
directly decreasing insulin sensitivity and ca using direct cytotoxicity to the pancreatic 
insulin-producing �Ã-cells [Maiese et al., 2007].  The generated ROS penetrates through the 
cell membranes and reacts with the membrane phospholipids through the process of lipid 
peroxidation as well as reacts with the mito chondrial DNA to distrupt the mitochondrial 
respiratory machinery (mitochondrial electron  transport) which is regulated by NADPH 
ubiquinone oxidoreductase and ubiquinone-cytochrome c reductase systems [Maiese et al., 
2007].  
Oxidative stress is known to depress the mitochondrial oxidoreductase and citrate synthase 
activities resulting in significant reductions in mitochondrial oxidat ive and phosphorylation 
activities as well as reduces the levels of mitochondrial proteins an d mitochondrial DNA in 
adipocytes, particularly in type 2 diabetes me llitus (Petersen et al., 2003). Oxidative stress 
has been shown to trigger the opening of the mitochondrial membrane permeability 
transition pore which results in a significant depletion of mitochondrial NAD+ stores and 
subsequently apoptotic cell in jury (Maiese et al., 2007). In the pancreatic tissues, these 
cellular events result in depletion of the �Ã-cells population, insulin deficiency while in the 
skeletal muscle, it manifests as insulin resistance.   
Oxidative stress is also known to modify a number of cellular signalling pathways that can 
results in insulin resistance. For example, a significant increase in muscle protein carbonyl 
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content (often used as a reliable biological marker of oxidative stress) and elevated levels of 
malondialdehyde and 4-hydrononenal (as reliabl e indicators of lipid peroxidation) have 
been implicated in the aetiology of insulin resistance diabetes mellitus [Haber et al., 2003]. 

3. Glucose-insulin regulatory system modeling and simulation of OGTT blood 
glucose concentration dynamics to obt ain indices for diabetes risk and 
detection  

This section deals with the bioengineering modelling of the glucose-insulin regulatory 
system and the OGTT blood glucose dynamics data, for more reliable detection of diabetes 
as well as designation of risk to diabetes.   
The conventional way of diagnosing diabetes is based on designation of specific values of 
fasting plasma glucose equal or greater than 126 mg/dl (7.0 mmol/l),  and (ii) 2-hour 
plasma glucose concentration equal or greater than 200 mg/dl (11.1 mmol/l) during OGTT.  
Instead of this rigid approach, we are prop osing that for more reliable monitoring and 
diagnosis of diabetes, it is more relevant to mathematically characteri se the trend of blood 
glucose concentration rise and decline after an oral intake of 75 g glucose load in OGTT.   
Hence, we provide the bioengineering analysis of the Glucose-insulin regulatory system and 
glucose response data, leading to the formulation of a novel nondimensional diabetes index 
for diagnosis of diabetic patients as well as of those who are at risk of becoming diabetic.    
So, in this section, we present the Glucose-Insulin Regulatory System (GIRS) modeling in 
the form of governing differential equations, and converge to the equation representing 
blood glucose response to glucose infusion rate. This equation forms the basis of modeling 
of the Oral Glucose Tolerance Test (OGTT).  We then demonstrate how this OGTT model 
equation’s solutions can simulate the OGTT data, to evaluate the model parameters 
distinguishing diabetes subjects from normal subjects.  The climax to this section is the 
formulation of the Non-dimensional Diabetes Index (DBI), involving combination of the 
model parameters into just “one number” by which we can reliably detect diabetes. In fact, 
by determining the range of values of DBI for a big patient population, we can even detect 
“patients at risk of being diabetic”.   

3.1 Differential equation model of the glucose-insulin system 
With reference to the Blood Glucose-Insulin Control System (depicted in Fig. 1), the 
corresponding first-order differential equation s of the insulin and glucose regulatory sub- 
systems are given by equations (1) and (2) [Dittakavi et al., 2001]. 

 x’ = p - ax - �Ãy  (1) 

 yxqy �� ŠŠ=�  (2)                 

where x’ and y’ denote the first time-derivatives of x and y, x: insulin output, y: glucose 
output, p: insulin input, q: glucose input, for unit blood-glucose compartment volume ( V). In 
these equations, the glucose-insulin model system parameters (regulatory coefficients) are 
� , �Ã, � , �Å. 
These coefficients, when multiplied by the blood-glucose compartment volume V (which is 
proportional to the body ma ss) denote, respectively,  
€ the sensitivity of insulinase activity to elevated insulin concentration ( V� ),  
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€ the sensitivity of pancreatic insulin output to elevated glucose concentration ( �ÃV),  
€ the combined sensitivity of liver glycogen  storage and tissue glucose utilization to 

elevated insulin concentration ( V� ), and  
€ the combined sensitivity of liver glycogen storage and tissue glucose utilisation to 

elevated glucose concentration ( V� ).  
 

 
Fig. 1. Physiological model of the Blood Glucose Control system 
(represented by equations 1 and 2). 

From equations (1) and (2), the differential equation model in glucose concentration (y) for 
insulin infusion rate ( p = 0) and glucose in flow rate (q), is obtained as 

 qqyyy ���� ��� +�=+++�+�� )()(  (3) 

where y’ and y’’  denote first and second time derivatives of y. 
The transfer-function corresponding  to Eqn. (3) is obtained by taking the Laplace transforms 
on both sides (assuming the initial conditions to be zero). Thereby, we obtain (for glucose 
response) 

 ( ) ( ) ( )
( ) ( )

( )
�

� �2

s +
Y s / Q s = = G s

s + s +�Å+ �Å+ �Ã�Ä
 (4)   

3.2 Model analysis to simulate Oral Glucose Tolerance Test (OGTT) 
The OGTT model-simulation respon se curve is considered to be the result of giving an 
impulse glucose dose (of 4 gm of glucose/liter of blood-pool volume) to the 
combined system consisting of GI tract and blood glucose concentration (BGCS).  
Now, we can put down the transfer-function (TF) of the gastro-intestinal (GI) tract to be 1/ 
(s + �Â), because the intestinal glucose-concentration variation is an exponential decay, and 
the exponential parameter value is close to that of the parameter �Â. When we multiply this 
GI tract TF [1/(s + �Â)] by the TF of the blood-pool gluc ose-metabolism given by Eqn.  (4), 
and put Q(S) = ‘G’ gm of glucose per litre of blood-pool volume per hour, we get 

 ( ) ( ) ( ){ }Y s G /= 2s + s +�Å+ �Å+ �Ã�Ä� �  (5) 
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The corresponding governing differential equation is now: 

 y"+ 2Ay'+ � n2y    =  G� (t) 
 or 

                            y"  + � Tdy'+ � y= G� (t)                                              (6)                          

wherein � n (= � 1/2 )  is the natural frequency  of the system, A is the attenuation or damping  
constant  of the  system,  �  = 2 A /Td =  � n2,  and  �  = (� n2 - A2) 1/2   is  the angular frequency  
of damped  oscillation of the  system. 
The solution of Eq. (6), for an under-damped response (corresponding to that of normal 
subjects, represented by the lower curve in Fig. 2) is given by 

           y(t) =  (G /� )e-At  sin � t, (7) 

where in �Ú (or �Úd) = 
12 2 2

n( A )� Š .                                                  

The solution for over-damped response (corresponding to that of diabetic subjects, 
represented by the upper curve in Fig 2) is given by: 

 y(t) = (G/� )e-At sinh � t (8)                          

where in �Ú (or �Úd) = 
12 2 2

n(A - �Ú )  

The solution for a critically-damped response (in which A = � n), which applies to subjects at 
risk of becoming diabetic (whose blood gluc ose response curve would lie between the two 
curves of normal and diabetic subjects), is given by: 

 ( ) -Aty t  = G t e ; (9) 

for 2 2
n�Ú = A = �Ì,  and derivative-time period d 2

n

2A 2A
T = =

�Ì �Ú
                                                                     

These solutions are employed to simulate the clinical data, and to therefore evaluate the 
model-system parameters A and �  (or �  and Td), to not only differentially-diagnose diabetes 
subjects as well as sbut also to characterize resistance-to-insulin. 
Now, we can employ equations (7) and (8) to simulate the OGTT data shown in Fig. 2 to 
obtain the value of parameters:  (i) �Ì = 2.6hr�ï2, Td = 1.08 hr, for the normal subject, and (ii) 
�Ì =0.27hr�ï2 and Td = 6.08 hr, for the diabetic subject [Ghista, 2004]. 
We now formulate the Non-di mensional Diabetes Index (DBI), as 

 
2 2

d 2
n

2A 2A
DBI = AT = =

�Ì �Ú
 (10)                          

The value of DBI for the normal subject is 1.3, whereas for the diabetic subject it is 4.9. We 
have further found (in our in itial clinical tests) that DBI for normal subjects is less than 
1.6, while the DBI for diabetic patient is greater than  4.5. Hence a DBI value of 2-4 can 
suggest that the subject is at risk of becoming diabetic. This is a testimony of how well we 
have simulated the OGTT by our BME model and employed this DBI to diag nose 
diabetes.  
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Fig. 2. OGTT Response Curve [Ghista, 2004], showing the glucose concentration responses 
of normal and diabetic subject.  

4. Biomedical signal processing and image processing techniques for 
diabetes analysis 

This section presents different signal and image processing methods that are used to 
evaluate the effect of diabetes on different organs. 

4.1 Analysis of the heart rate variability signal 
Heart rate variability (HRV) decreases in pati ents with diabetes [Acharya et al., 2006; 
Acharya et al., 2011b; Faust et al., 2011]. This variability can be analyzed in the time domain, 
frequency domain, and by using non-linear methods.  Fig. 3 shows typical HRV signals of 
normal and diabetes subjects. Visually, it is difficult to notice the variability in these two 
signals. Hence, analysis in time domain and frequency domain with the use of non-linear 
methods is necessary. These methods are explained in this section. 
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Fig. 3. Typical heart rate signals; (a) normal (b) diabetes. 

4.1.1 Time domain analysis 
The time-and frequency-domain measures of HRV were analyzed by the Task Force of the 
European Society of Cardiology [Task Force, 1996].  Several time domain parameters are 
calculated from the original R-R interval :  mean R-R interval, standard deviation  of the NN 
intervals (SDNN), standard deviation of differences between adjacent RR (NN) intervals 
(SDSD), Standard Error, or Standard Error of the Mean (SENN), which is an estimate of the 
standard deviation of the sampling distribution  of means based on the data,  number of 
successive difference of intervals which differ by more than 50 msec expressed as a 
percentage of the total number of ECG cycles analyzed (pNN50%).  
The HRV triangular index (TINN) is the integral  of the density distribution (i.e. the number 
of all NN intervals) divided by the maximum of  the density distribution. Thus, six standard 
measures namely Mean RR, SDNN, SENN, SDSD, pNN50% and TINN were studied.    

4.1.2 Frequency domain analysis 
Spectral analysis of HRV signal results in three main components: high frequency (HF) 
component, low frequency (LF) component, and very low frequency (VLF) component [Task 
Force, 1996]. The influence of the vagus nerve in modulating the sinoatrial node is indicated 
by the HF component (0.15Hz -40Hz) of the spectrum. The LF component (0.04Hz-.155 Hz) 
indicates the sympathetic effects on the heart. The VLF component (0.003Hz -.04 Hz) 
explains many details of the heart, chemoreceptors, thermareceptors, and renin-angiotensin 
system [Task Force, 1996; Kamath et al., 1987; Van der Akker et al., 1983].  
Fig. 4 shows a typical power spectral density (PSD) distribution of the heart rate signals 
obtained from a normal subject (Fig. 4-a) and a diabetes patient (Fig. 4-b).  The beat to beat 
variation is greater in the normal heart rate sign al compared to the diabetes heart rate signal. 
Hence, the power spectral density is more predominant in HF in the no rmal subject[Faust et 
al., 2011]. 
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          (a)                                                                            (b) 

Fig. 4. Typical power spectral density of heart rate signal (a) normal (b) diabetes subject. The 
PSD of normal heart rate signal has LF, HF components. The diabetic heart rate signal, 
however, does not have HF components due to lower variability in the heart rate signal 
[Acharya et al., 2011b]. 

4.1.3 Non-linear parametric analysis of heart rate signals 
Various non-linear parameters can be used to analyze the diabetes heart rate signals. They 
are Approximate Entropy (ApEn), Correlati on Dimension (CD), Largest Lyapunov 
Exponent (LLE),  The Hurst exponent (H), Recurrence plot (RP), and Fractal Dimension 
(FD).   
The Approximate Entropy ApEn measures regularity of the time series. The method 
proposed by Pincus et al can be used to evaluate the ApEn [Pincus, 1991].  For the data 
points )(),...,2(),1( Nxxx , with an embedding dimension m, the ApEn or APEN is given by:  

 �¦ Š
=Š

�¦ +Š
= Š

+Š
= +mN

i rC
mN

mN
i rC

mN
NrmAPEN m

i
m
i 1 )(log

11
1 )(log

1
1

),,( 1  (11) 

 where
 ( )�¦

+Š

=

ŠŠ	
+Š

=
1

11
1

)(
mN

j
ji

m
i r

mN
rC xx

 
 is the correlation integral. For this study, m

 
is

 

set to 2, and r  is chosen as 0.15 times the standard deviation of the original data sequence, 
and N is the total numb er of data points.  
The Correlation dimension (CD) is a quantitative measure of the informational complexity of 
the heart rate signal [Grassberger, 1983].  Some unique ranges of CD for different cardiac 
diseases have been proposed by Acharya et al. [2007].  The formula for CD involves the 
correlation function C(r), which is the probability that two arbitrary points on the orbit are 
closer together than r.  This is done by calculating the separation between every pair of N 
data points and sorting them into bins of width d r proportionate to r.  The correlation 
dimension can be calculated by using the distances between each pair of points in the set of 
N number of points, ji XXjia Š=),(

 

 ( ) ( ) ( )( )2

1
C r  = × Number of  pairs of  i, j  with a i,�¬j  < r

N
 (12)            

Correlation dimension (CD) is given by: 

  
( )( )

( )0

log
lim

logr

C r
CD

r

=  (13)   
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The Largest Lyapunov Exponent (LLE) measures the predictability of the system and 
determines sensitivity of the system to initial conditions [Rosenstien et al., 1993]. A positive 
LLE indicates chaos. The LLE is estimated by using a least squares fit to “average “line, and 
is given by: 

 ( )( )1
ln= � ¢ � ²iy(n) d n

�¦ t
 (14)                          

where ( )ndi  is the distance between thi  phase-space point and its nearest neighbor at thn time 

step, and .  denotes the average overall phase space points.  
The Hurst Exponent (HE) indicates the self-similarity and co rrelation properties of heart rate 
signal. The HE has been defined and proposed by Dangel et al [Dangel et al., 1999].  Unique 
range of H values has been proposed by Acharya et al, for various cardiac states [Acharya et 
al., 2007].  

 ( ) ( )H log R /S / log T=  (15) 

where T is the duration of the sample of data and R/S is the corresponding value of rescaled 
range.  An HE value of 0.5 indicates the presence of a random walk, HE < 0.5 depicts anti 
persistence, and HE > 0.5 indicates the persistence in the signal. 
The Recurrence plot (RP) can be used to unearth the non-stationarity in the heart rate signals 
[Acharya et al., 2006], and was originally introduced by Eckmann et al. [Eckmann et al., 1987]. 
A Fractal is a set of points which, when looked at smaller scales, looks similar to the whole 
group [Madelbrot, 1983]. The Fractal Dimension (FD) determines the complexity of the time 
series. FD has been used in heart rate analysis to recognise and differentiate specific states of 
physiologic functions [Acharya et al., 2007].  
The heart rate signal is a non-linear and non-stationary signal.  The hidden intricacies of the 
signal can be easily extracted using non-linear analysis methods. The heart rate variation is 
more random in normal subjects as compared to the diabetes subjects. Hence, most of these 
non-linear parameters may show distinct values  for normal and diabetes subjects.  These 
clinically significant non-linear parameters can be fed into the classifiers as features for 
automatic classification. Moreover, these non-linear parameters can be combined in the form 
of an integrated index [Ghista, 2004; 2009a; 2009b]. Such an index may have unique range of 
values for normal and diabetes classes. Hence, one can diagnose normal and diabetes 
subjects by just using one index value without the need for automatic classifiers.  

4.2 Image processing of digital fundus images in diabetic retinopathy 
Diabetic retinopathy is an important complication of diabetes. As the diabetes retinopat hy 
progresses, the number of blood vessels varies, and the exudates appear in the advanced DR 
stages [Yun et al., 2008; Acharya et al., 2011a]. Different image processing techniques have 
been used to extract blood vessels and exudates in DR subjects, and these techniques are 
explained in this section. Moreover, techniques for plantar pressure images analysis, which 
have proved to be useful in detecting diabetic neuropathy conditions, are also been 
presented in this section. 

4.2.1 Retinal blood vessels detection 
The detailed steps involved in the blood vessel detection are shown in Fig. 5 [Nayak et al., 
2008; Acharya et al., 2011a; Acharya et al. 2009; Acharya et al., 2011b]. The green 
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component of the RGB (Red, Green Blue) blood vessel image is considered for this study.  
The border of the image is obtained by applying an edge detection algorithm on the 
inverted green component of the image. Morphological operation is performed by using a 
disk shaped structuring element (SE) for blood vessels detection. Adaptive histogram 
equalization is then performed on these images to enhance the image, and subsequently, 
morphological opening operation is performed using a ball structuring e lement. 
Thresholding is carried out on  the resulting image followed by the median filtering to 
obtain the boundary of the im age. The small holes are then filled and the boundary is 
removed.  Finally, the image with only blood vessels is obtained (Fig. 7) [Acharya et al., 
2011b]. It can be seen from Fig. 7(a) that the number of blood vessels is different in the 
normal and the proliferative diabet es retinopathy (PDR) classes.  
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Fig. 5. The block diagram for detecting retinal blood vessels. 

4.2.2 Exudates detection in digital fundus images 
Fig. 6 shows the block diagram of the exudates extraction in digital fundus images [Acharya 
et al., 2008; Nayak et al., 2008; Acharya et al., 2011a; Acharya et al., 2011b].   The green 
component of the original imag e is extracted and subjected to the morphological closing 
operation by using octagonal shaped structur ing element.  Then, the resulting image is 
subjected to thresholding, and morphological closing operation is carried out by using  disk 
shaped SE.  
The edges are detected by using the Canny method. Subsequently, an 80x80 region of 
interest (ROI) is considered to remove the optic disc, and then the border of the image is 
also removed.  Finally, by performing morp hological erosion operation with disk shaped 
SE of size 3, the final image with only exudates is obtained (Fig. 7) [Acharya et al., 2011b].  
It can be seen from the Fig. 7(b) that there are no exudates in the normal image, while the 
PDR image has exudates.  
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Fig. 6. The block diagram for detecting exudates in digital fundus images. 
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Fig. 7. Results of blood vessel detection and exudate detection from normal and PDR 
images.  (a) Original normal and PDR images (b) Results of blood vessel detection (c) 
Results of exudate detection.  The number of blood vessels are different for normal and PDR 
images, and exudates are absent in the normal fundus image. 
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4.3 Plantar pressure dist ribution image analysis 
Fig. 8 shows the plantar pressure distribution images of normal subjects, and subjects with 
diabetes type II without and wi th neuropathy. It can be seen from the figure that the 
pressure distribution is differe nt for normal, diabetes without and with neuropathy subjects 
[Acharya et al., 2008; Acharya et al., 2011b]. This difference can be further analyzed using 
Fourier transform and discrete  wavelet transform (DWT). 
 

 
               (a)                                                         (b)                                                              (c) 

Fig. 8. Static pedobarograph images of (a) the normal foot, (b) a diabetic foot with 
neuropathy, and (c) a diabetic foot without neuropathy. 

The important feature used to diagnose the normal, diabetes type II with and without 
neuropathy classes is the power ratio (PR) that is obtained using the Fourier transform 
[Rahman et al., 2006].  This method is clearly explained below.  
Fourier domain analysis: The Fourier spectrum F(u,v) of each region of the image can be 
obtained by using the below equation (16) [Cavanagh et al., 1991].  In this equation, M and N 
represent the numbers of rows and columns of the image. The power ratio (PR) is the ratio of 
the high frequency power ( HFP) to the total power (TP).  The Fourier spectrum is given by 
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where vanduyx ,, are the variables. 

)0,0(F  is the DC component of the image in the frequency domain and is the sum of all the 
pixels of an image in spatial domain [Cavanagh et al., 1991]. The total power (TP) of the 
image is given by 
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(c) 

Fig. 9. Typical power spectra after deleting the DC component fr om region 6 of the left foot 
for (a) normal subject (b) diabetes subject without neuropathy (c) diabetes subject with 
neuropathy[Acharya et al., 2011b]. 
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The low frequency and high frequency components are separated by oS , which is given by   
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where LFP, HFP, and PR, denote the low frequency power,  high frequency power, and the 
power ratio, respectively. 
Fig. 9 shows the typical power spectra obtained for a normal subject, having diabetes 
without neuropathy, and subject having diabetes with neuropathy. It is a 3D figure, with u 
and v frequencies corresponding to row and column. The Y-axis indicates the power. The 
power spectrum of normal class has a peak in the centre and very small peaks around it.  In 
the case of diabetes without neuropathy, the adjacent peaks are slightly larger; in the case of 
diabetes with neuropathy, there are dominating peaks on four sides. These plots are unique 
and depict variation of power spectrum. The PR  values extracted from various regions of 
the plantar image are shown in Table 1[Acharya et al., 2011b]. 
 

Type Control 
subjects (CS) 

Diabetic 
control (DC) 

Neuropathic 
 (N) 

p-value 

Region 1 12.80 ± 3.49 9.562 ± 2.25 17.657 ± 3.27 <0.0001 
Region 2 11.865 ± 2.13 9.678 ± 2.58 14.453 ± 2.31 <0.0001 
Region 5 13.769 ± 3.31 9.512 ± 2.530 14.542 ± 2.69 <0.0001 
Region 6 10.179 ± 2.09 9.697 ± 1.23 12.35 ± 2.19 <0.0001 
Region 7 9.28 ± 6.03 8.67 ± 3.30 11.56 ± 1.45 <0.0001 

 

Table 1. Power ratio values for the various regions of the plantar pressure images obtained 
from the three classes. 

The PR is the ratio of HF power to the total power. This value is higher for diabetes subjects 
with neuropathy when compared to the norm al and diabetes without neuropathy subjects 
for regions 1, 2, 5, 6, and 7 (Table 1). These ranges are unique and clinically significant 
(p<0.0001).  These PR features can be used to diagnose the three classes automatically using 
classifiers.  
Likewise, DWT coefficients have also been used to identify the normal, diabetes type II with 
and without neuropathy classes [Acharya et al., 2008; Acharya et al., 2011b].  
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5. Diabetic autonomic neuropathy diagnosis from HRV power spectrum plots 

The RR interval files are processed to get HRV and HRVPS [Desai, K.D et al., 2011].  The 
sampling frequency used to get HRV form RR f ile is 2Hz.  The power spectrum plots depict 
power in (BPM) 2 versus Frequency (in Hertz). The auto regression statistics gives display of 
the following parameters: 
Power under Low frequency range: frequency range from 000 to 0.04Hz 
Power under Mid frequency range:  fr equency range from 0.04 to 0.15Hz 
Power under High frequency range: fr equency range from 0.15 to 0.40Hz 
Sympatho/Vagal balance ratio: ratio of mid to high frequency powers 
The Sympatho-Vagal ratio is found in the different frequency characteristics of the 
parasympathetic and sympathetic influences on heart rate. The HRVPS plots (for the supine, 
standing and deep breathing modes) are plotted with time-scale up to 150 seconds and heart 
rate scale in the range of 40 bpm to 140 bpm. 
 

 
Fig. 10. HRVPS plots of a normal subject in supine, standing and deep breathing modes. The 
power statistics on the right side show th e power in low, medium and high frequency 
bands. There is an increase in the mid frequency power in standing position and in high 
frequency power in deep breathing mode. 
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Figure 10 displays the HRVPS of a typical normal subject in supine, standing and deep 
breathing modes. In this figure, the power st atistics show the power in low, medium and 
high frequency bands. It can be noted that there is an increase in the mid-frequency power 
in standing position and in the high-frequenc y power in deep breathing mode.  Figure 11 
depicts the HRVPS plot of a typical diabetic subject in supine, standing and deep-breathing 
modes. Now, it can be seen that there is a decrease in mid-frequency power and in high-
frequency power in deep-breathing mode compared to corresponding power levels of a 
normal subject (in Figure 10) [Desai, K.D et al., 2011]. 
 

 
Fig. 11. HRVPS plots of a diabetic subject in supine, standing and deep breathing modes. 
The power statistics on the right side show the power in low, medium and high frequency 
bands. There is a decrease in the mid frequency power in standing position and in high 
frequency power in deep breathing mode compared to corresponding power levels of 
normal subject as shown in Fig 10a[Desai, K.D et al., 2011]. 

5.1 Diagnostic indi ces (based on HRVPS) 
The analysis of HRV power spectra is commonly focused on the power in different frequency 
bands. In particular, the power in the high-frequency range reflects the fast parasym pathetic 
never activity [Fallen et al., 1985], and the power in the mid-frequency range reflects both 
parasympathetic and sympathetic never activity [Akselrod, S., et al., 1981]. 
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