
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

129,000 155M

TOP 1%154

5,200

21

Non Linear Algorithm for Automatic Image
Processing Applications in FPGAs

Emerson Carlos Pedrino1, Valentin Obac Roda2 and Jose Hiroki Saito1,3
1Federal University of Sao Carlos, Department of Computer Science

2Federal University of Rio Grande do Norte, Department of Electrical Engineering
3Faculty of Campo Limpo Paulista

Brazil

1. Introduction

Mathematical morphology supplies powerful tools for low-level image analysis. The design

of morphological operators for a given application is not a trivial one. For some problems in

low level image processing the best result is achieved applying to the image an ordered

sequence of morphological operators, that can be done manually, but is not easy and not

always leads to the best solution. Genetic programming (GP) is a branch of evolutionary

computing, and it is consolidating as a promising method for applications of digital image

processing. The main objective of genetic programming is to discover how computers can

learn to solve problems without being programmed for that. In the search for a practical

automatic solution for low level image processing using mathematical morphology and

genetic programming we present in this chapter a Matlab algorithm used for this purpose.

Two sample images feed the Matlab application, the first one the original image with all

defects, the second one the goal image where the defects of the original image were

corrected. If we want to find the mathematical morphology operators that implement a

certain filter that removes specific noise from the image, we supply a noisy image and an

image were the noise was removed. The second image can be obtained from the noisy image

applying an image manipulation program. After the parameters are supplied to the Matlab

algorithm, the developed program starts to search for the sequence of morphological

operators that leads to the best solution. The program works iteratively, and at each

iteration compares the result of the morphological operations applied to the image set with

the previous ones. To quantify how good is the solution at each iteration the resulting image

is compared with the reference image using the mean absolute error (MAE) of the pixels.

The best solution of the process is the image from a certain set whose error is less than a

reference error indicated to the function. Using this methodology it was possible to solve a

number of low level image processing problems, including edge detection, noise removal,

separation of text from figures, with an error less than 0.5%, most of the time. Examples are

presented along the text to clarify the use of the proposed algorithm. In addition, the

sequence of operators obtained by the Matlab procedure was used to reconfigure an

hardware architecture implemented in FPGAs to process images with the generated

instructions in real time.

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

438

2. Theoretical background

In this section it will be presented a brief review of the theoretical background needed to
understand the concepts used in the development of the current work. Firstly, it will be
presented the theoretical basis of mathematical morphology followed by the fundamentals
ideas of the genetic programming approach.

2.1 Mathematical morphology

Morphological image processing is a nonlinear branch in image processing developed by
Matheron and Serra in the 1960´s, based on geometry, and on the mathematical theory of
order (Dougherty, 1992; Serra, 1982; Weeks, 1996; Soille, 1999; Sonka et al., 1993; Facon,
1996). Morphological image processing has proved to be a powerful tool for binary and
grayscale image computer vision processing tasks, such as edge detection, noise
suppression, skeletonization, segmentation, pattern recognition, and enhancement. Initial
applications of morphological processing were biomedical and geological image analysis
problems. In the 1980´s, extensions of classical mathematical morphology and connections to
other fields were developed by several research groups worldwide along various directions,
including: computer vision problems, multi scale image processing, statistical analysis, and
optimal design of morphological filters, to name just a few (Pedrino et al., 2010). The basic
operations in mathematical morphology are the dilation and the erosion, and these
operations can be described by logical and arithmetic operators. Dilation and erosion
morphological operators can be represented respectively by the sum and subtraction of
Minkowski sets (Dougherty, 1992):

 A⊕B=⋃{B+a|a ∈	A} (1)

 A⊝-B=∩{A+b|b ∈ B} (2)

In Equation (1), A is the original binary image, B is the structuring element of the
morphological operation, and B+a is the B displacement by a. Therefore, the dilation
operation is obtained by the union of all B displacements in relation to the valid A elements.
In Equation (2), -B is the 180o rotation of B in relation to its origin. Therefore, the erosion
operation corresponds to intersection of the A displacements by the valid points of -B.
According to Equation (1), the dilation operation will expand an image, and the erosion
operation will shrink it. These operations are fundamental to morphological processing, and
many of the existing morphological algorithms are based on these two primitives
operations. These ideas can be extended to gray level image processing using maximum and
minimum operators, too (Gonzalez & Woods, 2008). Many applications examples can be
found in that text. In addition, color is known to play a significant role in human visual
perception. The application of mathematical morphology to color images is difficult due to
the vector nature of the color data. Mathematical Morphology is based on the application of
lattice theory to spatial structures (Angulo & Serra, 2005). The definition of morphological
operators needs a totally ordered complete lattice structure. A lattice is a partially ordered
set in which any two elements have at least an upper bound (supremum) and a greatest
lower bound (infimum). The supremum and the infimum are represented by the symbols ∨
and ∧, respectively. Thus, a lattice is complete if every subset of the lattice has a single
supremum and a single infimum. The application of mathematical morphology to color
images is difficult due to the vector nature of the color data. The extension of concepts from
grayscale morphology to color morphology must first choose an appropriate color ordering,

www.intechopen.com

Non Linear Algorithm for Automatic Image Processing Applications in FPGAs

439

a color space that determines the way in which colors are represented, and an infimum, and
a supremum operator in the selected color space should also be defined. There are several
techniques for ordering vectors. The two main approaches are marginal ordering and vector
ordering. In the marginal ordering, each component P of a pixel is ordered independently,
and the operations are applied to each channel; unfortunately, this procedure has some
drawbacks, e.g., producing new colors that are not contained in the original image and may
be unacceptable in applications that use color for object recognition. The vector ordering
method for morphological processing is more advisable. Only one processing over the three
dimensional data is performed using this method. There are several ways of establishing the
order, e.g., ordering by one component, canonical ordering, ordering by distance and
lexicographical ordering (Chanussot & Lambert, 1998). Once these orders are defined, then
the morphological operators are defined in the classical way (Pedrino, 2010).

2.2 Genetic programming
Genetic programming (GP) is a technique for automatic programming nowadays and may
provide a better context for the automatic generation of morphological procedures. GP is a
branch of evolutionary computation and artificial intelligence, based on concepts of genetics
and Darwin’s principle of natural selection to genetically breed and evolve computer
programs to solve problems (Koza, 1992). Genetic Programming is the extension of the
genetic algorithms (Holland, 1975) into the space of programs. That is, the objects that
constitute the population are not fixed-length character strings that encode possible
solutions to a certain problem. They are programs (expressed as parse trees) that are the
candidate solutions to the problem. There are few applications of GP for the automatic
construction of morphological operators. According to Koza, in GP, populations of many
computer programs are genetically bred by means of the Darwinian principle of survival
and reproduction of the fittest individual in a population. In this approach, GP starts with
an initial population of computer programs generated randomly, in which each program is
represented by functions and terminals (operands) appropriate to a certain problem domain.
Each chromosome (computer program) in the population is measured in terms of its fitness
measure. This measure indicates how well a particular individual performs in a particular
problem environment. The nature of the fitness depends on the problem at hand. A new
offspring population of chromosomes is generated based on the current population using
the Darwinian principle of reproduction and survival of the fittest, as seen before. In
addition, the genetic crossover operator is used, too. The reproduction operator can copy, in
proportion to a fitness, a chromosome (computer program) from current population into the
new population. The crossover operator can produce new offspring computer programs
from two parental chromosomes based on their fitness. Typically, the programs are of
different sizes and shapes. After these process, a new population of individuals is generated
and the old one is deleted. This process is repeated for many generations until a desired
result can be obtained.

3. Developed system

The developed system for automatic construction of morphological operators uses a genetic
programming algorithm that operates with two images from a certain image set, an input
image, and an image containing only features of interest which should be extracted from the
input image. The genetic procedure looks in the space of mathematical morphology
operators for sequences that allow extracting the features of interest from the original image.
The operators are predefined procedures from a database that work with any kind of

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

440

structuring elements having different shapes and sizes. It is also possible to include new
operators in the database when necessary. The program output is a tree based structure
containing the best individual of the final population. The genetic algorithm parameters are
supplied by the user using a text user interface. The main parameters are: tree depth,
number of chromosomes, number of generations, crossover rate, mutation rate, and certain
kinds of operators suited to a particular problem. The mean absolute error (MAE) was used
as a fitness measure. The cost function using the MAE was calculated as follows:

 d(a,b)=∑i∑j |(a(i,j)-b(i,j)|/XY (3)

In Equation (3), 'a' is the resulting image evaluated by a particular chromosome (program),
and 'b' is the goal image with the same size as 'a', and '(i,j)' is the pixel coordinate. The
programs are encoded as tree structure chromosome. The main steps of the proposed
algorithm are illustrated in Figure 1. In the Figure, the index 'i' refers to an individual in the
population. The reprodution rate is 'pr', the crossover rate is 'pc', and the mutation rate is 'pm'.
The goal image can be created using an editor program. As Figure 1 shows, initially the genetic
parameters are selected by the user, along with a couple of sample images that represent the
problem to be solved. Then, the genetic procedure generates a random population of computer
programs (chromosomes), according to the user specifications. A fitness value is assigned to
each program, after the operations of reproduction, crossover and mutation, a new population
of individuals is generated. The described evolutionary process is repeated by many
generations and can be stopped according to a stop condition. The mutation operator, that was
not previously discussed, simply generates an individual belonging to the space of solutions of
the problem and connects it to a random point of a particular randomly chosen chromosome.
Such operation is performed with a given probability.

Fig. 1. Flowchart of developed system

www.intechopen.com

Non Linear Algorithm for Automatic Image Processing Applications in FPGAs

441

The process of evaluating a given depth four chromosome of the population of individuals
is shown in Figure 2. 'Img_in' corresponds to the input image, 'ero' and 'dil' instructions
corresponds to the erosion and dilation operations respectively. The argument 'end_n'
matches an address of a table containing all combinations of structuring element for a
given problem. Both the instructions, and the arguments are found in an intelligent manner
when a pair of input images are presented to the genetic procedure. It can be seen in Figure
2 that initially the input image is eroded, followed by two dilations and the resulting image
is eroded again. All the morphological operators in the example use the same structuring
element pointed by 'end_n'.

Fig. 2. Example of a chromosome representing a morphological filter and its arguments

The tournament selection method was the one chosen to be used in this work (Koza, 1992).
The training set, used to extract the pair of images used in the presented method, was
obtained using samples of synthetic images of various resolutions. For each resolution the
maximum depth size for each chromosome tree and the error calculation functions were
changed. The training will be further detailed in Section 3.1. As follows, the Matlab
developed algorithm is presented along with some examples. In all the examples binary
images were used, however, the method can be extended to handle any type of image.

3.1 Matlab algorithm

The Matlab algorithm for binary images mathematical morphology automatic processing
developed in this work is presented as follows.

% - Developed Algorithm
% - pop: Initial Population
% - nc: number of chromosomes
% - cr: randomly generated chromosome
% - cr_col: columns of cr
% - num_instr: number of instructions
% - profd: maximum tree depth
% - arg: pointer to the table of arguments
pop=pop_init(nc,cr,cr_col,num_instr,profd,arg);
% - ger: generations
% - ng: number of generations
% - ct_aux: auxiliary cost
ger=0;
ct_aux=inf;
while (ger<=ng)

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

442

 % - ct_gn: costs from generation 'n'
 % - img_org: input image
 % - img_obj: goal image
 % - instr: instruction table
 ct_gn=cost(nc,pop,img_org,img_obj,instr,profd);
 % - elt: best program of generation 'n'
 % - ct_min: cost of best program
 [elt,ct_min]=elit_indv(pop,ct_gn);
 % - Elitism
 % - sol: best program found
 if (ct_min < ct_aux)
 ct_aux=ct_min;
 sol=elt;
 end
 % err: tolerated error
 if (ct_aux<=err)
 break;
 end
 % - Crossover
 % - pop_g: new population
 % - tx_cs: crossover rate
 tx_cs_conv=(-10*tx_cs/100)+10;

 pop_g=crossover(tx_cs_conv,pop,nc,img_org,img_obj,instr
,profd,sol);
 % - Mutation
 tx_mt_conv=(-10*tx_mt/100)+10;
 pop=mutation(pop_g,num_instr,profd,nc,tx_mt_conv,arg);
 ger=ger+1;
end

According to the previous code, the function pop_init is responsible for generating
randomly, using user provided parameters, the initial population of individuals. The
parameters are described as follows.
- nc: number of chromosomes (programs);
- cr: initial chromosome user created;
- cr_col: number of columns of cr;
- num_instr: instruction number;
- profd: maximum depth tree tolerated;
- arg: pointers vector for the arguments table;
The implementation of the algorithm pop_init function is shown as follows. This function
uses another function called ger_cr to generate chromosomes randomly.

function p_i=pop_init(nc,cr,cr_col,num_instr,profd,arg)
% Initial Population of Individuals
pop(1,1:cr_col)=cr;
for i=2:nc
 cr=gera_cr(num_instr,profd,arg);
 pop(i,:)=cr;
end
p_i=pop;

www.intechopen.com

Non Linear Algorithm for Automatic Image Processing Applications in FPGAs

443

function cr=ger_cr(num_instr,profd,arg)
cr=zeros(1,profd*4);
[~,num_arg]=size(arg);
for i=1:4:profd*4
 aleat=round(rand*(num_instr-1));
 cr(i)=aleat;
 aleat=round(rand*(num_arg-1))+1;
 cr(i+1)=aleat;
 aleat=round(rand*(num_arg-1))+1;
 cr(i+2)=aleat;
 aleat=round(rand*(num_arg-1))+1;
 cr(i+3)=aleat;
end

The cost function is responsible for calculating the cost of each chromosome in current
population of individuals. Internally, it uses two other functions, build_op and comp, the first
one is responsible for building the program, according to the tree structure shown
previously, and the second is responsible for calculating the fitness of chromosomes. Below,
the code part related to the cost and build_op functions is presented. Following, the function
comp is presented, too. The main parameters used for each function are the following.
- nc: number of chromosomes;
- pop: current population;
- img_org: input image;
- img_obj: goal image;
- instr: instructions vector;
- profd: maximum depth allowed to each chromosome.
The build_op function is responsible for the construction of each individual, using functions
and arguments provided by the user through the instructions vector and by the table of
arguments. The input image is applied to each program generated automatically and the
comp function tests whether the object pixels and the image background pixels correspond to
the pixels of the object and background of the goal image, thereby creating a vector
containing all the costs associated to each program obtained in the present generation.

function c=cost(nc,pop,img_org,img_obj,instr,profd)
% - It Evaluates the Cost of Each Individual from the Current
Population
c=ones(1,nc);
for i=1:nc
 sample=build_op(instr,pop(i,:),profd,img_org);
 c(i)=comp(amostra_c,img_obj);
end

function op = build_op(instr,cr,profd,img)
% - It Builds a Program
% to be Applied to the
% Input Image
op=eval([char(instr(cr(1)+1)),'(','img',',',num2str(cr(2)),',
',num2str(cr(3)),',',num2str(cr(4)),')']);

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

444

aux_op=op;
% - Building
for i=5:4:profd*4
 op=eval([char(instr(cr(i)+1)),'(','aux_op',',',num2str(
cr(i+1)),',' ,num2str(cr(i+2)),',',num2str(cr(i+3)),')']);
 aux_op=op;
end

function comp_ab = comp(a,b)
% - It Compares two images (a and b)
TP=0.005;
FN=0.005;
TN=0.005;
FP=0.005;
[lin,col]=size(a);
for i=1:lin
 for j=1:col
 if b(i,j) && a(i,j)
 TP=TP+1;
 else
 if b(i,j) && ~a(i,j)
 FP=FP+1;
 else if ~b(i,j) && ~a(i,j)
 TN=TN+1;
 else
 if ~b(i,j) && a(i,j)
 FN=FN+1;
 end
 end
 end
 end
 end
end
SV=TP/(TP+FN);
SP=TN/(TN+FP);
comp_ab=1-(sqrt((1-SP)^2+(1-SV)^2))/sqrt(2);
comp_ab=1-comp_ab;

The elit_indv function returns the best current generation chromosome, the elite, and their

associated cost; its parameters are the following.

- pop: current population;
- ct_gn: vector cost for the current population;
The implementation of the elit_indv function is shown as follows.

function [elt,ct_min]=elite_indv(pop,ct)
% Best Individual
[ct_min,ind]= min(ct);
elt=pop(ind,:);

The next function implemented was the genetic crossing (crossover), which can be seen

below. Its main parameters are:

www.intechopen.com

Non Linear Algorithm for Automatic Image Processing Applications in FPGAs

445

- tx_cs: crossing rate, between 0 and 1 (0 - 100%);
- pop: current population;
- nc: number of chromosomes;
- img_org: input image;
- img_obj: goal image;
- instr: instructions vector;
- profd: maximum depth allowed for each chromosome;
- sol: best chromosome (program) found so far.
The crossing is performed between two trees in the population of individuals, selected
according to a given probability, user specified. The crossing method used is similar to the
one implemented by Koza (Koza, 1992).

function
pop_g=crossover(tx_cs,pop,nc,img_org,img_obj,instr,profd,sol)
% - Crossover.
pop_g=pop;
pop_g(1,:)=sol;
pop_indv_at=2;
while (pop_indv_at<=nc)
 rd_c=round(rand*nc+.5);
 p1=pop(rd_c,:);
 rd_c=round(rand*nc+.5);
 p2=pop(rd_c,:);
 rd_c=round(rand*nc+.5);
 p3=pop(rd_c,:);
 px=[p1;p2;p3];
 % - Tournament selection.
 ct_gn=custo(3,px,img_org,img_obj,instr,profd);
 [elt,~]=elite_indv(px,ct_gn);
 % father
 p=elt;
 [~,ind_p2]=sort(ct_gn);
 % mother
 m=px(ind_p2(2),:);
 rd_num=rand*10;
 if (rd_num>tx_cs)
 ind_imp=1:4:profd*4;
 [~,c_ind_imp]=size(ind_imp);
 ind_p=ind_imp(round(rand*(c_ind_imp)+0.5));
 ind_m=ind_imp(round(rand*(c_ind_imp)+0.5));
 gen_p=p(ind_p);
 gen_m=m(ind_m);
 p(ind_p)=gen_m;
 m(ind_m)=gen_p;
 aux=round(rand*(3)+0.5);
 crt_p=ind_p+aux;
 crt_m=ind_m+aux;
 gen_p=p(crt_p:ind_p+3);
 gen_m=m(crt_m:ind_m+3);
 p(crt_p:ind_p+3)=gen_m;

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

446

 m(crt_m:ind_m+3)=gen_p;
 pop_g(pop_indv_at,:)=p;
 pop_indv_at=pop_indv_at+1;
 if (~rem(nc,2))
 pop_g(pop_indv_at,:)=m;
 pop_indv_at=pop_indv_at+1;
 end
 else
 pop_g(pop_indv_at,:)=p;
 pop_indv_at=pop_indv_at+1;
 if (~rem(nc,2))
 pop_g(pop_indv_at,:)=m;
 pop_indv_at=pop_indv_at+1;
 end
 end
end

- The mutation function swaps parts of the selected programs, according to a given
probability, with parts of programs belonging to the space of solutions of a given
problem; its parameters are shown as follows.

- pop: current population;
- num_instr: number of instructions;
- profd: maximum depth allowed for each chromosome;
- nc: number of chromosomes;
- tx_mt: mutation rate, between 0 and 1 (0 - 100%);
- arg: pointers vector for the argument table.

function pop_g=mutation(pop,num_instr,profd,nc,tx_mt,arg)
% Mutation.
[~,num_arg]=size(arg);
pop_g=pop;
for i=1:nc
 for j=1:4:profd*4
 rd_num=rand*10;
 if (rd_num>tx_mt)
 rd=round(rand*(num_instr-1));
 pop_g(i,j)=rd;
 end
 rd_num=rand*10;
 if (rd_num>tx_mt)
 rd=round(rand*(num_arg-1))+1;
 pop_g(i,j+1)=rd;
 end
 rd_num=rand*10;
 if (rd_num>tx_mt)
 rd=round(rand*(num_arg-1))+1;
 pop_g(i,j+2)=rd;
 end
 rd_num=rand*10;
 if (rd_num>tx_mt)
 rd=round(rand*(num_arg-1))+1;

www.intechopen.com

Non Linear Algorithm for Automatic Image Processing Applications in FPGAs

447

 pop_g(i,j+3)=rd;
 end
 end
end

3.2 Application examples
In this subsection some application examples, using the algorithm described in the previous
subsection, are presented. All examples are for binary images and use equations 1 and 2
shown in subsection 2.1. A synthetic image containing four objects with different shapes
was generated for implementation of the examples. The training set consisted of three
samples with different resolutions for each picture object. In addition, they were used three
different maximum allowed sizes for each tree size, representing the chromosomes. Also,
in each case the algorithm was run three times. In the first example, it was tried to find a
combination of morphological filters and logical operators to recognize the star present in
the input image (Figure 3). In this figure it is possible to see the desired image and the
training process. The error found for this example was zero. Other training pairs were used
through the training set also resulting in errors very close to zero. For this example the
following genetic parameters and arguments were used.
ng=50,
nc=500,
tx_cs=90%,
 tx_mt=10%,
arg=[1 2 3 4 5 6 7 8],
tb_arg=[0 0 0;0 0 1;0 1 0;0 1 1;1 0 0;1 0 1;1 1 0; 1 1 1].
The 'arg' vector pointers to 'tb_arg' that corresponds to the table of structuring elements
used in the morphological operations. The instructions vector used in this example was the
following:

instr={'nop' 'dil' 'ero' 'or1' 'and1' 'sto1' 'cpl'},

were:
nop means no operation;
dil corresponds to a dilation through the structuring elements contained in tb_arg;
ero corresponds to an erosion through the structuring elements contained in tb_arg;
or1 is equivalent to a logical OR operation;
and1 is equivalent to a logical AND operation;
sto1 corresponds to a storage operator of the current results in a temporary memory
variable;
cpl is equivalent to a logical NOT operation.

 "5 4 2 4 2 7 5 2 3 5 3 6 3 2 2 8 4 4 5 6 6 6 7

2 1 2 4 5 2 4 4 4 6 6 3 7 4 6 3 6 2 7 5 7 4 4 7

7 3 7 3 2 4 6 7 3 5 2 4 5 2 2 3 6 4 5 7 2 4 7 5

1 3 2 7 3 5 5 5 7 6 6 6 1 1 2 8 8 2 5 7 6 6 5 5

8 0 6 6 5 1 6 5 2 6 1 2 2 6 4 3 3 1 5 2 7 2 7 2

4 6 6 2 3 4 5 1 2"
Figure 4 shows the algorithm generated to recognize the star presented in the input image.
The arguments are pointers to the arguments table containing the structuring elements

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

448

for the morphological operators. The generated machine code, in decimal, for the given
example considering the architecture cited in this work can be seen as follows.
The above code is transferred to a FPGA dedicated processor architecture. The FPGA
processor processes in real time the images from a video camera with the objective of
determining the shapes intended, according to the training algorithm. The addresses for the
arguments table containing the structuring elements are shown in bold characters, thus
the three arguments will point to three rows of the table forming a structuring element of
size 3x3, equivalent to the size used in implementing each stage of the above architecture.
Using this approach it is possible to build 512 different shapes structuring elements. The
numbers representing the functions are pointers to the instruction vector 'instr', whose
index starts at zero, and are not represented in bold characters. Thus, for example, code 1 6 5

2 corresponds to the instruction dil (img, [1 0 1, 1 0 0, 0 0 1]), which is a dilation of 'img'
by the structuring element shown as argument. The image 'img' is obtained from the result
of the previous instruction by a pipeline process, and so on.

Fig. 3. Example of an automatic filter construction for recognizing the star present in the
input image

Another application example obtained by the developed system, was the decomposition of
an any shape structuring element in smaller size 3x3 structuring elements. For this example
we used the same parameters of the previous example. The training process for the
evolutionary system of the given problem is illustrated in Figure 5. A binary 17x17 size
object, not decomposed by the algorithm proposed by Park and Chin (Park & Chin, 1995),
could be decomposed by the proposed methodology. The process converged after iteration
300, and the error obtained was zero. The following opcode was generated for the addressed
problem.

"0 7 2 5 0 1 2 4 0 5 1 2",

www.intechopen.com

Non Linear Algorithm for Automatic Image Processing Applications in FPGAs

449

where the zeros correspond to successive dilations of the input image by the following
structuring elements.

 [1 1 0;0 0 1;1 0 0], [0 0 0;0 0 1;0 1 1], e [1 0 0;0 0 0;0 0 1]

After successive dilations of a central point by the above structuring elements, it was
possible to find the object shown in Figure 5.

Fig. 4. Algorithm generated for the automatic pattern recognition filter construction problem
shown in Figure 3

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

450

Fig. 5. Example of decomposition of a 17x17 structuring element

As mentioned earlier in this chapter, the results obtained by the aforesaid system were used
to set up a FPGA implemented architecture, whose block diagram is shown in Figure 6. The
architecture has several reconfigurable pipeline stages that can deal with 3x3 structuring
elements. The concatenation of several stages allows operations with larger size structuring
elements, whose shape can also be flexible.

Fig. 6. Architecture used to process the programs generated by the proposed system
(Pedrino et al., 2010)

4. Conclusion

The construction of a Matlab algorithm using a methodology for automatic construction of

morphological and logical operators by the use of genetic programming was presented in

this chapter. When presenting pairs of images to the system from a training set, a set of

www.intechopen.com

Non Linear Algorithm for Automatic Image Processing Applications in FPGAs

451

instructions and arguments for a given problem and appropriate genetic parameters, an

evolutionary process builds a sequence of nonlinear image operators that given an input

image produces an output image as close as possible to the goal image provided. The

algorithm generated in this work was also used to configure a pipeline processing

architecture in FPGA, capable of processing images in real time, with the images provided

by a CCD video camera. Examples were shown in the text in order to demonstrate the

feasibility of the developed methodology for automatic construction of image processing

algorithms. The task of designing an imaging processing sequence of operators is not so

trivial, so the proposed methodology might be very helpful as an aid for the expert in this

situation.

5. Acknowledgments

Emerson C. Pedrino is grateful to the "Fundação de Amparo a Pesquisa do Estado de São
Paulo" for the financial support of this work, thoughout the project, proc. 2009/17736-4. The
authors are also grateful to the Departament of Computer Science/University Federal de
São Carlos, Faculty of Campo Limpo Paulista, and to the Department of Electrical
Engineering/UFRN.

5. References

Dougherty, E. R. (1992). An Introduction to Morphological Image Processing, SPIE, Bellingham,
Wash, USA

Serra, J. (1982). Image Analysis and Mathematical Morphology, Academic Press, San Diego,
Calif, USA

Weeks Jr., A. R. (1996). Fundamentals of Electronic Image Processing, SPIE, Bellingham, Wash,
USA

Soille, P. (1999). Morphological Image Analysis, Principles and Applications, Springer, Berlin,
Germany

Sonka, M., Hlavac, V. & Boyle, R. (1993). Image Processing, Analysis and Machine Vision,
Chapman & Hall, Boca Raton, Fla, USA

Facon, J. (1996). Morfologia Matemática: Teoria e Exemplos, Editora Universitária da Pontifícia
Universidade Católica do Paraná, Prado Velho, Brazil (In portuguese)

Pedrino, E. C., Roda, V. O. & Saito, J. H. (2010). A Genetic Programming Approach to
Reconfigure a Morphological Image Processing Architecture. International Journal of
Reconfigurable Computing, Vol.2011, pp. 712494-712503

Gonzalez, R. C. & Woods, R. E. (2008). Digital Image Processing. Prentice Hall, Upper Saddle
River, NJ

Angulo, J. & Serra, J. (2005). Morphological Coding of Color Images by Vector Connected
Filters, In: Centre de Morphologie Mathématique, Ecole des Mines de Paris, Paris,
France

Chanussot, J. & Lambert, P. (1998). Total ordering based on space filling curves for
multivalued morphology, In: Proceedings of the 4th International Symposium on
Mathematical Morphology and Its Applications, 51–58

Koza, J. (1992). Genetic Programming, MIT Press, Cambridge, Mass, USA

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

452

Holland, J. (1975). Adaptation in Natural and Artificial Systems, MIT Press, Cambridge, Mass,
USA

Park, H. & Chin, R. T. Decomposition of arbitrarily shaped morphological structuring
elements, IEEE Trans. Pattern Anal. Mach. Intell., Vol.17, No1, pp. 2-15

www.intechopen.com

MATLAB - A Ubiquitous Tool for the Practical Engineer

Edited by Prof. Clara Ionescu

ISBN 978-953-307-907-3

Hard cover, 564 pages

Publisher InTech

Published online 13, October, 2011

Published in print edition October, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

A well-known statement says that the PID controller is the â€œbread and butterâ€ of the control engineer. This

is indeed true, from a scientific standpoint. However, nowadays, in the era of computer science, when the

paper and pencil have been replaced by the keyboard and the display of computers, one may equally say that

MATLAB is the â€œbreadâ€ in the above statement. MATLAB has became a de facto tool for the modern

system engineer. This book is written for both engineering students, as well as for practicing engineers. The

wide range of applications in which MATLAB is the working framework, shows that it is a powerful,

comprehensive and easy-to-use environment for performing technical computations. The book includes

various excellent applications in which MATLAB is employed: from pure algebraic computations to data

acquisition in real-life experiments, from control strategies to image processing algorithms, from graphical user

interface design for educational purposes to Simulink embedded systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Emerson Carlos Pedrino, Valentin Obac Roda and Jose Hiroki Saito (2011). Non Linear Algorithm for

Automatic Image Processing Applications in FPGAs, MATLAB - A Ubiquitous Tool for the Practical Engineer,

Prof. Clara Ionescu (Ed.), ISBN: 978-953-307-907-3, InTech, Available from:

http://www.intechopen.com/books/matlab-a-ubiquitous-tool-for-the-practical-engineer/non-linear-algorithm-for-

automatic-image-processing-applications-in-fpgas

© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

