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1. Introduction 

The term proprioception was coined in 1906 by the neurophysiologist Sir Charles 

Sherrington from the Latin "proprius," meaning "one's own," for sensory information 

derived from neural receptors embedded in joints, muscles, and tendons (Sherrington, 

1906). Hence, proprioception was originally defined as “the perception of joint and body 

movement as well as position of the body, or body segments, in space”(Sherrington, 1906). 

Some years before, in 1880, Bastian introduced the term kinaesthesia, from the Greek 

“kinein” to move + “aisthēsis” sensation, to describe the role of the motor cortex in eliciting 

motor behaviors that coordinate specific and functionally appropriate somatosensory 

afferent patterns (Finger, 1994). Presently, “kinaesthesia” and “proprioception” are used 

practically synonymously to indicate the capability to appraise the configuration and 

movements of an organism’s body parts.  

At present, proprioception can be defined as the cumulative neural input to the Central 

Nervous System from specialized nerve endings called mechanoreceptors, which are located 

in the joint, capsules, ligaments, muscles, tendons, and skin (Carpenter, Blasier, & Pellizzon, 

1998; Ribeiro & Oliveira, 2007; Voight, Hardin, Blackburn, Tippett, & Canner, 1996). 

Proprioception alludes to the perception of tension/force, body/joint movement, and limb 

relative position (Riemann & Lephart, 2002). Proprioception is generally divided in the sub 

modalities sense of tension (resistance), sense of movement, and joint position sense.  Sense 

of resistance represents the ability to appreciate force generated within a joint. Sense of 

movement refers to the ability to appreciate joint movement, including the duration, 

direction, amplitude, speed, acceleration and timing of movements. Joint position sense 

determines the ability of the subject to perceive a presented joint angle and then, after the 

limb has been moved, to actively or passively reproduces the same joint angle. All three 

modalities can be appreciated consciously and unconsciously, contributing to automatic 

control of movement, balance, and joint stability, and thus being essential to carry out daily 

living tasks, walking, and sports activities (Riemann & Lephart, 2002). 

Proprioceptive information is originated and perceived within an organism at the level of 
the mechanoreceptor, which are sensory neurons located in the muscle, tendon, fascia, 
joint capsule, ligament, and skin (Carpenter, et al., 1998; Voight, et al., 1996). The main 
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receptors contributing to proprioceptive information are located in muscle, tendon, 
ligament, and capsule, while those located in the deep skin and fascial layers are 
traditionally considered as supplementary sources. Mechanoreceptors, as specialized 
sensory receptors, transduce the mechanical events, in general deformation of their host 
tissues, as frequency-modulated neural signals to the Central Nervous System throughout 
afferent sensory pathways (Grigg, 1994). The role of the different mechanoreceptors in the 
construction of proprioception has been actively debated in the literature, although 
current knowledge indicates that proprioception is primarily signaled by muscle 
receptors, namely muscle spindles (Proske, 2005, 2006). In fact, joint receptors seem to 
play a minor role through the midranges of motion, being only sufficiently stimulated in 
end ranges of motion in order to contribute substantially to proprioception (Burgess & 
Clark, 1969; Burke, Gandevia, & Macefield, 1988; Clark & Burgess, 1975; Grigg, 1975). 
Similar to joint receptors, cutaneous receptors have been hypothesized to respond only at 
the end ranges of motion (Burke, et al., 1988). In contrast, muscle spindles have been 
almost unanimously described as able to provide potent afferent information across the 
entire range of motion (Burgess, Wei, Clark, & Simon, 1982; Macefield, Gandevia, & 
Burke, 1990). In summary, muscle mechanoreceptors afferent information, specially 
arising from muscle spindles, is paramount to the mediation of proprioception, while 
other sources of proprioceptive information, including cutaneous and joint 
mechanoreceptors, seem to be also important for determining the position of distal body 
segments and/or signaling limits of range of motion (Goble, Coxon, Wenderoth, Van 
Impe, & Swinnen, 2009; Proske, 2005, 2006; Proske & Gandevia, 2009). The sense of 
tension is provided by muscle mechanoreceptors, namely Golgi tendon organs (Proske, 
2005). 
The sensory inputs received from mechanoreceptors are integrated and appreciated at three 
distinct levels of the Central Nervous System: at the spinal level, at the brain stem, and at 
the higher levels of the Central Nervous System such as the cerebral cortex and cerebellum 
(Myers & Lephart, 2000). At the spinal cord, the axons conveying proprioceptive 
information can be controlled via descending commands from the brain stem and cortex 
through interneurons and neurons connecting with higher Central Nervous System levels. 
Hence, the supraspinal regions of the Central Nervous System also play a role in the 
modulation of the proprioceptive information that enters the ascending tracts. Most 
proprioceptive information travels to the supraspinal regions of the Central Nervous System 
by both the dorsal lateral tracts that convey the signals to the somatosensory cortex and the 
spinocerebellar tracts that terminate in the cerebellum. The spinocerebellar tracts exhibit the 
fastest transmission velocities in the Central Nervous System and are associated with 
nonconscious proprioception, while the dorsal lateral tracts are responsible for the conscious 
perception of proprioception (Riemann & Lephart, 2002). The spinal level can contribute to 
functional joint stability by providing direct motor responses in the form of reflexes. At the 
brain stem, afferent information is integrated with visual and vestibular inputs in order to 
control automatic and stereotypical movement patterns, balance, and posture. The higher 
regions of the Central Nervous System, such as the cerebral cortex and cerebellum, elicit the 
conscious awareness of proprioception, thus contributing to the voluntary movements 
(Myers & Lephart, 2000). The integration of the proprioceptive input at these levels of the 
Central Nervous System aims to coordinate body stability ahead of movement execution 
(feedforward) as well as to correct for velocity and timing errors during its execution 
(feedback) (Batson, 2009). 
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Overall, undeniable evidence exists highlighting the importance of proprioception for the 
generation of smooth and coordinated movements, maintenance of normal body posture, 
regulation of balance and postural control, and influencing motor learning and relearning. 
These important roles were demonstrated in several studies evaluating deafferented 
patients (Ghez, Gordon, & Ghilardi, 1995; Ghez & Sainburg, 1995). Their data showed that 
without proprioception, the onset of movement is delayed and trajectory formation is 
impaired and highly inaccurate. 

2. Techniques to measure proprioception  

Several different testing techniques to assess joint proprioception have been reported in the 

literature. Despite proprioception being generally assessed by measuring both joint position 

sense and the sense of limb movement (Hiemstra, Lo, & Fowler, 2001), all three conscious 

sub modalities of proprioception can be assessed. Due to their nature, it is imperative to 

differentiate the modality been assessed.  

Joint position sense measures the accuracy of position replication and can be conducted 

actively or passively in both open, and closed kinetic chain positions (D. M. Hopper, et al., 

2003; Magalhaes, Ribeiro, Pinheiro, & Oliveira, 2010; Pickard, Sullivan, Allison, & Singer, 

2003; Skinner, Wyatt, Hodgdon, Conard, & Barrack, 1986; Stillman & McMeeken, 2001; 

Torres, Vasques, Duarte, & Cabri, 2010). It can be also assessed using contralateral or 

ipsilateral matching responses (Bouet & Gahery, 2000). The accuracy of joint position sense 

has been measured directly, using goniometers, potentiometers and video analysis systems 

(Figure 1), and indirectly using visual analog scales (Barrett, 1991; Dover & Powers, 2004; D. 

Hopper, Whittington, & Davies, 1997; Miura, et al., 2004; Ribeiro, Mota, & Oliveira, 2007; 

Stillman, McMeeken, & Macdonell, 1998; Torres, et al., 2010; Tripp, Boswell, Gansneder, & 

Shultz, 2004; You, 2005).  

 

 

Fig. 1. Marker placement, according to four- (A) and three-point (B) model, for position 
sense assessment of individual joints using a video analysis system 

The testing protocols usually comprise the definition of a target position that is identified 
and appreciated by the subjects, which are blindfolded. Then, the target position is 
reproduced passive or actively to the best of subjects’ ability. Joint position sense is 
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generally reported as the absolute angular error, defined as the absolute difference between 
the target position and the estimated position, the relative angular error, defined as the 
signed arithmetic difference between a test and response position, and the variable angular 
error, commonly represented by the standard deviation from the mean of a set of response 
errors. Importance should be paid to the quite different methods of joint position sense 
assessment employed in the literature, which make difficult to establish comparisons among 
the studies. 
Sense of limb movement is evaluated by measuring the threshold to detection of passive 
motion (Allegrucci, Whitney, Lephart, Irrgang, & Fu, 1995; Carpenter, et al., 1998; Lephart, 
Giraldo, Borsa, & Fu, 1996; Li, Xu, & Hong, 2008; Skinner, et al., 1986; Torres, et al., 2010). 
Threshold to detection of passive motion quantifies a subject ability to consciously detect 
movement, as well as, its direction and is often performed on some type of proprioception 
testing device such as an isokinetic dynamometer  (Figure 2).  
 

 

Fig. 2. The isokinetic dynamometer is used for assess joint position sense and sense of limb 
movement 
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In general, this procedure requires subjects to wear headphones, to be blindfolded to block 
visual input, and with a pneumatic sleeve to diminish tactile cues. The speeds used are slow, 
ranging from 0.5 to 2º/s, in order to target the slow-adapting mechanoreceptors (Riemann, 
Myers, & Lephart, 2002). The subject indicates (usually stops the device by pressing a “hold” 
button) when the passive movement is detected and the examiner records the amount of 
movement occurring before detection. 
The sense of tension is assessed measuring the ability to reproduce torque magnitudes 
produced by a group of muscles (Riemann, et al., 2002; Torres, et al., 2010). The force-
matching protocols are usually conducted without visual feedback and with low load, as the 
ability to reproduce force is associated with the recruitment of motor units and its firing 
frequency (Cafarelli, 1982). The difference between the target force and the torque produced 
is used to quantify the accuracy of sense of tension. 
Despite different, all the above-mentioned proprioceptive testing methods rely on conscious 
appreciation of the mechanoreceptors input. Particular attention should be paid to several 
factors contributing to the wide variety of results reported in the literature, namely factors 
related with the testing device (eg, position of the patient with respect to gravity leading to 
different muscular actions during the reproduction movements), the assessment procedures 
(eg, angular positions, direction and speed of movement, ipsilateral or contralateral 
matching responses), and the study design (eg, experimental group compared with control 
group or bilateral comparison). 

3. Factors influencing proprioception  

A wealth of evidence exists pointing out several factors that induce transient or chronic 
changes in joint proprioception. In the following sections, we will focus the influence of 
aging, cryotherapy and acute bouts of exercise on proprioception. 

3.1 Aging 
A large body of evidence suggests that proprioceptive function declines during the aging 
process (Bullock-Saxton, Wong, & Hogan, 2001; Kaplan, Nixon, Reitz, Rindfleish, & Tucker, 
1985; Pai, Rymer, Chang, & Sharma, 1997; Petrella, Lattanzio, & Nelson, 1997; Ribeiro & 
Oliveira, 2010; Skinner, Barrack, & Cook, 1984).  
The deterioration of proprioception throughout the human lifespan has deleterious 
repercussions on motor coordination and balance (Shaffer & Harrison, 2007). Colledge et al. 
(1994) investigated the relative contribution of vision, proprioception, and vestibular system 
to the balance of different aged groups and reported that all aged groups rely more on 
proprioception than on vision for the maintenance of balance. This is exacerbated in subjects 
older than 80 years, in who the disruption of proprioceptive input seems to be a major 
determinant of quantitative balance performance (Camicioli, Panzer, & Kaye, 1997). In fact, 
impaired lower limb proprioception has been associated with balance deficits (Horak, 
Shupert, & Mirka, 1989; Lord & Ward, 1994; Manchester, Woollacott, Zederbauer-Hylton, & 
Marin, 1989; Woollacott, Shumway-Cook, & Nashner, 1986), which have, in turn, been 
associated with a higher incidence of falls (Lord, Rogers, Howland, & Fitzpatrick, 1999; 
Overstall, Exton-Smith, Imms, & Johnson, 1977; Sorock & Labiner, 1992; Tinetti, Speechley, 
& Ginter, 1988). Furthermore, decreased proprioception could lead to abnormal joint 
biomechanics during functional activities that over a period of time could result in 
degenerative joint disease (Skinner, 1993).  
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Proprioception acuity in the elderly has been extensively determined through cross-
sectional studies comparing sense of position (Table 1) and/or limb movement in different 
age groups (Goble, et al., 2009; Ribeiro & Oliveira, 2007).  
Among the first studies determining the effects of aging on proprioception are those 
performed by Kokmen and colleagues (1978) and Barrack and colleagues (Barrack, Skinner, 
& Cook, 1984; Skinner, et al., 1984). Skinner et al. (1984) compared knee proprioception 
under passive movement (threshold to detection of joint motion and the ability to reproduce 
passive knee positioning) between old and young subjects and found better proprioception 
in the young group. Similarly, Kaplan and colleagues, in 1985, determined the age-related 
changes in knee joint position sense using two techniques that required active movement, 
ipsilateral and contralateral matching repositioning, and observed reduced proprioception 
in older subjects. Interestingly, the source of acuity errors could be different for ipsilateral 
and contralateral matching. The contralateral matching limits the influence of eventual 
decreased memory abilities, as it relies greatly on interhemispheric communication, 
although the proprioceptive performance in this procedure could be influenced by 
decreased integrity of the corpus callosum or proprioceptive deficits in the contralateral leg 
(Goble, et al., 2009). A recent study, conducted by Ribeiro & Oliveira (2010), encompassing 
129 subjects (69 older male adults aged 72.2 ± 5.0 years, and 60 young male adults aged 20.6 
± 3.0 years) and evaluating knee position sense with an open kinetic chain technique and 
active positioning also concluded that age has deleterious effects on position sense.  
The different assessment methods employed in the above-mentioned studies and the 
different joints evaluated led to a wide range of acuity values, hence precluding the 
determination of normal values for elderly position sense acuity. Indeed, the methods used 
to assess position sense could have a direct influence in the acuity results. For instance, (i) 
active reproduction of joint position is more functional and accurate than passive 
reproduction (Bennell, Wee, Crossley, Stillman, & Hodges, 2005; Pickard, et al., 2003); (ii) 
weight bearing closed kinetic chain assessments enhance the position matching acuity 
(Bullock-Saxton, et al., 2001); and, (iii) target positions located farther from the starting joint 
position seem to increase the matching errors (Adamo, et al., 2007; Kaplan, et al., 1985). 
Despite using different methodological procedures, it is important to note that in general the 
direction of results allows to reach a similar conclusion: a significant deterioration of joint 
position sense is observed with advancing age. 
Fewer studies have been conducted determining the effects of age on sense of movement in 
comparison with sense of position. Notwithstanding, they also clearly indicate that sense of 
movement is less accurate in old age subjects. In fact, studies conducted in the 
metacarpophalangeal and metatarsophalangeal (Kokmen, et al., 1978), knee (Barrack, et al., 
1983; Skinner, et al., 1984), and ankle (Gilsing, et al., 1995; You, 2005) joints collectively 
highlight that the threshold to detection of passive motion increase with advancing age. In 
one of these studies (Skinner, et al., 1984), the decline in the acuity to detect passive motion 
was estimated to be, on average, 0.068º per year of adult life. 
The mechanisms of proprioception deterioration with aging involve both central and 
peripheral nervous system changes. At the peripheral level, studies using animals and 
humans have shown anatomical and physiological age-related changes in several 
mechanoreceptors (Shaffer & Harrison, 2007). Aging changes the muscle spindles function 
by: (i) decreasing dynamic and static sensitivities (Miwa, Miwa, & Kanda, 1995); (ii) 
decreasing the total number of intrafusal muscle fibers and nuclear chain fibers per spindle 
(Kararizou, Manta, Kalfakis, & Vassilopoulos, 2005; Liu, Eriksson, Thornell, & Pedrosa- 
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Author Joint Assessment Procedures  Results (AAE) 

  
Matching 
responses 

Matching 
movement 

Weight 
bearing 

Target 
angle 

Old 
Young 
controls 

Adamo, 
Martin, & 
Brown, 
2007 

Elbow 

I 
 
 
C 
 

Active 
 
 
Active 

No 
 
 
No 

10º 
30º 
60º 
10º 
30º 
60º 

3.3º 
4.6º 
5.5º 
3.8º 
5.1º 
6.6º 

1.6º 
3.3º 
4.0º 
2.2º 
4.5º 
6.0º 

Pickard, et 
al., 2003 

Hip I 

Active 
(outer) 
Active 
(inner) 
Passive 

No 
20º 
20º 
20º 

~2.2º 
~1.8º 
~2.4º 

~2.2º 
~1.8º 
~2.4º 

Ribeiro & 
Oliveira, 
2010 

Knee I Active No 40º–60º 9.4 ± 4.3º 
4.7 ± 
2.7º* 

Tsang & 
Hui-Chan, 
2003 

Knee I Passive No 3º 
4.0 ± 
3.4° 

– 

Petrella, et 
al., 1997 

Knee I Active Yes 10º–60º 4.6 ± 1.9º 
2.0 ± 
0.5º* 

Kaplan, et 
al., 1985 

Knee C Active No 
15º 
30º 
70º 

5º 
5º 
8º 

3º 
3º 
4º 

Barrack, 
Skinner, 
Cook, & 
Haddad, 
1983 

Knee I Active No 5°–25° 4.6º 3.6º* 

Verschueren, 
Brumagne, 
Swinnen, & 
Cordo, 2002 

Ankle I Passive No 10º 2.7º 2.2º* 

You, 2005 Ankle I Active Yes 2°–38° 
2.6 ± 
0.8° 

1.4 ± 
0.6°* 

Lord, et al., 
1999 

Toe C Active No – 1.6º – 

Table 1. Summary of joint position sense results from studies in the elderly. 
AAE – absolute angular error; C – contralateral; I – ipsilateral; * significantly better acuity in 
young vs. old subjects  (p<.05) 
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Domellof, 2005; Miwa, et al., 1995; Swash & Fox, 1972); (iii) increasing spindle capsule 
thickness (Kararizou, et al., 2005; Liu, et al., 2005; Miwa, et al., 1995; Swash & Fox, 1972); (iv) 
deteriorating the spinal presynaptic inhibition pathways (Burke, Schutten, Koceja, & Kamen, 
1996); and, (v) denervation due to spherical axonal swellings, expanded motor end plates, and 
group denervation atrophy (Swash & Fox, 1972). Cutaneous receptors, such as Meissner and 
Pacinian type corpuscles, also undergo structural modifications including a decrease in 
number and mean density of receptors per unit of skin area (Bolton, Winkelmann, & Dyck, 
1966; Iwasaki, Goto, Goto, Ezure, & Moriyama, 2003). Changes in the number and morphology 
of joint mechanoreceptors, particularly in Ruffini, Pacinian and Golgi-tendon type receptors, 
are also reported in literature (Aydog, Korkusuz, Doral, Tetik, & Demirel, 2006; Morisawa, 
1998). In addition to these peripheral modifications, the decline in proprioception as result of 
the aging process could be also consequence of changes in the Central Nervous System. 
Indeed, inadequate processing of proprioceptive input could be determined by numerous 
changes at central level, including decreased conductive function in the somatosensory 
pathways (Tanosaki, Ozaki, Shimamura, Baba, & Matsunaga, 1999), decreased grey matter in 
postcentral gyrus (Quiton, et al., 2007), progressive loss in the dendrite system of the motor 
cortex (Nakamura, Akiguchi, Kameyama, & Mizuno, 1985; Scheibel, Lindsay, Tomiyasu, & 
Scheibel, 1975), decline in the number of neurons and receptors, and neurochemical changes in 
the brain (Masliah, Mallory, Hansen, DeTeresa, & Terry, 1993; Pakkenberg & Gundersen, 1997; 
Strong, 1998). Central Nervous System alterations could also induce alterations in muscle 
spindle sensitivity, as supraspinally mediated changes in the gamma drive to the muscle 
spindle could have a direct effect on its sensitivity (Mynark, 2001). 

3.2 Cryotherapy 
Cool, in the form of cryotherapy, is one of the therapeutic modalities most extensively used 
in the treatment of acute and chronic injuries. Cryotherapy modalities comprise the 
application of ice (for instance crushed ice) (Oliveira, Ribeiro, & Oliveira, 2010), cold water 
immersion (Costello & Donnelly, 2011), commercially available cooling pads, and liquid 
cooling solutions (Leite & Ribeiro, 2010) aiming to reduce tissue temperature, metabolism, 
inflammation, pain, vasodilatation, and symptoms of delayed-onset muscle soreness. A 
number of studies have focused the effects of cryotherapy on proprioception (Costello & 
Donnelly, 2011; Dover & Powers, 2004; D. Hopper, et al., 1997; LaRiviere & Osternig, 1994; 
Oliveira, et al., 2010; Ozmun, Thieme, Ingersoll, & Knight, 1996; Uchio, et al., 2003; 
Wassinger, Myers, Gatti, Conley, & Lephart, 2007) and reported conflicting results (Table 2).  
Cryotherapy modalities varied from single joint ice-bag application to lower limb water 
immersion and durations ranging, in general, from 15 to 30 minutes. The ice bag modality 
was applied over the joint in all studies, with one study (Oliveira, et al., 2010) applying the 
ice bag also over the skeletal muscle. In general, the studies performed in this field assessed 
proprioception by measuring sense of position in different joints, including shoulder, knee, 
and ankle. All the studies (Dover & Powers, 2004; Thieme, et al., 1996; Wassinger, et al., 
2007), but one (Oliveira, et al., 2010), using an ice bag application found no deleterious effect 
of cryotherapy on proprioception. Wassinger et al. (2007) applied an ice bag, filled with 1500 
g of cubed ice, to the shoulder joint for 20 minutes and assessed active sense of position 
while standing in 2 target positions, 90º of shoulder flexion to 20º flexion and 20º of flexion 
to 90º of flexion. The authors found no differences in joint position sense after the ice 
application, but the results were reported in centimeters of vertical displacement, making 
those hard to interpret and compare with the literature. 
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Author Joint 
Cryotherapy application 

Proprioception 
assessment 

Results (AAE) 

Modality Local Duration Before After 

LaRivier
e & 
Osternig
, 1994 

Ankle 
Water 
immersion 

Leg 
immersion 
to a 
distance of 
4 cm distal 
from the 
knee joint 
line 

20 min Active JPS 3.8±2.0 3.7±2.3 

Thieme, 
Ingersoll
, Knight, 
& 
Ozmun, 
1996 

Knee Ice bag Knee joint 20 min Active JPS N/A N/A 

Hopper, 
et al., 
1997 

Ankle 
Water 
immersion 

Immersion 
to a depth 
of 5 cm 
above the 
medial 
malleolus 

15 min Active JPS 2.4º 2.9º* 

Uchio, 
et al., 
2003 

Knee 
Cooling 
pad 

Knee joint 15 min Active JPS 4.8±1.6º 6.5±2.1* 

Dover & 
Powers, 
2004 

Shoulder Ice bag 
Shoulder 
joint 

30 min 

Active JPS – 
IR 
Active JPS – 
ER 

4.5±2.8º 
2.9±1.6 

4.1±2.1º 
3.8±2.2º 

Oliveira, 
et al., 
2010 

Knee Ice bag 
Quadriceps 
muscle 
Knee joint 

20 min 
 
20 min 

Active JPS 
 
Active JPS 

4.7±3.0º 
 
4.6±2.9º 

6.9±4.8* 
 
6.8±4.7* 

Costello 
& 
Donnelly
, 2011 

Knee 
Water 
immersion 

Immersion 
to the level 
of the 
umbilicus 

30 min 

Active JPS: 
~35º 
~55º 
~75º 

 
4.5±3.3º 
2.9±2.7º 
3.0±1.9º 

 
5.4±2.5º 
5.6±3.1º 
3.2±2.9º 

Table 2. Summary of studies examining the effects of cryotherapy on proprioception. 
AAE – absolute angular error; ER – external rotation; IR – internal rotation; JPS – joint 
position sense; min – minutes; * significantly worse proprioception after cryotherapy 
application  (p<.05) 
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The studies (Costello & Donnelly, 2011; D. Hopper, et al., 1997; LaRiviere & Osternig, 1994) 
using water-immersion cryotherapy protocols found similar results for lower limb 
proprioception. Indeed, despite using different immersion durations (15, 20 and 30 
minutes), depths, and water temperatures (14º, 4º, 5º, respectively), and assessing different 
joints (ankle and knee), they reported no changes in position sense after water immersion 
(Costello & Donnelly, 2011; LaRiviere & Osternig, 1994) or have questioned the clinical 
significance of the changes (D. Hopper, et al., 1997).  
In fact, Hopper et al. (1997) questioned if a 0.5° difference in ankle joint position sense 
following 15 minutes of ice bath immersion would be clinically relevant. Surenkok et al. 
(2008) investigated the effects of cold spray (ethyl chloride) application to the knee (until 
volunteers reported a feeling of cold) and a cooling pad (in two sessions 1-week apart) on 
passive knee joint position sense and concluded that both methods negatively affected 
position sense; despite these results, the efficacy of superficial applications of cryotherapy 
such as cold spray to decrease deep tissue sufficiently to elicit a reduction in proprioception 
is questionable (Costello & Donnelly, 2010). Moreover, the felling of cold could vary from 
individual to individual, and thus temperature decrease could not be uniform in all the 
subjects. Interestingly, Uchio et al. (2003) found a statistically significant decrease (1.7°) in 
knee joint position sense after 15 minutes of cooling, but reported position sense 
normalization at 15 minutes postcooling. 
The authors reporting changes in proprioception after cryotherapy almost unanimously 

suggested the reduction of nerve conduction velocity, as the rationale for the observed 

decrease in proprioception. Indeed, a study reported an average reduction of 33 % and 17 % 

in nerve conduction velocity when the skin temperature was reduced to 10° C and 15 ° C, 

respectively, which relates to a 0.4 m/s decrease in nerve conduction velocity for each 1° C 

fall in skin temperature (Algafly & George, 2007). 

In summary, the number of studies showing an increase in joint position sense error after 

cryotherapy is similar to the number of studies reporting no changes. Due to the limited 

number of investigations and the inconsistency of its results, which likely resulted from the 

methodological differences, the influence of cryotherapy on proprioception is still to be 

clearly ascertained. Since cryotherapy is a common therapeutic modality used in several 

settings, its impact on proprioception needs to be clearly determined in order to ensure its 

safety use before exercise without increasing the risk of injury due to inadequate 

proprioception and consequently impaired motor control. 

3.3 Acute bouts of exercise 
In this section we aim to discuss results of studies assessing the acute effects of pre-
participation warm-up exercises and strenuous exercise inducing muscle fatigue on 
proprioception. The hypothesis underlying these studies is based on the proposition that if 
muscular mechanoreceptors were the most important afferent information contributors for 
proprioception, it would be expected that changes in the functional state of the muscle 
would have repercussions on proprioception acuity. 

3.3.1 Pre-participation warm-up exercise 
Warm-up exercise is acknowledged to have beneficial effects on athletic performance by 
reducing muscle stiffness, ameliorating the viscous elastic functioning of structures 
surrounding the joints, increasing neural conduction and velocity, and metabolic efficiency 
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(Bishop, 2003; Fradkin, Zazryn, & Smoliga, 2010). The general purposes of warm-up exercise 
are to increase muscle and tendon suppleness, muscle temperature, and blood flow to the 
periphery, and to enhance movement coordination (Fradkin, et al., 2010). 
Since proprioception plays a vital role in the conscious and unconscious sensations, 

automatic control of movement, and motor coordination, improving proprioception in the 

course of warm-up might reduce the risk of injury and improve movement accuracy 

(Thacker, et al., 2003). Notwithstanding, few studies (Bartlett & Warren, 2002; Bouet & 

Gahery, 2000; Magalhaes, et al., 2010; Subasi, Gelecek, & Aksakoglu, 2008) investigated the 

impact of warm-up exercises on proprioception (Table 3). Indeed, the theoretical relation 

between warm-up, proprioception and reduced risk of sport injuries seems to be clearly 

established, however few studies determined the effect of pre-participation warm-up 

exercise on proprioception in athletes (Bartlett & Warren, 2002; Magalhaes, et al., 2010).  

Regardless of using different warm-up protocols and assessment procedures to measure 

proprioception, the overall conclusions of all of the above-mentioned studies indicate an 

augment on joint proprioception after warm-up. Bouet and Gahéry, in 2000, tested the 

hypothesis that the accuracy of knee position sense would be better as the muscles worked 

under better conditions. The investigation involved 32 healthy subjects and comprised the 

assessment of knee position sense in two tasks (intramodal: using the contralateral leg, and 

crossmodal: using a scheme of a leg on a screen) with two ways of positioning (active and 

passive) before and after a moderate exercise consisting of pedaling during 10 minutes on a 

cycle ergometer. The results showed an improvement in position sense after warm-up only 

with the intramodal protocol combined with active positioning of the reference leg. 

Bartlett and Warren (2002) evaluated the effects of a standardized four-minute duration 

warm up, consisting of jogging and stretching exercises, on passive knee position sense in 12 

rugby players. The authors concluded that after a period of stretching and gentle exercise 

knee proprioception is improved, indicating an increase in sensitivity of proprioceptive 

mechanisms associated with the ligaments around the knee. More recently, Subasi et al. 

(2008) designed a study to determine the effects of different warming up periods on passive 

knee joint position sense of 30 healthy subjects. The 30 subjects were randomly distributed 

into a control (n = 10) and two exercise (each with n = 10) groups, which performed warm-

up exercises of different lengths (5 and 10 minutes). Interestingly, the authors found that the 

10-minute warm-up exercise period induced greater improvement in proprioception than 

the 5-minute warm-up period. 

From the above-mentioned studies, only one (Magalhaes, et al., 2010) assessed 

proprioception, namely knee joint position sense, in closed kinetic chain, a procedure more 

close to the demands of sport and/or the exercises used in programs of proprioceptive 

training. The authors assessed knee joint position sense before and immediately after a 

warm-up program through active repositioning in open kinetic chain and closed kinetic 

chain in ten young amateur karatekas. Results showed that the warm-up program enhanced 

knee joint position sense only in closed kinetic chain. 

The improvement of proprioception induced by pre-participation warm-up exercise 

involves exercise-related changes in both central and peripheral components of 

proprioception. At peripheral level, warm-up exercises may have positive impact on the 

function of muscular mechanoreceptors by improving the visco-elastic properties of 

muscular tissue, enhancing oxygenation, increasing nerve-conduction rate, and increasing 

body temperature due to vasodilatation (Bishop, 2003).  
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Author Warm-up exercises Warm-up duration 

Bouet & Gahery, 2000 
One-leg pedaling on a cycle ergometer 

without any imposed cadence and intensity 
10 min 

Bartlett & Warren, 2002 

Jogging 

Stretching exercises  (muscle group not 

specified) 

4 min 

Subasi, et al., 2008 

Jogging (Protocol 1 – 2:30 min; Protocol 2 – 5 

min) 

Stretching exercises  

Quadriceps muscle 

Hamstring muscle 

Gastrocnemius muscle 

Protocol 1 – 5 min 

Protocol 2 – 10 min 

Magalhaes, et al., 2010 

Jogging and jumps 

Jogging end to end  

Backward running 

Forward running 

Jumping crossing the legs 

Skipping exercise 

Stretching exercises  

Quadriceps muscle 

Hamstring muscle 

Gastrocnemius muscle 

10 min 

Table 3. Summary of the warm-up procedures 

At the level of Central Nervous System, warm-up exercises may also contribute to better 

proprioception by changing corollary discharges, likely involved in position sense 

(McCloskey & Torda, 1975), and/or fusimotor commands and, therefore, muscle spindle 

sensitivity (Bouet & Gahery, 2000). 

Collectively, the available evidence supports that proprioceptive acuity is increased by pre-

participation warm-up exercises. 

3.3.2 Exercise-induced muscle fatigue 
Per opposition to pre-participation warm-up exercises, high intensity exercise inducing 
muscle fatigue is associated with reduction of muscle force, joint range of motion and joint 
stability, and with clumsiness in movements demanding high levels of accuracy (Brockett, 
Warren, Gregory, Morgan, & Proske, 1997; Howell, Chleboun, & Conatser, 1993; Paschalis, 
et al., 2007; Proske, et al., 2003; Saxton, et al., 1995).  
Fatigue is defined as an exercise-induced reduction in the ability of a muscle to generate 
force or power due to peripheral and/or central factors, related with an increase in 
perceived exertion, which can be defined as the intensity of subjective effort, strain, 
discomfort or fatigue sensation that one feels during exercise (Gandevia, 2001). The effects 
of exercise-induced muscle fatigue on joint proprioception have been extensively 
investigated in the last decades (Allen & Proske, 2006; Brockett, et al., 1997; Carpenter, et al., 
1998; Forestier & Bonnetblanc, 2006; Forestier, Teasdale, & Nougier, 2002; Givoni, Pham, 
Allen, & Proske, 2007; Ju, Wang, & Cheng, 2010; Lattanzio, Petrella, Sproule, & Fowler, 1997; 
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Lee, Liau, Cheng, Tan, & Shih, 2003; Miura, et al., 2004; Myers, Guskiewicz, Schneider, & 
Prentice, 1999; Paschalis, et al., 2008; Paschalis, et al., 2007; Ribeiro, et al., 2007; Ribeiro, 
Santos, Gonçalves, & Oliveira, 2008; Ribeiro, Venâncio, Quintas, & Oliveira, 2011; Saxton, et 
al., 1995; Skinner, et al., 1986; Torres, et al., 2010; Tripp, et al., 2004; Vila-Cha, et al., 2011; 
Walsh, Hesse, Morgan, & Proske, 2004) (Table 4).  
The majority of studies investigating the effects of exercise-induced fatigue on proprioception 
have been conducted in the knee joint. Sense of position, using active ipsilateral matching 
responses, has been the sub modality of proprioception mainly assessed. 
The great majority of these studies induced muscle fatigue with laboratory protocols, often 
performed in an isokinetic dynamometer and involving isolated joint movements and muscle 
groups. The use of the information arising from laboratory studies is frequently difficult. 
Particularly in athletes, the use of exercise protocols that mimic the demands of sporting activity 
could have the advantage of reproducing more specifically the changes in neuromuscular 
control and proprioception observed in sport settings. Few studies have been conducted so far 
assessing changes in proprioception induced by sporting activity (Ribeiro, et al., 2008) or 
laboratory protocols replicating sporting activities (Tripp, et al., 2004). This issue is particularly 
relevant for athletes, as reduced proprioceptive acuity is an acknowledged risk factor for sport 
injuries (Barrack, Skinner, & Buckley, 1989). Additionally, it has been suggested that the higher 
number of injuries sustained during the last third of practice sessions or matches could be 
correlated with fatigue-induced alterations in lower limb neuromuscular control and joint 
dynamic stability due to changes in joint proprioception (Hiemstra, et al., 2001).  
In general, the several studies performed in this field (Table 4), enrolling different 
populations (young and old-age subjects, male and female) and using distinct methodology 
in different joints, have demonstrated proprioceptive deficits, namely on joint position 
sense, as a consequence of exercise-induced muscle fatigue. The repercussions of muscle 
fatigue on elderly proprioception deserve singular interest, as altered proprioceptive input 
due to fatigue could result in deficits in neuromuscular and postural control, leading to 
increased risk of falls and consequently increasing the risk of osteoporotic fractures. 
It has been theorized that muscle fatigue may impair the proprioceptive acuity by increasing 
the threshold of muscle spindle discharge and disrupting afferent feedback. Indeed, a 
plausible mechanism to explain the decrease in proprioception observed after fatiguing 
exercise could be the augmented intramuscular concentrations of several metabolites and 
inflammatory substances, which in turn have a direct impact on the discharge pattern of 
muscle spindles and alpha–gamma coactivation (Pedersen, Lonn, Hellstrom, Djupsjobacka, & 
Johansson, 1999; Pedersen, Sjolander, Wenngren, & Johansson, 1997). The direct impact of 
fatigue on the discharge patterns of muscle spindles was observed in an animal study 
(Pedersen, et al., 1997). In brief, in the fatigued muscle the nociceptors are activated by the end 
metabolic products (including bracykinin, arachidonic acid, prostaglandin E2, potassium, and 
lactic acid), which were produced during the previous muscular contractions. These 
metabolites and/or inflammatory substances within the muscle during fatiguing exercise 
modify the proprioceptive input by increasing the threshold for muscle spindle discharge 
(Djupsjobacka, Johansson, & Bergenheim, 1994; Djupsjobacka, Johansson, Bergenheim, & 
Wenngren, 1995; Pedersen, et al., 1997). On the other hand, changes in alpha/gamma co-
activation or in alpha motoneuron activation induced by fatigue would alter muscle spindle 
excitability through stretch (Marks & Quinney, 1993). The decrease in proprioceptive acuity 
after fatiguing exercise may also be explained, at least partially, by changes in the central 
processing of proprioceptive signals, in result of Central Nervous System fatigue processes. It 
was reported that central fatigue may reduce the accuracy of motor control and interrupt 
voluntary muscle-stabilizing activity to resist imparted joint forces (Miura, et al., 2004). 
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Author Joint Sample Exercise protocol 
Proprioception 
assessment  

Results 

Saxton, 
et al., 
1995 

Elbow 

12 
subjects 
(6 
female) 

50 eccentric 
contractions of the 
forearm flexors 

Sense of 
tension and 
active JPS 
(contralateral 
and ipsilateral 
matching)  

Both 
parameters 
decreased 
when using 
contralateral 
matching  

Brockett, 
et al., 
1997 

Elbow 

13 
subjects 
(7 
female) 

120 contractions at 
20% of MVC 

Sense of 
tension and 
active JPS 
(contralateral 
matching)  

Decrease in 
sense of 
tension and 
JPS  

Walsh, 
et al., 
2004 

Elbow 

18 
subjects 
(4 
female) 

2 protocols: 200-250 
E or C contractions 
at 30% of MVC 

Active JPS 
(contralateral 
matching)  

Both protocols 
decreased JPS 

Allen & 
Proske, 
2006 

Elbow 

15 
subjects 
(7 
female) 

Lifting a weight of 
30% of MVC with 
elbow flexors until 
exhaustion 

Active JPS 
(contralateral 
matching)  

Decrease in 
JPS 

Carpenter
, et al., 
1998 

Should
er 

20 
subjects 
(9 
female) 

C/C contractions of 
shoulder rotators 
until a PT drop of 
50% 

TTDPM of 
humeral 
rotation 

Decrease of 
73% in sense 
of movement 

Lee, et 
al., 2003 

Should
er 

11 male 
subjects  

C/C contractions of 
external and 
internal rotators 
until a peak torque 
drop of 50% 

Active and 
Passive JPS 

Decrease in 
active but not 
in passive JPS 

Skinner, 
et al., 
1986 

Knee 
11 male 
subjects 

3.75-mile run and 
exercise  

Passive JPS and 
TTDPM 

Decrease in 
JPS; no 
changes in 
TTDPM 

Lattanzio, 
et al., 
1997 

Knee 

16 
subjects 
(8 
female) 

3 cycling protocols 
to maximal 
exhaustion 

Active JPS 
Decrease in 
JPS 

Miura, 
et al., 
2004 

Knee 
27 male 
subjects 

2 protocols: local 
load and general 
load 

Active JPS 
Only general 
load 
decreased JPS 

Ribeiro, 
et al., 
2007 

Knee 

16 old-
age 
male 
subjects 

30 C/C contractions 
of the knee muscles 

Active JPS 
Decrease in 
JPS 

Ribeiro, 
et al., 
2008 

Knee 

17 
young 
male 
athletes 

Volleyball match 
(90 min duration) 

Active JPS 
Decrease in 
JPS 
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Author Joint Sample Exercise protocol 
Proprioception 
assessment  

Results 

Ribeiro, 
et al., 
2011 

Knee 
40 male 
subjects 

2 protocols: 30 C/E 
contractions of the 
knee extensors or 
flexors  

Active JPS 
Decrease in 
JPS on both 
protocols 

Torres, 
et al., 
2010 

Knee 
14 male 
subjects 

E knee flexors 
contractions at 60% 
of PT until 
exhaustion 

Active JPS, 
sense of 
tension, and 
TTDPM 

Decreased 
acuity in all 
parameters 

Forestier
, et al., 
2002 

Ankle 
8 male 
subjects 

Isometric 
contractions of 
ankle flexor at 70% 
of MVC 

Active JPS 
(contralateral 
matching) 

Decrease in 
JPS 

Forestier 
& 
Bonnetbl
anc, 2006 

Ankle 
10 male 
subjects 

Isometric 
contractions of 
ankle flexor at 70% 
of MVC 
 

Active JPS 
(contralateral 
and ipsilateral 
matching)  

Decreased JPS 
only when 
using 
contralateral 
matching  

Table 4. Experimental evidence of the effects of exercise-induced muscle fatigue on joint 
proprioception. C - concentric; E - eccentric; JPS - joint position sense; MVC - maximum 
voluntary contraction; PT - peak torque; TTDPM - threshold to detection of passive motion.  

Some authors, whose exercise protocols included eccentric contractions, have given as a 
reason for the proprioceptive deficits the exercise-induced muscle damage. In spite of this, it 
is pretty unlikely that the damage of muscle mechanoreceptors was the underlying cause of 
the changes observed, as studies using animal models revealed that, per opposition to 
extrafusal fibers, a series of eccentric contractions do not have any effect on intrafusal fibers 
of muscle spindles (Gregory, Morgan, & Proske, 2004) or on tendon organs (Gregory, 
Brockett, Morgan, Whitehead, & Proske, 2002). 

4. Effects of regular physical activity and exercise on proprioception 

It is widely acknowledged that regular physical activity and exercise generate an impressive 
collection of favorable effects in many physiologic systems. However, a pertinent question 
to be formulated is to whether physical activity performed on a regular basis is able to 
attenuate the age-related decline in proprioception? 
The answer to this question is of crucial importance, since the only strategy that seems to 
retain/regain joint proprioception in old age subjects is regular physical exercise. The 
decline in proprioception in older adults, especially in lower limbs, is of great concern for 
several reasons: first, older adults rely more on proprioception than on vision (Colledge, et 
al., 1994); second, decreased proprioception has been related with disturbances in balance, 
which consequently increase the susceptibility to injurious falls (Lord, et al., 1999; Sorock & 
Labiner, 1992); and, third, decreased proprioception could lead to abnormal joint 
biomechanics during functional activities, which in turn could lead to, over a period of time, 
degenerative joint disease (Skinner, 1993). 
Despite not consensual, the majority of studies pointed out the beneficial effect of regular 
physical activity and exercise on lower limb proprioception of older adults (Li, et al., 2008; 
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Petrella, et al., 1997; Pickard, et al., 2003; Ribeiro & Oliveira, 2010; Schmitt, Kuni, & Sabo, 
2005; Tsang & Hui-Chan, 2003; Xu, Hong, Li, & Chan, 2004). Petrella et al. (1997) evaluated 
the influence of regular physical activity on proprioception by measuring knee joint 
proprioception among young volunteers and active and sedentary elderly volunteers. The 
authors reported significant differences between young (mean, 2.01 ± 0.46°) and active-old 
(mean, 3.12 ± 1.12°; P < 0.001), young and sedentary-old (mean, 4.58 ± 1.93°; P < 0.001), and 
active-old and sedentary-old (P < 0.03). Identical results were reported by Pickard et al. 
(2003), who found no differences when comparing hip joint position sense between 
sedentary-young and active-aged subjects (75 ± 6 years old). Some studies have also 
demonstrated a positive impact of Tai Chi, a Chinese mind-body exercise that puts a great 
emphasis on the exact joint position and direction, on proprioception, namely knee position 
sense (Tsang & Hui-Chan, 2003) and knee and ankle sense of movement (Li, et al., 2008; Xu, 
et al., 2004). More recently, Ribeiro and Oliveira (2010) tested the hypotheses that knee 
position sense declines with age and that regular exercise can attenuate that decline. The 
authors conducted a cross-sectional study encompassing 69 older and 60 young adults 
divided in four groups (exercised-old, N = 31; non-exercised-old, N = 38; exercised-young, 
N = 35; non-exercised-young, N = 25) according to chronological age and exercise practice in 
the past year and reported that compared to their non-exercised counterparts, exercised-old 
subjects exhibited better sense of position. Moreover, the proprioceptive acuity of exercised-
old subjects was similar to non-exercised young subjects (Figure 3).  
 

 

Fig. 3. Positive effects of regular physical exercise on knee joint position sense (adapted from 
Ribeiro & Oliveira, 2010) 

Several mechanisms could be pointed towards to explain the positive impact of regular 
physical activity and exercise on joint proprioception. It is not surprising that being central 
and peripheral components of proprioception implicated in the age-related decline on 
proprioceptive function, they are also both potentially related to its improvement.  
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Physical exercise does not change the number of mechanoreceptors (Ashton-Miller, Wojtys, 
Huston, & Fry-Welch, 2001), but induces morphological adaptations in the muscle spindle 
(Hutton & Atwater, 1992). There are muscle spindle adaptations on a microlevel, the 
intrafusal muscle fibers could show some metabolic changes, and on a more macrolevel, the 
latency of the stretch reflex response decrease and the amplitude increase (Hutton & 
Atwater, 1992). 
At central level, regular physical activity and exercise is able to change proprioception 
through the modulation of the muscle spindle gain and the induction of plastic 
modifications in the Central Nervous System. During physical activities an increase in the 

muscle spindle output through the  route is observed, which facilitates the cortical 
projection of proprioception. Thus, by increasing the output of the muscle spindle over time, 
it is possible to induce plastic changes in the Central Nervous System, such as increased 
strength of synaptic connections and/or structural changes in the organization and numbers 
of connections among neurons (Ashton-Miller, et al., 2001). These plastic changes in the 
cortex would modify the cortical maps of the body over time, increasing the cortical 
representation of the joints and leading to enhanced joint proprioception (Ashton-Miller, et 
al., 2001).  

5. Summary 

In summary, this chapter highlighted the evidence that aging, cryotherapy, and exercise-
induced fatigue have deleterious effects on joint proprioception, while moderate exercise or 
warm-up exercise enhances proprioceptive acuity. Additionally, it seems that regular 
physical activity and exercise play an undeniable role in the preservation of proprioceptive 
function. 
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