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1. Introduction

Arti cial neural networks (ANNSs) are computational models of their biological cou  nterparts.
They consists of densely interconnected computing units that work together to solve a sp ecic
problem. The information, which is acquired during a learning process, is stored in the
synaptic weights of the internodal connections. The main advantage of neural networks is
their ability to represent complex functions and the ef cient storage of information. ANNs
are frequently employed in applications involving data classi cation, function appro  ximation,
and signal processing (Haykin, 1994).

The topology of ANNs consists of an arrangement of neurons, which a re equipped with
a transfer function and synaptic weights, and the nodal connections. Despite these
simple topological elements, the exible arrangement of neurons and connections allows
the generation of ANNs with arbitrary complexity. The resulting topological comp lexity,
however, directly affects the network performance. The performance, or tness, is a meas ure
of the accuracy of a network in representing an input-output relation. For instance , network
topologies with only few neurons and synaptic weights provide only limited exibility in
representing complex functions. They have therefore typically only a poor tness. On the
other side, complex networks that provide larg e exibility in representing new data, can lead
to poor generalizability and extensive computation al costs for training and data retrieval (Yao,
1999). Considering the integration of such networks in large-scale simulations, data retrieval
from such large networks can lead to a signi cant increase in overall computing time. Because
of the inherent topological complexity it is apparent that the a priori identi cation of a
network topology with near-optimal performance is a challenging task, and is often  guided
by heuristics or trial-and-error.

The design of a speci ¢ network topology with optimal performance can be formulated as an
optimization problem. The choice of the method to solve this problem is deter mined by the
inherent properties of th e ANN (Miller e t al., 1989):

1. The dimension of the architecture space is in nite since the number of neurons and nodal
connections is unbounded.
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2. Assessing the performance of a particular network topology usually requires the prior
training of the network, which in itself is an optimization problem and usually time
consuming.

3. The design parameters determining the topology of the network can be both of continuo us
and categorical type.

4. The objective function that quanti es the network performance with respect to the design
variables is noisy and non-differentiable.

5. Different ANN topologies can lead to similar performance, implying that the solution
space is multimodal.

Over recent years considerable research has been conducted on the evolution of topological
structures of networks using evolutionary strategies (Bornholdt & Graudenz 1992; Fogel
& Fogel 1990; Husken et al. 2005; Koza & Rie 1991; Miller et al. 1989; Porto et al. 1995;
Tang et al. 1995 and references in Yao 1999). Evolutionary strategies (ESs) are global sech
algorithms and have frequently been used to nd optimal network topologies and nodal
transfer functions. ESs can conveniently be implemented in an existing code and do not
require gradient information. Despite their popularity, ESs are known to be expensive,
typically characterized by slow convergence, and usually lack formal convergence theory .
Other methods which have been employed for the automatic design of near-optimal networks
are so-called construction and destruction algorithms (Frean, 1990; Mozer & Smolensky,
1989), in which neurons are systematically added or deleted with the objective to improve
the network tness. These methods, however, search only in a r estricted subset of possible
network architectures (Angeline et al., 1994).

As an alternative to these optimization techniques Ihme et al. (2008) proposed to use a
generalized pattern search (GPS) method for the generation of optimal ANNs. They appl ied
the GPS method to the optimization of multi-layer perceptrons (MLPs), and considered the
number of neurons, transfer functions, and the nodal connectivity as free paramet ers in the
optimization problem. The GPS algorithm is a derivative-free, mesh-based op timization
method and provides robust convergence properties (Audet & Dennis, 2003). To increase
the efciency of the GPS for computationally expensive problems, this method can be
complemented by a surrogate representation, which was developed by Serani (1998)
and Booker et al. (1999).

The objective of this work is to utilize the GPS method and an evolutionary strategy for
the generation of optimal arti cial neural networks (OANNSs) to approximate non-li  near
functions, that are, for instance, encountered in representing chemical systems. These
chemical system can be formulated as:

()=w(), (1)

where is alinear operator acting on  (in the simplest case, isthe temporal derivative ),

RN*1 denotes the vector of N chemical species and temperature, andw : RN*1 ~ RN*1
is a function, representing the chemical source terms and the heat release rate.
Chemical mechanisms often comprise thousands of reactions among hundreds of species.
In numerical simulations of combustion systems the direct solution of transpo rt equations
for all of these species is usually not feasible. Alternative approaches, such as intrinsic low
dimensional manifolds (Maas & Pope, 1992) or computational singular perturbation (Lam &
Goussis, 1988) have been developed, in which a part of the chemical species are projectd onto
a lower dimensional manifold, resulting in a reduced chemical reaction mechanism. However,
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the necessary introduction of certain assumptions, required for reducing the m echanism, can
result in a degradation of the accuracy and generality.

On the other side, tabulation techniques, such as conventional structured look-up tables, are
often employed for the parameterization of thermochemical quantities. Since, ho wever, the
memory requirement for the tabulation rapidly increases with the number of independ ent
parameters, this method imposes drastic restricions when more than three or four
independent parameters are used. Other tabulation techniques include the in situ
adaptive tabulation (ISAT) (Pope, 1997) or solution mapping using piecewise polyno mial
approximation (PRISM) (Tonse et al., 1999).

Over recent years, ANNs have successfully been employed for the approximation of chemical
systems (Blasco, Fueyo, Dopazo & Ballester, 1999; Blasco et al., 2000; Blasco, Fugy arroya,
Dopazo & Chen, 1999; Chen et al., 2000; Christo, Masri & Nebot, 1996; Christo, Masri, Nebd
& Pope, 1996; Flemming et al., 2005; Ihme et al., 2009; Sen & Menon, 2008; 2010). Important
advantages of ANNs over tabulation methods are the modest memory requirement, and
cost-effective and smooth function representation. However, in many if not all of these
applications ad hocnetwork topologies were used, that were not fully optimized for the
particular problem, so that the optimal performance could not be achieved.

Motivated by the chemistry application, the objective of this work is to demonstrate
the potential of OANNs for application to chemical reacting ows. To this end, two
different chemical systems of increasing complexity are considered. Speci cally, the rst
problem considers an one-step chemical reaction in a homogeneous ow, representing
decaying turbulence. The particular advantage of this problem is that it allows us to
systematically evaluate different ANN-representations and compare the results against other
predictions. The second problem considers the unsteady three-dimensional combustion of
a methane/hydrogen-air mixture in a technical-relevant burner system. For this, large-sc ale
simulations are employed and the accuracy of ANNs and conventional tabulation methods
are assesses in the context of high-performance computations of turbulent reacting ows.

In order to assess the ANN performance, we consider two metrics, namely the ANN tness
evaluation under static and dynamic conditions. To explain both metrics, we cons ider Eq. (1),
in which the source term is now approximated through an ANN:

()=w (). 2)
where = + andw isthe source-term representation by the ANN. After writing  w  as
wo=wH (3)

with _ denoting the ANN approximation error, Egs. (1) and (2) can be combined to derive the
following expression for the evolution of the error

O=_()+_w (). (4)

This expression shows that the ANN-approximation error acts a s a spurious source term on
the solution . Depending on the functional form of _ and w , the error can either grow,
decay, or cancel.

The static ANN analysis characterizes the ability of the network to accurately represent the
function w. For this, a large set of sample data is used to evaluate the network tness following
the ANN training process. This metric is widely-used and is typically referre dto as “testing.”
As such, the static analysis allows for the assessment of the ANN approximation error
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Fig. 1. Architecture of a multilayer perceptron, consisting of an input layer with two inp  ut
channels X1 and X5, one output channel Y, and 4 hidden layers with, respectively, 3, 2, 3, and
1 neurons in each layer. The neurons in the hidden layers are denoted by n;, with i = 1,...,9,
and the number of neurons in this networkis Ny = 9.

Since ANNs are integrated into dynamic systems of the form of Eq. (2), a main shortcom ing
of this static analysis is that it does not account for the feedback on the solution vector . In
particular, small errors arising from the network approximation could either cancel, or —worse
—induce a drift in the solution vector leading to long-time instability issues of the governing
equations.

To address this issue, we will also assess the ANN-performance under dynamic conditions.
To this end, the temporal evolution of the error _ in EqQ. (4) is evaluated in order to assess the
dynamic stability of the system. This metric, which we refer to as dynamic ANN performance
measure, allows us to directly characterize feedback-effects of ANN-approximation errors
on the solution. It will be shown in the second part of this article that this dynamic
ANN performance evaluation provides more realistic estimates of the ANN- tness potential,
whereas the static ANN analysis gives typically too optimistic estimates.

The remainder of this article is organized as follows. Section 2 discusses the ANN mo del
and describes the training process. The GPS method and ES are presented in Sec. 3. he
performance of OANNs are assesses by considering two combustion-chemical problem of
increasing complexity. Speci cally, Sec. 4 considers the evolution of a chemical species
in decaying homogeneous isotropic turbulence. The combustion process is described
by a reversible one-step chemical reaction, in which the mixing and combustion are
described by a Lagrangian Fokker-Planck model. In the second problem, OANNs are
integrated into a high- delity large-eddy simulation to predict the turbulent combustion in a
swirl-stabilized burner system of practical relevance. Mod el formulation, experimental setup
and comparisons with experimental data and conventional tabulation methods are presented
in Sec. 5, and conclusions are drawn in Sec. 6.

2. Arti cial neural networks

In the following, the class of multilayer perceptrons (MLPs) is considered. A MLP,

schematically shown in Fig. 1, consists of an input layer with N, input channels, an output
layer having Ng channels, and N hidden layers. The number of neurons in each hidden layer
is denoted by Ny~ Z Nt. The connectivity of the network is denoted by C, corresponding to
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a binary matrix, in which the element C;; is unity if neurons i and j are connected and zero
otherwise. The output y; of neuron i is computed according to

Nc
Yi= Cj iXij ()

j=0
where Nc is the number of connections in the network, j; are the synaptic weights, and
Xjj are the input signals. Note that xjo = 1 is a threshold value. The transfer function of

the neuron i is denoted by ;. The synaptic weights in the network are adapted during the
training process, which in itself represents an optimization problem and can be wr itten as

min E( ), (6)
RN
where N denotes the number of synaptic weights in the network, and E : RNo M R is

a measure of the error between the actual and desired output of the network. The number of
training samples is denoted by N;. In the following, Eis de ned as

1 Ntet.
E= Z—th:l OF (7)
with
) No . N2
i = Yi) Y “, (8)

i=1
and Yit(j) represents the j training sample of the output signal i.
The topology of a particular network is de ned by its neural arrangement, consisting  of the
number of layers N and neurons per layer Ny, the connectivity C, and the neural transfer
functions . In the following, this network topology is formally writte  n as

= (N, NN, G NipNo,Y,J), (9)

in which the last four arguments are constrained by the problem and the desired pe rformance
of the ANN. The performance — or generalization potential — of a trained network can be
characterized by the cost function J, which is evaluated using test samples that typically differ
from the training data. Testing — or static ANN performance analysis — is done after trai ning
to evaluate the ability of the network in representing untrai ned samples. In the present work,
the following cost function is used:

Ns
X )=log, o ()2 . (10)
Sj=1

where N refers to the number of test samples, and the decadic logarithm is introduced to
enlarge the resolution of the cost function.

The objective is to identify a particular network topology that minimizes the cost function,
or in other words, maximizes the generalizability. In the fo llowing, we will restrict

our discussion to a multidimensional optimization problem that only includes ¢ ontinuous
parameters, i.e., real- or integer-valued variables. For this, a network will be considered, in
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which a single neuron in the last hidden layer is used having a linear transfer function,
(s) = s. (11)

A sigmoidal function,
()= atanh( 29), (12)

is used for all other neurons in the N_ 1 hidden layers. The parameters 1 and »,
characterizing the saturation and slope of the transfer function, are considered as free
parameters that will be adjusted during the optimization process. Furthermore, the ne twork
architecture will be constrained to a fully connected feed-forward network. With this, the
resulting optimization problem may be formulated as

min J 13
N () (13)
subject to N = N™,
\INK 0,1,....NJ*, fori=1,2,... N_ 1,
NN,NL =1 s
where R2 (Ny 1) denotes the bounded parameter space for the transfer function

coefcients, and the number of neurons in all layers is denoted by Ny, .

In this context it is important to point out that the herein employed optimization method  is not
restricted to continuous variables, and can also be applied to the optimization of categori cal
or discrete variables. This has been discussed by Ihme et al. (2008), in which the canectivity
and transfer functions were included in the optimization of the network topology.

3. Topological optimization

3.1 Generalized pattern search method

In the following, a generalized pattern search method is used to solve the optimization
problem (13). The GPS method is a derivative-free method, in which a sequence of iterates
is generated whose cost function is non-increasing (Audet & Dennis, 2003). All points at
which the cost function is evaluated are restricted to lie on a mesh, and the limited point of
the sequence of iterates corresponds to a local optimal solution that is de ned with respect to
a user-speci ed neighborhood. GPS methods for unbounded problems have been discussed
and analyzed by Torczon (1997); they were later extended by Lewis & Torczon (1999; 2000) to
bounded and linearly constrained problems.

The GPS algorithm, schematically shown in Fig. 2, proceeds in two steps, namely a search
and a poll step. In the search step a nite set of search points are evaluated to facilitate
a global exploration of the parameter space. Since the search step is not required for
convergence, different strategies can be employed to identify a promising region in the
parameter space that potentially results in an improved cost function. For instance, a priori
knowledge, random sampling using Latin hypercube sampling (LHS) (McKay et al., 1979), or
a surrogate can be employed. In the case of a surrogate, the cost function is appraximated
by a lower-dimensional model, whose evaluation is typically less expensive. This surrogate
approximation is continuously updated during the simulation, and is then used to id entify a
new point with a potentially lower cost function. Kriging is frequently employed as surrogate
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Fig. 2. Schematic diagram of the GPS algorithm.

approximation, and its multidimensional extension makes this method particularly attr ~ active
for application to network optimization.

In the case that the search step does not result in an improvement in the cost function, the
algorithm continues with a poll step, which guarantees the convergence of the GPS algorithm .
The poll step is restricted to a mesh that is constrained by the parameter space, and centaed
around the incumbent point . The vector is of dimension N 1+ 2( Ny 1), and
contains information about the number of non-linear neurons and coef cients inits re  spective
non-linear transfer functions. At iteration kthe mesh for the poll step is de ned by

M=+ D (14)
where |, > 0 is the mesh size parameter, which is obtained through a successive re nement
of the mesh according to

k= "o, (15)

and = 1/2is used in the following application. The discrete directions in the param eter
space that are evaluated during a poll step are speci ed by the matrix D whose columns form
a positive spanning set. That is, if 1 denotes the identity matrix and i is the vector of ones,
then D is typically chosenas D = [I, iJor D =[I, 1] (Audet & Dennis, 2003). During the
poll step the cost function is evaluated for these poll candidates. In the case that the poll step
is unsuccessful the mesh is re ned, and the algorithm continues with a new iteration, star ting
with a search step (see Fig. 2). This process continues until a convergence criteion is met
or _ reaches a minimum mesh size. More details on the algorithm and convergence proofs

www.intechopen.com



132 Artificial Neural Networks- Application

can be found in Audet & Dennis (2003) and extensions of the algorithm to include categorical
parameters are discussed in Audet & Dennis (2000) and Abramson (2004).

3.2 Evolutionary strategy
In addition to the GPS method, an evolutionary strategy is used to solve Eqg. (13). Evo lutionary
strategies have been proposed as simple mutation selection mechanisms by Rechaberg
(1973), and were later generalized by Schwefel (1977; 1981). ES belongs to the general category
of evolutionary algorithms, and is based on a collective evolution process of individuals
in a population. The evolution of this population follows a biologically inspired process,
consisting of a sequence of steps, involving mutation, recombination, and selection. In
this work, a so-called ( , )-ES is used, in which  denotes the number of parents and
corresponds to the number of offsprings in each generation. For completeness, the general
form of the ES algorithm (Back & Schwefel, 1993) is brie y summarized.
In ES, the independent parameters for each individual network candidate are represe nted
by a joint Gaussian distribution. This distribution is characterized by a zero exp ectation, a
variance for each optimization parameter, and a rotation vector to ensure positive de nitenes s
of the parameter covariance matrix. The mutation of each individual is sampled from the
joint Gaussian distribution, which is modi ed by mutating the standard deviation and the
rotation angle. More details on this mutation strategy and the self-adaptation, which are
employed in the present work, can be found in Back & Schwefel (1993). For the recombination
of individuals and strategy parameters, different mechanisms are used. Here, a dis crete
recombination of individuals is used, in which a new individual is produced from a random
sampling of parameter components from two parents. For the recombination of the str ategy
parameters, i.e., mutation step size and rotation angle, pairwise intermediate reco mbination
is used. Following the recombination and mutation, the ES continues with a determin istic
selection step. Inthe ( , )-ES, the -best candidates out of offsprings are selected. The best
candidates are then used as parents in the subsequent generation. In the following application
= 2, = 12, and at most 80 iterations were used in the ES algorithm. It was found that the
results for the optimal ANN topology showed some sensitivity to the initialization and the
choice of the exogenous parameters in the ES algorithm. It is assumed that this sensitivity is
mainly attributed to the heterogeneous search space, and the slow convergence of the ES

4. Combustion in decaying homogeneous isotropic turbulence

4.1 Mathematical model

In the following problem, the mixing and reaction of fuel and oxidizer in decayin g
homogeneous isotropic turbulence are considered. The corresponding reaction equation can
be written as

F+rO (1+r)P. (16)
The reaction rate w of this one-step reversible reaction follows an Arrhenius expression
1 C
w(Z,C)=(1+r)Aexp exp %
z 1 z 1 (17)
Zst(l Zg) —— C c >c*
a(l 2 70 1 Zg K

inwhich r is the stoichiometric coef cient, A isthe frequency factor, isthe Zeldovich number,
Zst Is the stoichiometric mixture fraction, and K is the equilibrium constant. Values for these
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Table 1. Parameters used for one-step chemical reaction.

ir Equilibrium 1
Solution, Ceq 9
| s 7
0.8 0.8 5
I 3
I o l
— 08
0.6F & 0.6f = o
O D —1 0.4
| » ¥ | 1 0.2
0.4+ ! 0.4+ — 0.09
L S) L —1 0.07
—1 0.05
| —1 0.03
0.2 0.2+ = 0.01
0*‘ TR IR TN T YT T T YT S N N A N R A 07 TR T TN TN T T N T T T T N N N N AN S R N
0 0.2 0.4 2 0.6 0.8 1 0 0.2 0.4 . 0.6 0.8 1

(@) (b)

Fig. 3. Chemical reaction rate w as function of mixture fraction and reaction progress variable.

parameters are summarized in Tab. 1, and the interested reader is referred to Sripakagorn et al.
(2004) for a more detailed discussion on the chemical reaction and parameter specications.
The chemical reaction rate given in Eq. (17) is only a function of mixture fraction Z and
reaction progress variable C, corresponding to the non-dimensional temperature. Here,
Z [0,]and C [0,Ceq], and the reaction rate as function of Z and C is shown in Fig. 3(a).
The progress variable at equilibrium, Ceg, is a function of Z, and is obtained by solving Eq. (17)
for w = 0, resulting in:

2
Ceq = 2, 4, %

o4 21 7)., (18)

in which prescribed values for Zg and K from Tab. 1 are used. Using Cgq, @ normalized

progress variable can be introduced, C = C/ Cgq, so that C [0, 1], and w as function of C
and Z is illustrated in Fig. 3(b). In the following, OANNSs are generated for the approximation

of the chemical reaction rate as function of Z and C.

The temporal evolution of reactants and products is obtained from the solution of a
Lagrangian Fokker-Planck (LFP) model. In this model, the trajectories of indivi dual particles
in composition space are described by the solution of a set of stochastic differential equations
(SDEs). For the one-step chemical reaction, which is fully characterized by mixture fracti on Z
and reaction progress variable C, the Fokker-Planck model can be written as (Fox, 2003):

z 0 zZ Z
d ¢ = w(Z,C) dt C C

>

dt + BAW(t) . (19)

where W is a Wiener process, and the angular brackets denote the mean value which is de ned
by = P( )d for = 2Z,C .The PDF isdenoted by P, and the scalar uctuation is
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computedas = . The drift matrix A is given by
_ 21 22 0
é_ 0 Z/ C2 ’ (20)
and the diffusion matrix is
1/2
_ (Z Zeg)(Zeq 2) 0
+
E e (Z Zeq)(zeq Z) , (21)
= o C(Ceq ©)
€ C(Cqq ©
with
1 12
Zeg = > 1 1 2C 1 ESC (22)

from Eq. (18). 7z and  are the mean scalar dissipation rates for mixture fraction and
progress variable, and are modeled by an exponential decay

= oxp t/ : (23)

The initial particle distribution is sampled from a beta distribution with Z(t=0= Z,=
05and Z2(t=0) = Z?2 o = 0.2, and the progress variable is set to the equilibrium
condition Ceq(Z). The mean lifetime for the decay rates of ; and ¢ correspond to the
averaged decay constant from the direct numerical simulation by Sripakagorn et al. (2004)
with 7 = 1.5and ¢ = 1.0. Note that the time in Eq. (19) is non-dimensionalized by the initial
large-eddy turnover time (Sripakagorn et al., 2004). Since the evolutionof Z 2 obeys the ODE
di 22 = 2 andlim Z 2 (t) = 0, the initial conditionfor 7 is 7z o= Z2/ g,
and ¢ gissetto 0.25. After the initialization of 2 10P particles, the LFP model is advanced
over T = 10 non-dimensional time units with a step sizeofd t = 1 10 3. In order to allow
for a direct comparison of the different simulations, the increment in the Wiener p rocess is
kept identical for all runs.

4.2 Network optimization

The chemical source term, given in Eq. (17), is approximated by optimal ANNs. F or this, GPS
and ES are used to identify optimal network topologies that result in the lowestapp roximation
error. For the network optimization the following constraints on the topological parameter
space are imposed: The maximum number of hidden layers (including the last linear layer) is
N = 3, and the maximum number of non-linear neurons per hidden layer is restricted to
N"® = 8. Only fully connected networks are considered, and sigmoidal transfer functions are
used in all non-linear neurons. The free parameters 1 and »in Eq. (12) are adjusted during
the optimization process. Since the GPS algorithm is a mesh-based method these parameters
are constrained to 0.4 1 1l.2and1 > 5having a maximum mesh size of "™ =
0.4and & = 1, respectively, and the minimum mesh sizeis " = Jin = 10 4,

To evaluate the tness of a particular network candidate, the synaptic weights are rst
adjusted using a supervised learning strategy. In this technique, a set of training data is
presented to the network and the weights are adjusted to reproduce the input-output relation.
The training set consists of 50,000 randomly chosen samples, and a Levenberg-Marquardt
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algorithm (Hagan et al., 1996) is used to iteratively adjust the synaptic weights. Since
this training step is computationally expensive only a maximum of 100 iterations in the
Levenberg-Marquardt algorithm are used to train each individual network. Although
typically more iterations are necessary to ensure that the synaptic weights are fully conver ged,
it was concluded that this number of iterations is suf cient to assess the tness potential
of a particular network architecture. After an optimal network architecture is identi ed by
the optimization algorithm, this ANN is further trained until the synaptic weights are fully
converged (see Fig. 2). It was found that the outcome of the training process shows some
sensitivity to the initialization of the synaptic weights that are typically sampled from a
uniform distribution. To allow for an objective comparison between differe nt optimization
methods, this sensitivity is here eliminated by initializing all synaptic weights with = 0.1.
For the evaluation of the static performance of each network candidate during the GPS, the
cost function (10) is evaluated using Ns = 50,000 test samples.

4.3 Static ANN performance analysis

Results from the GPS and ES network optimization are presented in Tab. 2. The second
column in this table lists the network architecture of the optimal ANN. The static ne twork
tness, characterized by the cost-function, is shown in the third column, and the last column
presents the memory requirement which is necessary to store the network architecture. In
addition to these optimal network structures, results for conventional look-up tables are als o
presented. For this, the chemical source term, Eq. (17), is tabulated in terms of Z and C using
an equidistant grid.

OANN/Table Architecture Cost Function Iterations Memory [kB]

GPS-OANN 7-8-1 -3.289/-3.727 876 7

ES-OANN 7-4-1 -3.077/-3.144 960 4

ANN (xed )  7-8-1 -3.480 - 7
Table 50 50 -2.023 - 20
Table 100 100 -2.624 - 78
Table 200 200 -3.228 - 313
Table 300 300 -3.579 - 703
Table 400 400 -3.831 - 1,250
Table 500 500 -4.022 - 1,953

Table 2. Comparison of OANN architecture and performance obtained from GPS and ES
with conventional tabulation. Comparisons with conventional tabulation techniques are also
summarized, showing results for tables with increasing grid resolution.

The optimal network structure that was returned from the GPS algorithm consists of a
7-8-1 ANN. This architecture was found after 876 function evaluations in the 34-dimensional
parameter space. The cost function of this GPS-OANN is J( ) = 3.289, and was further
reducedto J( )= 3.727 during the training following the GPS optimization. The evolution
of J( ) for the GPS-OANN is shown in Fig. 4(a). From this gure it can be seen that after
a transition phase the cost function decays continuously, and the evaluation of J after 100
iterations is adequate to assess the tness potential of a particular network structure.

The coef cients in the neural transfer functions for the GPS-OANN are shown in Fig . 4(b).
Note that these parameters are typically kept constant for all neurons with values for the
saturation ; = 1.075 and the slope , = 2.0 (Haykin, 1994). It is interesting to point out
that the transfer function coef cients in the GPS-OANN are considerably different from these
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Fig. 4. Performance evolution of the 7-8-1 OANN obtained from the GPS method and

optimal coef cients in the neural transfer functions. The dotted line in the left  panel shows

the tness for a 7-8-1 ANN having constant transfer function coef cients with 1= 1.075 and
2> = 2.0 for all neurons.
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Fig. 5. Transfer function for the rst two neurons in the OANN obtained from the GPS
algorithm.

values, showing distinct spreading for all neurons. As an example, the transfer fu nctions for
the rst two neurons are shown in Fig. 5. While 1 for the transfer function of the second
neuron is generally in good agreement with the frequently employed value of 1.075, the
saturation and the slope for the rst neuron are considerably different, resultingi n a distinctly
different neural response characteristics between both neurons. To emphasize the effect of
adaptive transfer function coef cients on the network tness, a 7-8-1 network with constant

1 and , for all neurons is trained resulting in a cost function of J( ) = 3.480. Note,
however, that J( ) corresponds to the decadic logarithm of the L, error norm. Therefore, this
difference of seven percent in the cost function corresponds to an deviation of more than 75
percent in the Ly-norm.
The optimal topology identi ed by the evolutionary algorithm consists of  a 7-4-1 ANN, and
was obtained from a total ES population of 960 networks candidates, which have been evolved
over 80 generations with two parents and 12 offsprings per generation. The termin ation of the
ES optimization after 80 iterations was mainly motivated by the argument to have comparable
computational cost for both GPS and ES optimization. The cost function of the ES-OANN is
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Fig. 6. Probability density function of the cost function evaluated from all network
candidates that were evaluated during the GPS and ES optimization.

J ) = 3.144, and the evolution of J ) is shown by the dashed line in Fig. 4(a). The
initial convergence of the cost function for the ES-OANN is similar to that of the GPS-OANN;
however, J( ) decreases only marginally after 80 iterations. This apparent saturation of the
tness can primarily be attributed to the small number of neurons in the second layer. The
transfer function coef cients for this network are illustrated in Fig. 4(b). It is interesting to
point out that both ES and GPS give similar values for slope and saturation of the neur al
transfer function in the rst hidden layer.

A statistical comparison of the tness of all network candidates that were evaluated during
the GPS and ES optimization is shown in Fig. 6. The distributions of the network perfo rmance
from both optimization methods is considerably different. For instance, the bimod al PDF from
the GPS optimization is strongly skewed towards lower values of J( ). Network candidates
with poor tness were mainly obtained from the random sampling of the parameter space
during the search step. In comparison, the PDF from the ES is nearly unimodal and peaks
around J( ) 2.5. In this context it is important to point out that the outcome of the ES
method is sensitive to the initial conditions and prescribed step size. Therefore, it can be
anticipated that a different set of parameters and initial conditions can potentially lead to a
different optimal network topology.

In addition to the smooth function representation, a main advantage of ANNs over
conventional tabulation techniques is the high knowledge density. This is re ected by
the modest memory requirement necessary to store a network architecture. While the
ANN-memory demand is nearly independent from the number of input parame ters, the
storage requirements for look-up tables grows exponentially with the dimensionality of the
function. A comparison of the knowledge-density, which is here de ned as the ratio be tween
accuracy and memory requirement, is illustrated in Fig. 7. This gure illustrates that ANNs
perform signi cantly better than conventional look-up tables, and for equivalent accuracy the
memory savings can be in excess of two orders of magnitude.

4.4 Dynamic ANN Performance Analysis

In the previous section, the tness of the network architectures obtained from GPS and ES
were compared with the conventional tabulation method. It was found that the performance
of the GPS-OANN is comparable to that of the tabulation method with a resolution of more

than 300 grid points in both Z and C directions. In this static comparison, a homogeneously
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Fig. 7. Comparison of the knowledge-density between ANNs and conventional tabulation
techniques. The knowledge density is de ned as the ratio between static network tness and

memory requirement.
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Fig. 8. Evolution of the chemical composition of three representative particles: ( a) mixture
fraction; (b) reaction progress variable; and (c) corresponding trajectories in com position

space.

distributed set of random test samples was used for the performance evaluation. However, the
reaction rate which is represented by ANNs and look-up tables corresponds to a source term
in a partial differential equation describing the evolution of a chemical system . The primary
variable which is of interest in the characterization of this system is the species composi tion,
whose prediction is directly affected by the accurate representation of the chemical sou rce
term. This chemical reaction evolves along trajectories that typically occupy only a small
region in composition space. This suggests that the static analysis as discussed in the
previous section could have only limited relevance for the present application. Therefore,
a dynamic OANN performance analysis is conducted in order to assess feedback-effects of
ANN approximation errors on the evolution of the dynamic system.

Before analyzing the performance of OANNs and tabulation methods, the evolution
of the chemical system as described by the LFP model, Eqg. (19), is briey discussed.
The temporal evolutions of the mixture fraction and reaction progress variable for three
representative particles are shown in Figs. 8(a) and (b), and the corresponding trajectories
in Z-C-composition space are illustrated in Fig. 8(c). Following an initial phase of intense
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Fig. 9. Statistical evolution of the chemical system.

mixing, the trajectories of the particles, shown by the black and blue lines, converge and reach
after approximately two respectively four eddy turn-over times the equilibrium condition.
The trajectory of the particle shown by the red line indicates that the particle fails to reach a
stably burning state. This can mainly be attributed to the initially large uctuations in mixture
fraction and progress variable.
The statistical evolution of the LFP model is illustrated in Fig. 9, in which the rst two
moments of mixture fraction and reaction progress variable are shown. From the governi ng
equation for the mean mixture fraction, viz. d { Z = 0, follows that Z is constant
and equal to the initial condition, and the mixture fraction variance decays as Z 2 (t) =
Z?2 oexp t/ z . The evolution of the reaction progress variable, which is equal to the
normalized temperature, is shown by the dashed line in Fig. 9. Starting from the initial
condition, the mixture slowly ignites and with increasing time C approaches a steady
condition. Note that this nal state corresponds to the equilibrium condition; however, the
maximum temperature C = Cgq( Z ) = 5/6, is not reached, which is also evidenced by the
non-vanishing progress variable variance, shown by the dotted line in Fig. 9.
Instead of performing the costly evaluation of the chemical source term from Eq. (17), i n the
following w(Z,C) is obtained from the GPS-OANN and look-up tables. This comparison
allows us to critically assess effects of approximation errors in the source term r epresentation
on the evolution of the reaction progress variable. To quantify this error, the follo wing norm

is used:
1

-
L3(C)= 5 [C  Clidt, (24)
where the subscript “ref” denotes the solution obtained from the analytical evaluation of the
chemical source term, and T corresponds to the simulation time.
Comparisons of the L,-norm, obtained from the simulations with GPS-OANN and look-up
tables, are summarized in Tab. 3. From these results the following observations can be
made. First, the solution from the tabulation exhibits a monotonic convergence with quadratic
convergence rate. Second, the overall accuracy of the results from the GPS-OANN simulation
for this dynamic application is comparable to a tabulation having approximately 80 80 grid
point resolution. This is different to the ndings from the static analysis 0 f Sec. 4.3. The main
reasons for this are the non-linearity in the diffusion matrix B and the rather strict constraints
for N"® and N{'® in Eqg. (13). In this ANN optimization, the GPS method was restricted to
include only two non-linear hidden layers with a maximum of eight neurons per layer. By
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Lo( C)

GPS-OANN 4.820

Table 50
Table 100
Table 200
Table 300
Table 400
Table 500

50 1.038
100 2.712
200 6.294
300 2.549
400 1.336
500 5.321

10
10
10
10
10
10
10

o 01 0o g WD

Table 3. Comparison of the convergence error for the solution of the LFP model.

relaxing these constraints and extending the search space to include a larger number of layers
and neurons, the ANN topology becomes more exible, and will lea d to improvements in the
ANN performance characteristics. To demonstrate this, an additional GPS optimization was
conducted in which four hidden layers with a maximum of eight neurons per no  n-linear layer
were used for the network optimization. For training and performance evaluation of the GPS
network candidates respectively 100,000 samples were used, and all synaptic weights were
initialized with random numbers. The GPS algorithm returned as optimal topology a 8-8-8-1
network having a cost function of J( )= 4.242. The application of this larger OANN in the
LFP model resulted in an improvement of the L, norm by more than 20 % compared to the
7-8-1 GPS-OANN.

To quantify the approximation quality of the ANN and the look-up table, the error surface

is compared in Fig. 10. For this, the error is de ned as the difference between ANN
approximation w (Z,C) and the corresponding analytical value (see Eq. (3)). The apparent
oscillations in the error surface are an indication for under tting, and the small differ ences
in the chemical source term representation can lead to incremental deviations in the particle
trajectories. The analysis of the ANN function representation suggests that the training of
networks with a larger number of samples or a biased distribution of sample points , using for
instance an acception-rejection algorithm (lhme et al., 2008), can lead to a further reduction of
this error.

5. Turbulent combustion ina  swirl-stabilized burner system

In the previous section, the advantages of optimal ANNs in application to a zero-dimensi onal
combustion problem were discussed. The present section extends this analysis by considering
the unsteady turbulent combustion in a technical-relevant burner system. In this appli cation,
the large-eddy simulation (LES) technique in combination with a amelet-based co mbustion
model is employed for predicting the turbulent reacting ow eld, heat release, and
pollutant formation. These high- delity LES computations of turbulent reacting ows are
typically performed on massively parallel computing architectures. As such, the uti lization
of ANNs for chemistry representation and function approximation can provide signi cant
bene ts over conventional look-up tables in at least the following three aspects. First, the
reduction in storage requirements allows to perf orm these large-scale combustion simulations
on computing architectures with restricted memory. Second, the information retrieval
from ANNs amounts to a direct function evaluation which is typically more ef cient than
table-interpolation. In addition, the smooth function representation of ANNs can res ult in
improved model accuracy and faster convergence.
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