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1. Introduction

In today’s heavily technology-dependent society, blind and visually impaired people are be-
coming increasingly disadvantaged in terms of access to media, information, electronic com-
merce, communications and social networks. Not only are computers becoming more widely
used in general, but their dependence on visual output is increasing, extending the technology
further out of reach for those without sight. For example, blindness was less of an obstacle
for programmers when command-line interfaces were more commonplace, but with the in-
troduction of Graphical User Interfaces (GUIs) for both development and final applications,
many blind programmers were made redundant (Alexander, 1998; Siegfried et al., 2004). Not
only are images, video and animation heavily entrenched in today’s interfaces, but the vi-
sual layout of the interfaces themselves hold important information which is inaccessible to
sightless users with existing accessibility technology.
Screen reader applications, such as JAWS (Freedom Scientific, 2009b) and Window-Eyes (GW
Micro, 2009), are widely used by the visually impaired for reading screen content and inter-
preting GUIs (Freitas & Kouroupetroglou, 2008). Although they allow the user to access the
computer via control key commands and by listening to synthetic speech they can be slow
and difficult for inexperienced users to learn. For example, JAWS has over 400 control key
sequences to remember for controlling of the screen reader alone (Freedom Scientific, 2009a).
Furthermore, a large amount of layout and format information is lost in the conversion from
what is effectively a two-dimensional graphical interface into a linear sequence of spoken
words.
Various interfaces have been devised which utilise force-feedback devices such as the PHAN-
TOM (Massie & Salisbury, 1994), or (electro-)tactile displays (e.g. Ikei et al., 1997; Kaczmarek
et al., 1991; Kawai & Tomita, 1996; Maucher et al., 2001) for haptic perception of three-
dimensional models or simple two-dimensional images. Researchers such as Sjöström (2001)
have demonstrated success with enabling blind users to interact with certain custom-built
interfaces, but not typical GUIs.
Vibro-tactile devices such as the tactile mouse (Immersion Corporation, 2009; Hughes & For-
rest, 1996; Gouzman & Karasin, 2004) are designed to provide characteristic tactile feedback
based on the type of element at the mouse pointer location. Although a tactile mouse can give
a blind user some sense of the spatial layout of screen elements, the inability of blind users to
perceive exactly where the mouse pointer is located makes this form of interface ineffective
for locating and manipulating screen elements.
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Refreshable Braille displays have significantly higher communication resolution, and present
information in a manner which is more intuitive for blind users, including the ability to rep-
resent text directly. Several projects have been undertaken to represent graphical interfaces
using such displays. For example, HyperBraille (Kieninger, 1996) maps HyperText Markup
Language (HTML) pages into Braille “pull down menu” interfaces. Recently, Rotard et al.
(2008) have developed a web browser extension which utilises a larger pin-based tactile dis-
play with the ability to render simple images using edge-detection, as well as Braille repre-
sentations of textual content. Such systems provide advantages beyond simple screen readers,
but are still very limited in terms of speed of perception, layout retention and navigability.
To address these shortcomings we have been devising various interfaces for the visually im-
paired which involve head-pose tracking and haptic feedback. Our system utilises a head-
pose tracking system for manipulating the mouse pointer with the user’s ‘gaze’ which allows
the user’s hands to be free for typing and tactile perception.
This is implemented by mapping the graphical interface onto a large ‘virtual screen’ and pro-
jecting the ‘gaze’ point of the user onto the virtual screen. The element(s) at the ‘focal’ position
are interpreted via tactile or voice feedback to the user. Consequently, by gazing over the vir-
tual screen, the user can quickly acquire a mental map of the screen’s layout and the location
of screen elements (see Figure 1). By gazing momentarily at a single element, additional de-
tails can be communicated using synthetic speech output via the speakers or Braille text via a
Braille display.

Fig. 1. Visual representation of the gaze-tracking “virtual screen” concept

We have experimented with a number of methods of mapping various graphical interfaces
to blind gaze tracking virtual screens as well as a number of different haptic feedback de-
vices. Details of these mapping techniques and haptic feedback devices are provided in the
following sections.
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2. Background

This project stems from our development of the Electro-Neural Vision System (ENVS) (Meers
& Ward, 2004) – a device which allows its wearer to perceive the three-dimensional profile
of their surrounding environment via Transcutaneous Electro-Neural Stimulation (TENS) and
therefore navigate without sight or other aids. It utilises a head-mounted range-sensing device
such as stereo cameras or an array of infrared sensors, pointed in the direction of the wearer’s
‘gaze’. The acquired depth map is divided into sample regions, each of which is mapped to
a corresponding finger which receives electro-tactile stimulation of intensity proportional to
the distance measured in that region. The frequency of the signal was used for encoding addi-
tional information such as colour (Meers & Ward, 2005b) or GPS landmark information (Meers
& Ward, 2005a). Our experiments showed that this form of perception made it possible for
unsighted users to navigate known environments by perceiving objects and identifying land-
marks based on their size and colour. Similarly, unknown outdoor environments could be
navigated by perceiving landmarks via GPS rather than their size and colour. Figure 2 shows
the ENVS in use.

Fig. 2. Electro-Neural Vision System Prototype

Our ENVS experiments inspired us to implement a similar form of perception for interpreting
the content of the computer screen. In this case, a large virtual screen was located in front of
the user and a head-pose tracking system was used to track the ‘gaze’ position of the user
on the virtual screen. To determine what is located at the gaze position on the virtual screen,
pre-coded haptic feedback signals are delivered to the fingers via electro-tactile electrodes, a
haptic keyboard or a refreshable Braille display. The following sections provide details of the
head-pose tracking systems and haptic feedback devices deployed on our interface.
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3. Gaze-Tracking Haptic Interface

The primary goal of our gaze-tracking haptic interface is to maintain the spatial layout of
the interface so that the user can perceive and interact with it in two-dimensions as it was
intended, rather than enforcing linearisation, with the loss of spatial and format data, as is
the case with screen readers. In order to maintain spatial awareness, the user must be able
to control the “region of interest” and understand its location within the interface as a whole.
Given that we wanted to keep the hands free for typing and perception, the use of the head as
a pointing device was an obvious choice – a natural and intuitive pan/tilt input device which
is easy to control and track for the user (unlike mouse devices).

3.1 Head-pose tracking

While there are quite a number of head-pose tracking systems commercially available, we
found that they were all either too cumbersome, computationally expensive or inaccurate for
our requirements. Consequently, we developed our initial prototype using our own custom-
developed head-pose tracker (Meers et al., 2006) which utilised a simple USB web camera and
a pair of spectacles with three infrared LEDs to simplify the tracking process. This proved to
be robust and accurate to within 0.5◦.
To avoid the need for the user to wear special gaze-tracking spectacles, we developed a head-
pose tracking system based on a time-of-flight camera (Meers & Ward, 2008). This not only
made our interface less cumbersome to set up, but also provided the advantage of in-built
face recognition (Meers & Ward, 2009) for loading user preferences, etc.

3.2 The Virtual Screen

Once the user’s head-pose is determined, a vector is projected through space to determine the
gaze position on the virtual screen. The main problem is in deciding what comprises a screen
element, how screen elements can be interpreted quickly and the manner by which the user’s
gaze passes from one screen element to another. We have tested two approaches to solving
these problems as explained in the following sections

3.2.1 Gridded Desktop Interface

Our initial experiments involved the simulation of a typical “desktop” interface, comprising a
grid of file/directory/application icons at the “desktop” level, with cascading resizable win-
dows able to “float” over the desktop (see Figure 3). The level of the window being perceived
(from frontmost window to desktop-level) was mapped to the intensity of haptic feedback
provided to the corresponding finger, so that “depth” could be conveyed in a similar fashion
to the ENVS. The frequency of haptic feedback was used to convey the type of element be-
ing perceived (file/folder/application/control/empty cell). Figure 4 illustrates the mapping
between adjacent grid cells and the user’s fingers. The index fingers were used to perceive
the element at the gaze point, while adjacent fingers were optionally mapped to neighbouring
elements to provide a form of peripheral perception. This was found to enable the user to
quickly acquire a mental map of the desktop layout and content. By gazing momentarily at
an individual element, the user could acquire additional details such as the file name, control
type, etc. via synthetic speech output or Braille text on a Braille display.
A problem discovered early in experimentation with this interface was the confusion caused
when the user’s gaze meandered back and forth across cell boundaries, as shown in Figure 5.
To overcome this problem, a subtle auditory cue was provided when the gaze crossed bound-
aries to make the user aware of the grid positioning, which also helped to distinguish con-
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Fig. 3. Experimental desktop grid interface

Fig. 4. Mapping of fingers to grid cells

tiguous sections of homogeneous elements. In addition, a stabilisation algorithm was imple-
mented to minimise the number of incidental cell changes as shown in Figure 5.

3.2.2 Zoomable Web Browser Interface

With the ever-increasing popularity and use of the World Wide Web, a web-browser interface
is arguably more important to a blind user than a desktop or file management system. Our
attempts to map web pages into grids similar to our desktop interface proved difficult due to
the more free-form nature of interface layouts used. Small items such as radio buttons were
forced to occupy an entire cell, and we began to lose the spatial information we were striving
to preserve. We therefore opted to discard the grid altogether, and use the native borders of
the HTML elements.
Web pages can contain such a wealth of tightly-packed elements, however, that it can take
a long time to scan them all and find what you are looking for. To alleviate this problem,
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Fig. 5. Gaze travel cell-visiting sequence unstabilised (left) and with stabilisation applied
(right)

we took advantage of the natural Document Object Model (DOM) element hierarchy inherent
in HTML and “collapsed” appropriate container elements to reduce the complexity of the
page. For example, a page containing three bulleted lists containing text and links, and two
tables of data might easily contain hundreds of elements. If instead of rendering all of these
individually we simply collapse them into the three tables and two lists, the user can much
more quickly perceive the layout, and then opt to “zoom” into whichever list or table interests
them to perceive the contained elements (see Figures 6(a) and 6(b) for another example).

(a) Raw page (b) Collapsed page

Fig. 6. Example of collapsing a web page for faster perception

Our experimental interface has been developed as an extension for the Mozilla Firefox web
browser (Mozilla Foundation, 2009), and uses the BRLTTY (Mielke, 2009) for Braille commu-
nication and Orca (GNOME Project, The, 2009) for speech synthesis. It uses JavaScript to
analyse the page structure and coordinate gaze-interaction in real-time. Communication with
the Braille display (including input polling) is performed via a separate Java application.
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3.3 Haptic Output

We have experimented with a number of modes of haptic output during our experimenta-
tion, including glove-based electro-tactile stimulation, vibro-tactile actuators, wireless TENS
patches and refreshable Braille displays. The following sections discuss the merits of each
system.

3.3.1 Electro-Tactile Stimulation

Our initial prototype utilised a simple wired TENS interface as shown in Figure 7. The wires
connected the electrodes to our custom-built TENS control unit (not shown). Each electrode
delivers a TENS pulse-train of the specified frequency and amplitude (depending on what is
being perceived in that region). The voltage and intensity can be varied for each electrode
and for each different user. This is necessary given that each user’s preferences vary greatly
and the sensitivity of different fingers also varies for each individual. This interface proved
effective in our experiments and allowed the user’s fingers to be free to use the keyboard.
However, being physically connected to the TENS unit proved inconvenient for general use.

Fig. 7. Wired TENS system

To eliminate this constraint, we developed wireless TENS patches which communicate with
the system via radio transmission. This not only allows the user to walk away from the system
without having to detach electrodes, but also enables the electrodes to be placed anywhere on
the body such as the arms or torso. A prototype wireless TENS patch can be seen in Figure 8.

Fig. 8. Wireless TENS Patch
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3.3.2 Vibro-Tactile Interface

Although the TENS interface is completely painless, it still requires wireless TENS electrodes
to be placed on the skin in a number of places which can be inconvenient. To overcome
this problem and trial another mode of haptic communication, we developed a vibro-tactile
keyboard interface, as illustrated in Figure 9. This device integrated vibro-tactile actuators,
constructed from speakers, which could produce vibration output of the frequency and am-
plitude specified by the system, analogous to the TENS pulse-train output.
This system has clear advantages over the TENS interface: 1) the user is not “attached” to the
interface and can move around as they please, and 2) no TENS electrodes need to be worn and
vibro-tactile stimulation is generally more palatable than electro-tactile stimulation despite
having a lower bandwidth. Whilst we found this interface capable of delivering a wide range
of sensations, the range and differentiability of TENS output was superior. Furthermore, the
TENS interface allowed the users to simultaneously perceive and use the keyboard, whilst the
vibro-tactile keyboard required movement of the fingers between the actuators and the keys.

Fig. 9. Vibro-Tactile Keyboard

3.3.3 Refreshable Braille Display

We have also experimented with the use of refreshable Braille displays for haptic perception.
Our experimentation revolved mainly around a Papenmeier BRAILLEX EL 40s (Papenmeier,
2009) as seen in Figure 10. It consists of 40 8-dot Braille cells, each with an input button above,
a scroll button at either end of the cell array, and an “easy access bar” (joystick-style bar) across
the front of the device. We found this device to be quite versatile, and capable of varying the
“refresh-rate” up to 25Hz.
A refreshable Braille display can be used in a similar fashion to the TENS and electro-tactile
output arrays for providing perception of adjacent elements. Each Braille cell has a theoretical
output resolution of 256 differentiable pin combinations. Given that the average user’s finger
width occupies two to three Braille cells, multiple adjacent cells can be combined to further
increase the per-finger resolution.
Whilst a blind user’s highly tuned haptic senses may be able to differentiate so many different
dot-combinations, sighted researchers have significant difficulty doing so without extensive
training. For our preliminary experimentation we have therefore adopted simple “glyphs”
for fast and intuitive perception. Figure 11 shows some example glyphs representing HTML
elements for web page perception.
A further advantage of using a Braille display is the ability to display element details using
traditional Braille text. Suitably trained users are able to quickly read Braille text rather than
listening to synthetic speech output. Our experiments have shown that using half the display
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Fig. 10. Papenmeier BRAILLEX EL 40s Refreshable Braille Display

Fig. 11. Example glyphs – link, text, text

for element-type perception using glyphs and the other half for instantaneous reading of fur-
ther details of the central element using Braille text is an effective method of quickly scanning
web pages and other interfaces.

Fig. 12. Braille Text displaying details of central element

The Papenmeier “easy access bar” has also proven to be a valuable asset for interface naviga-
tion. In our prototype browser, vertical motions allow the user to quickly “zoom” in or out
of element groups (as described in Section 3.2.2), and horizontal motions allow the display
to toggle between “perception mode” and “reading” mode once a element of significance has
been discovered.
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4. Results

Through this work we have devised and tested a number of human computer interface
paradigms capable of enabling the two-dimensional screen interface to be perceived with-
out use of the eyes. These systems involve head-pose tracking for obtaining the gaze position
on a virtual screen and various methods of receiving haptic feedback for interpreting screen
content at the gaze position.
Our preliminary experimental results have shown that using the head as an interface pointing
device is an effective means of selecting screen regions for interpretation and for manipulating
screen objects without use of the eyes. When combined with haptic feedback, a blind user is
able to perceive the location and approximate dimensions of the virtual screen as well as the
approximate locations of objects located on the screen after briefly browsing over the screen
area.
The use of haptic signal intensity to perceive window edges and their layer is also possible
to a limited extent with the TENS interface. After continued use, users were able to perceive
objects on the screen without any use of the eyes, differentiate between files, folders and con-
trols based on their frequency, locate specific items, drag and drop items into open windows.
Experienced users were also able to operate pull-down menus and move and resize windows
without sight.
The interpretation of screen objects involves devising varying haptic feedback signals for iden-
tifying different screen objects. Learning to identify various screen elements based on their
haptic feedback proved time consuming on all haptic feedback devices. However, this learn-
ing procedure can be facilitated by providing speech or Braille output to identify elements
when they are ‘gazed’ at for a brief period.
As far as screen element interpretation was concerned, haptic feedback via the Braille display
surpassed the TENS and vibro-tactile interfaces. This was mainly because the pictorial nature
of glyphs used is more intuitive to the inexperienced users. It is also possible to encode more
differentiable elements by using two Braille cells per finger.
Preliminary experiments with our haptic web browser also demonstrated promising results.
For example, experienced users were given the task of using a search engine to find the answer
to a question without sight. They showed that they were able to locate the input form element
with ease and enter the search string. They were also able to locate the search results, browse
over them and navigate to web pages by clicking on links at the gaze position. They were also
able to describe the layout of unfamiliar web pages according to where images, text, links, etc
were located.

5. Conclusion

This work presents a novel haptic head-pose tracking computer interface that enables the
two-dimensional screen interface to be perceived and accessed without any use of the eyes.
Three haptic output paradigms were tested, namely: TENS, vibro-tactile and a refreshable
Braille display. All three haptic feedback methods proved effective to varying degrees. The
Braille interface provided greater versatility in terms of rapid identification of screen objects.
The TENS system provided improved perception of depth (for determining window layers).
The vibro-tactile keyboard proved convenient but with limited resolution. Our preliminary
experimental results have demonstrated that considerable screen-based interactivity is able
to be performed with haptic gaze-tracking systems including point-and-click and drag-and-
drop manipulation of screen objects. The use of varying haptic feedback can also allow screen
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objects at the gaze position to be identified and interpreted. Furthermore, our preliminary
experimental results with our haptic web browser demonstrate that this means of interactivity
holds potential for improved human computer interactivity for the blind.
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