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1. Abstract 
 

Haptic feedback enables the support of a human during the interaction with an 
environment. A variety of concepts have been developed to achieve an effective haptic 
support of the user in specific scenarios, e.g. Virtual Fixtures. However, most of these 
methods do not enable an adaptive support of the motion from a user within a (real or 
virtual) environment, which would be desirable in many situations. Especially when 
dynamical obstacles are involved or when the desired motion of the human is not known 
beforehand, an online computation of this support is essential, which should be based on a 
fast and effective determination of feasible motions. 
In contrast to other methods, sampling-based path planning is applicable to arbitrary 
interaction scenarios and enables to find a solution if it exists at all. Thus, it seems to be 
ideally suited for a generic framework that is able to deal with various kinematics, as e.g. a 
virtual prototyping test bed for the haptic evaluation of mechanisms requires. At such a test 
bed, the path planner could directly be coupled to the haptic rendering of a virtual scene to 
assist a user in approaching a target. 
This motivated the development of SamPP, a sampling-based path planning library with 
implementations of the most important algorithms. It can be used for nearly arbitrary rigid 
robots and environments. By performing numerous benchmarks, we prove the effectiveness 
and efficiency of SamPP. It is shown that a single-threaded version of the path planning can 
be used for real-time support of the haptic interaction at a novel actuated car door. 
Furthermore, we enhance the path planning performance for unknown or dynamical 
environments significantly by the OR-Parallelization of different path planning queries. This 
Generalized OR-Parallelization is a novel concept that to the best knowledge of the authors has not 
been proposed beforehand. We show that for the case of dynamic environments the likelihood of 
a fast path planning result is higher with our approach. Thus, even in dynamic or unknown 
environments, a real-time support of haptic interaction can be achieved. Finally, we highlight 
four promising research directions to exploit the concept of Generalized OR-Parallelization:  
1) Combination of PRMs and RRTs to achieve a synergy of the advantages of both concepts,  
2) concurrent use of different parameter sets of path planning algorithms, 3) online 
adaptation of these parameter sets and 4) online adaptation of the types and numbers of 
parallel executed path planning programs. 

29
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2. Introduction 
 

2.1 Support of Haptic Interaction 
Haptic feedback enables the support of a human during the interaction with a virtual, 
shared, and/or remote environment. This is desirable for a broad range of applications, 
where the limited capabilities of humans should be improved or at least should not be 
detrimental. Examples include training of students and employees, manipulation of 
complex mechanisms, robotic surgery, and teleoperation in general (Esen, 2007). 
A variety of concepts have been developed to achieve an effective haptic support of the user 
in specific scenarios. The most important one is the concept of Virtual Fixtures. Initially it has 
been proposed as a static, rail-like support to reduce the DOF of human motion (Rosenberg, 
1993). Since then, a lot of extensions and variations of this concept have been developed, 
some of which even provide a dynamic, situation-dependent haptic support (Abott et al., 
2003; Ammi & Ferreira, 2007; Davies et al., 1997; Kapoor et al., 2007; Lynch et al., 2002). 
However, most of these methods do not enable an adaptive support of the interaction 
between a user and a haptic device. Rather, based on prior knowledge, they rely on a pre-
computation of parts of the support method. One example is the offline determination of a 
desired path for surgical tools based on MRI data, where the desired start and goal 
configuration of the tools are known in advance (Li et al., 2007).  

 
2.2 Path Planning 
Especially when (real or virtual) environments with dynamical obstacles are involved or 
when the desired motion of the human is not known beforehand, an online computation of 
a collision-free path is essential. Path planning has been an active field in the past 15 years, 
and a variety of methods have been proposed. 
A major drawback of many path planning algorithms is their lack of generality in terms of 
e.g. the existence of local minima. For instance, artificial potential fields which have been 
proposed for the assistance of haptic manipulation in the nano-scale (Varol et al., 2006) are 
prone to produce local minima in many handling scenarios. 
With the recent introduction of sampling-based methods (Kavraki et al., 1996; LaValle et al., 
1998), these limitations have been overcome, and high-dimensional path planning problems 
have been solved efficiently. Generally in sampling-based path planning, the geometry of 
both robot and workspace is considered based on discrete samples of the configuration of a 
robot. Various methodologies exist for the creation of these samples, which greatly influence 
the properties of the path planner depending on a given scenario. For the generated 
samples, a collision check is performed, often by openly available collision detection 
libraries as e.g. evaluated in (Strolz et al., 2008). The result is subsequently used by a path 
planning algorithm, which exclusively works in the configuration space (C-space) of the 
robot. To find a path for the robot, a local planner has to check whether two samples can be 
quasi-continuously connected without a collision. 
Based on this, different strategies exist to find a path in the C-space: While Single-Query 
Planners as e.g. Rapidly-exploring Random Trees (RRT) (LaValle et al., 1998) create a path 
specifically for a given start and goal configuration, Multi-Query Planners as e.g. Probabilistic 
Roadmaps (PRM) (Kavraki et al., 1996) proceed in two steps: In the processing step, a 
number of samples is connected to form a roadmap. In the query step, the given start and 
goal configurations have to be connected to the roadmap. If this succeeds and if the 

 

roadmap is connected, a solution surely exists and a suitable, optimized path can be found 
by a graph search. A comprehensive overview of the state of art in sampling-based path 
planning is given in (LaValle, 2006). 

 
2.3 Performance Enhancement by Parallelized Sampling-Based Path Planning 
It has been noted that some sampling-based path planning algorithms are (at least partially) 
embarrassingly parallel (Arnato & Dale, 1999). This means, that the path planning time can be 
drastically reduced by implementing the algorithm in a parallel manner and running it on 
suitable hardware. Impressive demonstrations of this are given in (Challou, 1995; Plaku, 
2005), where a nearly linear speedup for an increasing number of processors has been 
reported. 
Recently, it has been shown that another way of speeding up sampling-based path planning 
is to run a number of path planning queries in parallel on a suitable hardware (Klasing, 
2009). It has been pointed out that with this OR paradigm the probability that none of the n 
queries finds a solution within a predefined time t is given by 
  

       1 – Pn(t) = (1 – P1(t))n (1) 
  
where P1 denotes the probability that one query finds a solution within t (Challou, 1995). 
Obviously, this probability decreases rapidly with an increasing number of queries. 
However, as noted in (Calisi, 2008), due to variations in the path planning environment 
there may be no single planner that will perform well in all possible situations. It is noted 
that “an ideal motion planner would be a meta-planner using a suite of more specialized planners to 
cooperatively solve a motion planning problem. It would automatically apply the best-suited planner 
for each distinct region in the planning space and would produce regional solutions that could be 
composed to solve the overall motion planning instance.” Furthermore, not only the choice of the 
algorithm itself but also its parameterization is a critical issue, because it drastically affects 
the performance of the path planning. 

 
2.4 Contributions 
Until the recent release of OpenRAVE (Diankov, 2008; OpenRAVE [Online]), there has been 
no easy-to-use, powerful generic path planning software. Thus, the sampling-based path 
planning library SamPP has been developed (Dömel, 2007) and subsequently improved, 
enhanced and evaluated. At first, we give an overview of SamPP and introduce the three 
most fundamental things about it: The representation of the robot and the environment, and 
the path planning algorithms. For the evaluation of SamPP, firstly it is successfully applied 
to a path planning scenario involving a robot with 10 DOF. Secondly, it is applied to 
different car door kinematics with 2 DOF, where it shows a superior performance (typical 
maximum path planning duration < 20 ms). Thirdly, the influence of the parameterization 
of the path planning algorithms is discussed and recommendations for the parameter tuning 
are given. A comparison with the state of the art, open-source sampling-based path 
planning libraries OpenRAVE and PP reveals that the performance of SamPP indeed is very 
high. 
As explained in (Strolz et al., 2008), car doors with more than one DOF promise to improve 
the convenience of the access to cars. However, experiments on a Virtual Reality (VR) test 
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2. Introduction 
 

2.1 Support of Haptic Interaction 
Haptic feedback enables the support of a human during the interaction with a virtual, 
shared, and/or remote environment. This is desirable for a broad range of applications, 
where the limited capabilities of humans should be improved or at least should not be 
detrimental. Examples include training of students and employees, manipulation of 
complex mechanisms, robotic surgery, and teleoperation in general (Esen, 2007). 
A variety of concepts have been developed to achieve an effective haptic support of the user 
in specific scenarios. The most important one is the concept of Virtual Fixtures. Initially it has 
been proposed as a static, rail-like support to reduce the DOF of human motion (Rosenberg, 
1993). Since then, a lot of extensions and variations of this concept have been developed, 
some of which even provide a dynamic, situation-dependent haptic support (Abott et al., 
2003; Ammi & Ferreira, 2007; Davies et al., 1997; Kapoor et al., 2007; Lynch et al., 2002). 
However, most of these methods do not enable an adaptive support of the interaction 
between a user and a haptic device. Rather, based on prior knowledge, they rely on a pre-
computation of parts of the support method. One example is the offline determination of a 
desired path for surgical tools based on MRI data, where the desired start and goal 
configuration of the tools are known in advance (Li et al., 2007).  

 
2.2 Path Planning 
Especially when (real or virtual) environments with dynamical obstacles are involved or 
when the desired motion of the human is not known beforehand, an online computation of 
a collision-free path is essential. Path planning has been an active field in the past 15 years, 
and a variety of methods have been proposed. 
A major drawback of many path planning algorithms is their lack of generality in terms of 
e.g. the existence of local minima. For instance, artificial potential fields which have been 
proposed for the assistance of haptic manipulation in the nano-scale (Varol et al., 2006) are 
prone to produce local minima in many handling scenarios. 
With the recent introduction of sampling-based methods (Kavraki et al., 1996; LaValle et al., 
1998), these limitations have been overcome, and high-dimensional path planning problems 
have been solved efficiently. Generally in sampling-based path planning, the geometry of 
both robot and workspace is considered based on discrete samples of the configuration of a 
robot. Various methodologies exist for the creation of these samples, which greatly influence 
the properties of the path planner depending on a given scenario. For the generated 
samples, a collision check is performed, often by openly available collision detection 
libraries as e.g. evaluated in (Strolz et al., 2008). The result is subsequently used by a path 
planning algorithm, which exclusively works in the configuration space (C-space) of the 
robot. To find a path for the robot, a local planner has to check whether two samples can be 
quasi-continuously connected without a collision. 
Based on this, different strategies exist to find a path in the C-space: While Single-Query 
Planners as e.g. Rapidly-exploring Random Trees (RRT) (LaValle et al., 1998) create a path 
specifically for a given start and goal configuration, Multi-Query Planners as e.g. Probabilistic 
Roadmaps (PRM) (Kavraki et al., 1996) proceed in two steps: In the processing step, a 
number of samples is connected to form a roadmap. In the query step, the given start and 
goal configurations have to be connected to the roadmap. If this succeeds and if the 

 

roadmap is connected, a solution surely exists and a suitable, optimized path can be found 
by a graph search. A comprehensive overview of the state of art in sampling-based path 
planning is given in (LaValle, 2006). 

 
2.3 Performance Enhancement by Parallelized Sampling-Based Path Planning 
It has been noted that some sampling-based path planning algorithms are (at least partially) 
embarrassingly parallel (Arnato & Dale, 1999). This means, that the path planning time can be 
drastically reduced by implementing the algorithm in a parallel manner and running it on 
suitable hardware. Impressive demonstrations of this are given in (Challou, 1995; Plaku, 
2005), where a nearly linear speedup for an increasing number of processors has been 
reported. 
Recently, it has been shown that another way of speeding up sampling-based path planning 
is to run a number of path planning queries in parallel on a suitable hardware (Klasing, 
2009). It has been pointed out that with this OR paradigm the probability that none of the n 
queries finds a solution within a predefined time t is given by 
  

       1 – Pn(t) = (1 – P1(t))n (1) 
  
where P1 denotes the probability that one query finds a solution within t (Challou, 1995). 
Obviously, this probability decreases rapidly with an increasing number of queries. 
However, as noted in (Calisi, 2008), due to variations in the path planning environment 
there may be no single planner that will perform well in all possible situations. It is noted 
that “an ideal motion planner would be a meta-planner using a suite of more specialized planners to 
cooperatively solve a motion planning problem. It would automatically apply the best-suited planner 
for each distinct region in the planning space and would produce regional solutions that could be 
composed to solve the overall motion planning instance.” Furthermore, not only the choice of the 
algorithm itself but also its parameterization is a critical issue, because it drastically affects 
the performance of the path planning. 

 
2.4 Contributions 
Until the recent release of OpenRAVE (Diankov, 2008; OpenRAVE [Online]), there has been 
no easy-to-use, powerful generic path planning software. Thus, the sampling-based path 
planning library SamPP has been developed (Dömel, 2007) and subsequently improved, 
enhanced and evaluated. At first, we give an overview of SamPP and introduce the three 
most fundamental things about it: The representation of the robot and the environment, and 
the path planning algorithms. For the evaluation of SamPP, firstly it is successfully applied 
to a path planning scenario involving a robot with 10 DOF. Secondly, it is applied to 
different car door kinematics with 2 DOF, where it shows a superior performance (typical 
maximum path planning duration < 20 ms). Thirdly, the influence of the parameterization 
of the path planning algorithms is discussed and recommendations for the parameter tuning 
are given. A comparison with the state of the art, open-source sampling-based path 
planning libraries OpenRAVE and PP reveals that the performance of SamPP indeed is very 
high. 
As explained in (Strolz et al., 2008), car doors with more than one DOF promise to improve 
the convenience of the access to cars. However, experiments on a Virtual Reality (VR) test 
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bed showed that users did not find the operation of car doors with several to be intuitive. 
We show that the single-threaded application of SamPP can be used for real-time support of 
the haptic interaction at such novel actuated car doors. The effectiveness of this haptic 
support with respect to user convenience is validated experimentally. 
Furthermore, we enhance the path planning performance for unknown or dynamical 
environments significantly by an OR parallelization of different path planning algorithms. 
This is a novel concept that to the best knowledge of the authors has not been proposed 
beforehand. We prove that the likelihood of at least one fast path planning result is 
dramatically higher with our approached than with the parallel execution of several 
instances of a single path planner with a fixed parameter set. The reason is that the 
performance of a sampling-based path planner not only is subject to a stochastically process, 
but also depends greatly on the scenario at hand and the chosen parameters.  

 
3. SamPP, a New Sampling-Based Path Planning Library 
 

In this chapter, we introduce SamPP, a generic software library for Sampling-based Path 
Planning for rigid robots within arbitrary environments (Dömel, 2007). After describing the 
overall structure of the software and the representation of robot and environment, we 
present the implemented algorithms and an evaluation. Finally, we compare the 
performance to two recently released open source software libraries for sampling-based 
path planning, OpenRAVE (Diankov, 2008; OpenRAVE [Online]) and PP (PP [Online]). 

 
3.1 Concept and Structure 
SamPP has been intended to be part of a robotics control framework. Therefore, it was 
written in C++ (cross-platform) in an object-oriented manner as an API which is to be used 
in a client program. Using a specific parameter file which describes the path planning task at 
hand, a SAMPP object is instantiated there, and the path planning is executed. 
A path planning task is fully defined by the following information: 

- Description of the robot 
- Description of the environment of the robot 
- Start and goal configuration of the path 

For solving the task, an algorithm and its parameterization have to be chosen. The algorithm 
needs a 3D representation of the path planning scenario to perform collision checking, 
which is built based on the description of robot and environment. Accordingly, we 
structured the software architecture in the following components: 

1. ROBOT: Parametrized description of the kinematics and the 3D shape of the robot 
2. ENVIRONMENT: Parametrized description of the 3D shape of all potential 

obstacles within the path planning scenario 
3. WORLD_COLLISION and WORLD_VISUALIZATION: Structure representing the 

3D scenario for the collision checking and the  visualization engine 
4. PLANNER: Selection and parametrization of the path planning algorithm 
5. SAMPP: Path planning object based on previous five components 

This way, a path planning query is performed by instatiating a SAMPP object, which will 
execute a path planning based on a chosen parameter set. 

 

3.2 Representation of the Robot 
The central consideration of sampling-based path planning is to find a collision free path for 
the robot in the configuration space (C-space) of the robot. The C-space depends on the 
specific kinematics of the robot, i.e. the number, the type and the limitations of its joints. 
The motion of every rigid kinematics can be described by a combination of rotational and 
translational DOF. Even if a mechanism would exhibit different joints, e.g. a non-prismatic 
translational one, the position and orientation of all links could be expressed using 
additional virtual rotational and/or translational joints. This also holds for parallel links, 
where fewer overall DOF exist than the single joints would exhibit in sum. 
To give a better understanding of the problems involved with creating a scheme for the 
representation of arbitrary robots, lets consider the robotic application of a car door with the 
two DOF (q1, q2) depicted in Figure 1. While the parts A and DOOR form an open tree-
structured kinematic, due to the parallel mechanism the motion of the car door parts B and 
Z depend on (q1, q2). Thus, besides expressing rotational and translational DOFs and their 
limitations, we need to express the potential dependencies inherent to parallel mechanisms. 
 

 
Fig. 1. Swing-Sliding Car Door (SSD) exhibiting both a rotational and a translation DOF, 
parallel links, and a closed kinematic chain. 
 
By introducing dependent joints (dependent variables/dependent DOF), the problem of 
nonlinear and parallel kinematic configurations can be solved. For many real-world 
applications, a simple solution where the dependent joint configuration is calculated from 
the linear interpolation of predefined lookup table data is sufficient. This requires, that for 
every dependent joint a file has to be created that stores the lookup table. 
A common way to represent kinematic chains is to use the Denavit-Hartenberg (DH) 
notation, where subsequently frames are created that describe a transformation from the 
base to the single links of the robot. This concept can be extended by introducing a parent 
for every frame, such that more than one child frame can be related to a frame. Thus, we 
build a tree structure, where each path represents a DH-like series of frames, which in 
combination with the dependent joints allows for representing parallel kinematics. This 
results in an intuitive tree-like robot description that can handle not only arbitrary open 
kinematic chains, but also kinematics with simple closed chains. 
In robotics, it is often convenient to divide the configuration space in the configuration of 
the (usually) movable robot base on the one hand and the configuration of the joints of the 
manipulator on the other hand. The base configuration can generically be desribed by a 
transformation in respect to a world coordinate frame (maximum number of DOFs: 6). This 
equals a sequence of three translational and three rotational joints, all of which are 
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bed showed that users did not find the operation of car doors with several to be intuitive. 
We show that the single-threaded application of SamPP can be used for real-time support of 
the haptic interaction at such novel actuated car doors. The effectiveness of this haptic 
support with respect to user convenience is validated experimentally. 
Furthermore, we enhance the path planning performance for unknown or dynamical 
environments significantly by an OR parallelization of different path planning algorithms. 
This is a novel concept that to the best knowledge of the authors has not been proposed 
beforehand. We prove that the likelihood of at least one fast path planning result is 
dramatically higher with our approached than with the parallel execution of several 
instances of a single path planner with a fixed parameter set. The reason is that the 
performance of a sampling-based path planner not only is subject to a stochastically process, 
but also depends greatly on the scenario at hand and the chosen parameters.  

 
3. SamPP, a New Sampling-Based Path Planning Library 
 

In this chapter, we introduce SamPP, a generic software library for Sampling-based Path 
Planning for rigid robots within arbitrary environments (Dömel, 2007). After describing the 
overall structure of the software and the representation of robot and environment, we 
present the implemented algorithms and an evaluation. Finally, we compare the 
performance to two recently released open source software libraries for sampling-based 
path planning, OpenRAVE (Diankov, 2008; OpenRAVE [Online]) and PP (PP [Online]). 

 
3.1 Concept and Structure 
SamPP has been intended to be part of a robotics control framework. Therefore, it was 
written in C++ (cross-platform) in an object-oriented manner as an API which is to be used 
in a client program. Using a specific parameter file which describes the path planning task at 
hand, a SAMPP object is instantiated there, and the path planning is executed. 
A path planning task is fully defined by the following information: 

- Description of the robot 
- Description of the environment of the robot 
- Start and goal configuration of the path 

For solving the task, an algorithm and its parameterization have to be chosen. The algorithm 
needs a 3D representation of the path planning scenario to perform collision checking, 
which is built based on the description of robot and environment. Accordingly, we 
structured the software architecture in the following components: 

1. ROBOT: Parametrized description of the kinematics and the 3D shape of the robot 
2. ENVIRONMENT: Parametrized description of the 3D shape of all potential 

obstacles within the path planning scenario 
3. WORLD_COLLISION and WORLD_VISUALIZATION: Structure representing the 

3D scenario for the collision checking and the  visualization engine 
4. PLANNER: Selection and parametrization of the path planning algorithm 
5. SAMPP: Path planning object based on previous five components 

This way, a path planning query is performed by instatiating a SAMPP object, which will 
execute a path planning based on a chosen parameter set. 

 

3.2 Representation of the Robot 
The central consideration of sampling-based path planning is to find a collision free path for 
the robot in the configuration space (C-space) of the robot. The C-space depends on the 
specific kinematics of the robot, i.e. the number, the type and the limitations of its joints. 
The motion of every rigid kinematics can be described by a combination of rotational and 
translational DOF. Even if a mechanism would exhibit different joints, e.g. a non-prismatic 
translational one, the position and orientation of all links could be expressed using 
additional virtual rotational and/or translational joints. This also holds for parallel links, 
where fewer overall DOF exist than the single joints would exhibit in sum. 
To give a better understanding of the problems involved with creating a scheme for the 
representation of arbitrary robots, lets consider the robotic application of a car door with the 
two DOF (q1, q2) depicted in Figure 1. While the parts A and DOOR form an open tree-
structured kinematic, due to the parallel mechanism the motion of the car door parts B and 
Z depend on (q1, q2). Thus, besides expressing rotational and translational DOFs and their 
limitations, we need to express the potential dependencies inherent to parallel mechanisms. 
 

 
Fig. 1. Swing-Sliding Car Door (SSD) exhibiting both a rotational and a translation DOF, 
parallel links, and a closed kinematic chain. 
 
By introducing dependent joints (dependent variables/dependent DOF), the problem of 
nonlinear and parallel kinematic configurations can be solved. For many real-world 
applications, a simple solution where the dependent joint configuration is calculated from 
the linear interpolation of predefined lookup table data is sufficient. This requires, that for 
every dependent joint a file has to be created that stores the lookup table. 
A common way to represent kinematic chains is to use the Denavit-Hartenberg (DH) 
notation, where subsequently frames are created that describe a transformation from the 
base to the single links of the robot. This concept can be extended by introducing a parent 
for every frame, such that more than one child frame can be related to a frame. Thus, we 
build a tree structure, where each path represents a DH-like series of frames, which in 
combination with the dependent joints allows for representing parallel kinematics. This 
results in an intuitive tree-like robot description that can handle not only arbitrary open 
kinematic chains, but also kinematics with simple closed chains. 
In robotics, it is often convenient to divide the configuration space in the configuration of 
the (usually) movable robot base on the one hand and the configuration of the joints of the 
manipulator on the other hand. The base configuration can generically be desribed by a 
transformation in respect to a world coordinate frame (maximum number of DOFs: 6). This 
equals a sequence of three translational and three rotational joints, all of which are 
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independent of each other. Thus, the base configuration can be expressed by a subset of the 
generic joint parameters. 
Our generic definition of joint parameters is briefly described in the following: 

- ID: Unique number of robot part (foundation of the overall kinematic tree) 
- PARENT: ID of the predecessing robot part in the kinematic tree 
- REFJOINT: [only if joint is of type dependent:] ID of reference joint 
- TYPE: description of the DOF of the robot part 

o RIGID: the robot part represents no DOF 
o TRANS: translational DOF 
o TRANS_CSTR: constrained translational DOF 
o TRANS_DPT: no DOF, translational motion depends on REFJOINT 
o ROT: unconstrained rotational DOF  
o ROT_CSTR: constrained rotational DOF 
o ROT_DPT: no DOF, rotational motion depends on REFJOINT 

- MIN: [only if joint is of type _CSTR:] minimum value of DOF 
- MAX: [only if joint is of type _CSTR:] maximum value of DOF 
- DH_A: Denavit-Hartenberg parameter (translation along x-axis) 
- DH_D: Denavit-Hartenberg parameter (translation along z-axis) 
- DH_ALPHA: Denavit-Hartenberg parameter (rotation around x-axis) 
- DH_THETA: Denavit-Hartenberg parameter (rotation around z-axis) 
- WEIGHT: weighting factor for this DOF 

 
Accordingly, the base parameters are the subset without ID labels, joint type _DPT, and the 
Denavit-Hartenberg parameters. 
Beside the kinematics, it is necessary to define parameters that take into account the 
influence of the single joints on the overall robot to ensure an efficient and effective path 
planning. The path planner needs to rate motions of the robot. A common measure for this 
is the change of the kinematic configuration of the robot, which results from the single joint 
displacements. In serial kinematic structures, a displacement of a joint near to the base 
usually has a significantly bigger impact on the displacement of the overall robot. This 
motivates to introduce a cost function that punishes big displacements, thereby allowing the 
path planner to work efficiently. Right now, we use a simple constant weighting WEIGHT 
of the individual joints to achieve this goal. The weighting has to be chosen heuristically 
based on the scenario at hand. 
Furthermore, a discretization has to be defined for the single DOFs, because the path 
planning algorithm works in a discrete space, while the environment is continuous. The 
discretization Δq defines a lower bound which enables planning that can be considered 
quasi-continuously. 
The distance of two states is calculated based on the simple L1 metric, thus all joint 
deviations are multiplied with their respective weight and summed, such that 
∑WEIGHT(qk-qk-1) results. If this sum is smaller than the threshold ∑WEIGHT(Δq) 
(minimum cost), no collision is considered to be feasible when moving from state k-1 to state 
k, and thus no collision check is performed. This means that, if the discretization is to coarse, 
the calculated path may not be collision-free. However, if the discretization is very fine, the 
efficiency of the path planning is significantly reduced. Thus, it is crucial to provide a 
parametrization that is appropriate for the example at hand. 

 

For enabling collision checks and visualization, besides the kinematics a graphical 3D 
representation of the single robot parts is essential. Attention has to be paid to the handling 
of transformations and 3D data: The collision detection library and the visualization library 
may exhibit a different way to handle files and transformations. 

 
3.3 Representation of the Environment 
In contrast to the usually rigid and fixed robot kinematics, the environment may have to be 
altered during runtime because of moving obstacles. If obstacles are detected by sensors, 
they are often handled without semantic knowledge, i.e. shape primitives are used to 
describe a convex hull over their respective 3D geometry, compare e.g. (Strolz et al., 2008). 
Based on the assumption that only such shape primitives would be important in the 
modification of the environment during runtime, we defined data structures and 
accordingly transformation matrices for them. Thus, the environment objects can be altered, 
removed, or new ones can be inserted during runtime. Sometimes, it is more efficient to 
transform the objects rather than to create a new one. 

 
3.4 Rapidly-exploring random Tree (RRT) Algorithms 
Rapidly-exploring random Trees (RRTs, originally proposed in (LaValle, 1998)) are the most 
popular Single Query planning algorithms. A particularly successful modification is the 
bidirectional RRT: Instead of growing a tree from the start to the goal configuration, two 
trees are grown towards each other (Kuffner & LaValle, 2000). 
There exist several expansion strategies for growing the tree. In the “classical” approach, the 
RRT is grown exactly one discretization step towards a sample. This can be extended by 
defining an upper bound for the expansion, e.g. five discretization steps. In contrast, the 
“visibility” approach iterates discretization steps towards the sample as long as the sample 
is not reached and no collision has been detected. We implemented these strategies, denoted 
as RRT-cla and RRT-vis in the following. Both algorithms require the start and the goal state 
as inputs. An optional parameter timeout enables to define a maximum duration for the path 
planning to quit the path planning for overly complex or even unsolvable problems. For an 
efficient handling of the search for nearest neighbors, we used kd-Trees and the open-source 
library ANN (Mount & Arya, 1997; ANN, [Online]). 

 
3.5 Probabilistic Roadmap (PRM) Algorithms and their Parameterizations 
PRM algorithms exhibit two phases: The processsing step, where the probabilistic roadmap 
is built, and the query step, which consists of connecting the start and the goal state to the 
roadmap and a consecutive search for the optimal path between them. Analogous to the 
RRT implementations,  we implemented algorithms with “classical” and “visibility” 
expansion strategies: PRM-cla and PRM-vis. 
The goal of building the map (processing) is to get a roadmap that provides a good coverage 
of the C-space. This can be heaviliy influenced by several parameters, which will be 
introduced in the following. 
PrmMaxConnDist: Maximum distance between two states. This parameter defines to which 
extent the path planner behaves classical (low values, near resolution) or visibility-based (high 
values) while building the map. 
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independent of each other. Thus, the base configuration can be expressed by a subset of the 
generic joint parameters. 
Our generic definition of joint parameters is briefly described in the following: 

- ID: Unique number of robot part (foundation of the overall kinematic tree) 
- PARENT: ID of the predecessing robot part in the kinematic tree 
- REFJOINT: [only if joint is of type dependent:] ID of reference joint 
- TYPE: description of the DOF of the robot part 

o RIGID: the robot part represents no DOF 
o TRANS: translational DOF 
o TRANS_CSTR: constrained translational DOF 
o TRANS_DPT: no DOF, translational motion depends on REFJOINT 
o ROT: unconstrained rotational DOF  
o ROT_CSTR: constrained rotational DOF 
o ROT_DPT: no DOF, rotational motion depends on REFJOINT 

- MIN: [only if joint is of type _CSTR:] minimum value of DOF 
- MAX: [only if joint is of type _CSTR:] maximum value of DOF 
- DH_A: Denavit-Hartenberg parameter (translation along x-axis) 
- DH_D: Denavit-Hartenberg parameter (translation along z-axis) 
- DH_ALPHA: Denavit-Hartenberg parameter (rotation around x-axis) 
- DH_THETA: Denavit-Hartenberg parameter (rotation around z-axis) 
- WEIGHT: weighting factor for this DOF 

 
Accordingly, the base parameters are the subset without ID labels, joint type _DPT, and the 
Denavit-Hartenberg parameters. 
Beside the kinematics, it is necessary to define parameters that take into account the 
influence of the single joints on the overall robot to ensure an efficient and effective path 
planning. The path planner needs to rate motions of the robot. A common measure for this 
is the change of the kinematic configuration of the robot, which results from the single joint 
displacements. In serial kinematic structures, a displacement of a joint near to the base 
usually has a significantly bigger impact on the displacement of the overall robot. This 
motivates to introduce a cost function that punishes big displacements, thereby allowing the 
path planner to work efficiently. Right now, we use a simple constant weighting WEIGHT 
of the individual joints to achieve this goal. The weighting has to be chosen heuristically 
based on the scenario at hand. 
Furthermore, a discretization has to be defined for the single DOFs, because the path 
planning algorithm works in a discrete space, while the environment is continuous. The 
discretization Δq defines a lower bound which enables planning that can be considered 
quasi-continuously. 
The distance of two states is calculated based on the simple L1 metric, thus all joint 
deviations are multiplied with their respective weight and summed, such that 
∑WEIGHT(qk-qk-1) results. If this sum is smaller than the threshold ∑WEIGHT(Δq) 
(minimum cost), no collision is considered to be feasible when moving from state k-1 to state 
k, and thus no collision check is performed. This means that, if the discretization is to coarse, 
the calculated path may not be collision-free. However, if the discretization is very fine, the 
efficiency of the path planning is significantly reduced. Thus, it is crucial to provide a 
parametrization that is appropriate for the example at hand. 

 

For enabling collision checks and visualization, besides the kinematics a graphical 3D 
representation of the single robot parts is essential. Attention has to be paid to the handling 
of transformations and 3D data: The collision detection library and the visualization library 
may exhibit a different way to handle files and transformations. 

 
3.3 Representation of the Environment 
In contrast to the usually rigid and fixed robot kinematics, the environment may have to be 
altered during runtime because of moving obstacles. If obstacles are detected by sensors, 
they are often handled without semantic knowledge, i.e. shape primitives are used to 
describe a convex hull over their respective 3D geometry, compare e.g. (Strolz et al., 2008). 
Based on the assumption that only such shape primitives would be important in the 
modification of the environment during runtime, we defined data structures and 
accordingly transformation matrices for them. Thus, the environment objects can be altered, 
removed, or new ones can be inserted during runtime. Sometimes, it is more efficient to 
transform the objects rather than to create a new one. 

 
3.4 Rapidly-exploring random Tree (RRT) Algorithms 
Rapidly-exploring random Trees (RRTs, originally proposed in (LaValle, 1998)) are the most 
popular Single Query planning algorithms. A particularly successful modification is the 
bidirectional RRT: Instead of growing a tree from the start to the goal configuration, two 
trees are grown towards each other (Kuffner & LaValle, 2000). 
There exist several expansion strategies for growing the tree. In the “classical” approach, the 
RRT is grown exactly one discretization step towards a sample. This can be extended by 
defining an upper bound for the expansion, e.g. five discretization steps. In contrast, the 
“visibility” approach iterates discretization steps towards the sample as long as the sample 
is not reached and no collision has been detected. We implemented these strategies, denoted 
as RRT-cla and RRT-vis in the following. Both algorithms require the start and the goal state 
as inputs. An optional parameter timeout enables to define a maximum duration for the path 
planning to quit the path planning for overly complex or even unsolvable problems. For an 
efficient handling of the search for nearest neighbors, we used kd-Trees and the open-source 
library ANN (Mount & Arya, 1997; ANN, [Online]). 

 
3.5 Probabilistic Roadmap (PRM) Algorithms and their Parameterizations 
PRM algorithms exhibit two phases: The processsing step, where the probabilistic roadmap 
is built, and the query step, which consists of connecting the start and the goal state to the 
roadmap and a consecutive search for the optimal path between them. Analogous to the 
RRT implementations,  we implemented algorithms with “classical” and “visibility” 
expansion strategies: PRM-cla and PRM-vis. 
The goal of building the map (processing) is to get a roadmap that provides a good coverage 
of the C-space. This can be heaviliy influenced by several parameters, which will be 
introduced in the following. 
PrmMaxConnDist: Maximum distance between two states. This parameter defines to which 
extent the path planner behaves classical (low values, near resolution) or visibility-based (high 
values) while building the map. 
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As mentioned in the RRT section, the efficacy strongly depends on the environment at hand. 
Thus, with this parameter the path planning can be tuned for a class of scenarios. For 
instance, when rather dense environments have to be considered, a low value would be a 
good choice. 
PrmInitialStates: Number of initial states which are randomly sampled before the algorithm 
tries to connect them. If all initial states are connected (or if the timeout condition is 
triggered), the building of the map is stopped. 
The higher PrmInitialStates, the higher is the probability of a dense roadmap. In turn, this 
makes it more likely that the start and goal states can be connected with the roadmap in the 
query stage. However, a high number leads to a more complex roadmap which inhibits the 
path search. One way of finding a good setting can be to start with a rather low value. If it 
turns out that the start and/or goal state cannot be connected with the map, this number can 
adaptively be increased. Note that this functionality would have to be provided by the client 
program. 
PrmMaxConnNumb: Maximum number of connections between a new collision free state 
and the roadmap. The higher this value, the better is the conjunction of the map, which 
tends to result in a smoother path and a longer path query. 
In many applications, a value of up to 10 lead to good results. 
PrmCleanMapRate: Rate of deletion of non-connected states. If a state is near an obstacle, it 
may be very difficult to connect it to the roadmap, which slows down the connection of the 
map. Therefore, the non-connected states are deleted with this rate. If this value is 
inappropriately low, it may be very difficult to build a map in a dense environment, because 
relevant states are deleted before being connected to the roadmap. Thus, this parameter be 
better only used if a relatively free C-space is assumed. 
PrmMapRateExam: Rate of examination of the number of roadmaps. If the C-space is 
divided by obstacles such that not all states can be connected to one roadmap, some kind of 
timeout has to stop the attempt of the (infeasable) connection of the different roadmaps. 
This is done by examining the number of roadmaps at a constant rate. If the number did not 
change within one time interval, it is assumed that the different roadmaps can not be 
connected, and the proc. stage is terminated. 
PrmMaxSampNumb: Maximum number of random samples. If this value is set, the proc. 
stage is terminated after this number of samples has been reached. 
After the roadmap has been built, path planning queries can be executed. This involves 
firstly to connect the start and the goal state to the (same) roadmap. If this succeeded, one is 
sure that the states are connected, and a graph search as e.g. the famous A* algorithm can be 
performed to find the optimal path. Else, no path can be found, and an error is returned. 
Furthermore, a timeout results in an error, too. 

 
4. Benchmark Results for SamPP 
 

In the following, several benchmarks for SamPP are introduced and discussed. For all 
programs and scenarios, a PC with AMD Athlon(tm) 64 X2 Dual Core 5200+, 2 GB RAM and 
the operating system Linux Release 2.6.22-ipipe KDE 3.5.7 has been used. Only one of the 
two cores was used, and all programs were run 20 times. 

 

In the results, min and max denote the minimum and maximum, and σ and E the standard 
deviation and expectation values of the path planning duration and the path length, 
respectively, of the 20 runs. 

 
4.1 Application to a Robot with 10 DOF 
Sampling-based path planning is superior to other path planning techniques especially if the 
number of DOF is high. To evaluate the efficiency of SamPP with respect to this, a scenario 
involving ViSHaRD10 (Ueberle et al., 2004) has been developed. ViSHaRD10 is a robot with 
10 rotational DOF, as shown in Figure 2. Its special kinematic configuration does not allow a 
direct DH transformation from one joint to another for the joints 5, 8 and 9. Thus, for each of 
this joint two additional rigid joints have been used such that the robot kinematics could be 
described. As VRML model of these pseudo joints, very small cubes have been used, which 
are completely surrounded by neighboring joint models. Thus, they have neither influence 
on the path planning nor on the visualization. 
The single joints of ViSHaRD10 are constrained by the wiring. We considered a restriction to 
[-1.2 π 1.2π] as appropriate to avoid damages, and applied this to every joint description. 
Furthermore, we had to find a suitable weighting for the joints. We did this for every single 
joint by using the maximum absolut worst-case displacement of all robot parts caused by a 
movement of this joint. These displacements were further used define the resolution for 
each joint. 
The robot exhibits the highest versatility in the horizontal plane. Thus, a path planning 
scenario involving lots of motions in this plane was assumed to be most difficult, as it can 
constrain a high number of joints. For the evaluation, we used two scenarios. 
Scenario 1 consisted of two narrow, parallel walls around the robot. The path planning task 
is to move the fully extended robot (q{1..10} = 0) to the opposite, fully stretched configuration 
(q1 = π, q{2..10} = 0). 
Scenario 2 is an extension of scenario 1, where one additional short wall is placed exactly in 
the middle of the other two walls. It is shown in Figure 2 (r.). The start configuration is given 
by (q1 = π, q2 = -π, q{3..10} = 0), the goal configuration by (q1 = -π, q2 = π, q{3..10} = 0). 
 

       
Fig. 2. VRML model of ViSHaRD10 (l.) and path planning scenario 2 with three walls (r.). 
 
Due to the high number of dimensions, PRM algorithms are not appropriate for a fast 
single-shot query, because a good coverage of the C-space would require a very large 
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As mentioned in the RRT section, the efficacy strongly depends on the environment at hand. 
Thus, with this parameter the path planning can be tuned for a class of scenarios. For 
instance, when rather dense environments have to be considered, a low value would be a 
good choice. 
PrmInitialStates: Number of initial states which are randomly sampled before the algorithm 
tries to connect them. If all initial states are connected (or if the timeout condition is 
triggered), the building of the map is stopped. 
The higher PrmInitialStates, the higher is the probability of a dense roadmap. In turn, this 
makes it more likely that the start and goal states can be connected with the roadmap in the 
query stage. However, a high number leads to a more complex roadmap which inhibits the 
path search. One way of finding a good setting can be to start with a rather low value. If it 
turns out that the start and/or goal state cannot be connected with the map, this number can 
adaptively be increased. Note that this functionality would have to be provided by the client 
program. 
PrmMaxConnNumb: Maximum number of connections between a new collision free state 
and the roadmap. The higher this value, the better is the conjunction of the map, which 
tends to result in a smoother path and a longer path query. 
In many applications, a value of up to 10 lead to good results. 
PrmCleanMapRate: Rate of deletion of non-connected states. If a state is near an obstacle, it 
may be very difficult to connect it to the roadmap, which slows down the connection of the 
map. Therefore, the non-connected states are deleted with this rate. If this value is 
inappropriately low, it may be very difficult to build a map in a dense environment, because 
relevant states are deleted before being connected to the roadmap. Thus, this parameter be 
better only used if a relatively free C-space is assumed. 
PrmMapRateExam: Rate of examination of the number of roadmaps. If the C-space is 
divided by obstacles such that not all states can be connected to one roadmap, some kind of 
timeout has to stop the attempt of the (infeasable) connection of the different roadmaps. 
This is done by examining the number of roadmaps at a constant rate. If the number did not 
change within one time interval, it is assumed that the different roadmaps can not be 
connected, and the proc. stage is terminated. 
PrmMaxSampNumb: Maximum number of random samples. If this value is set, the proc. 
stage is terminated after this number of samples has been reached. 
After the roadmap has been built, path planning queries can be executed. This involves 
firstly to connect the start and the goal state to the (same) roadmap. If this succeeded, one is 
sure that the states are connected, and a graph search as e.g. the famous A* algorithm can be 
performed to find the optimal path. Else, no path can be found, and an error is returned. 
Furthermore, a timeout results in an error, too. 

 
4. Benchmark Results for SamPP 
 

In the following, several benchmarks for SamPP are introduced and discussed. For all 
programs and scenarios, a PC with AMD Athlon(tm) 64 X2 Dual Core 5200+, 2 GB RAM and 
the operating system Linux Release 2.6.22-ipipe KDE 3.5.7 has been used. Only one of the 
two cores was used, and all programs were run 20 times. 

 

In the results, min and max denote the minimum and maximum, and σ and E the standard 
deviation and expectation values of the path planning duration and the path length, 
respectively, of the 20 runs. 

 
4.1 Application to a Robot with 10 DOF 
Sampling-based path planning is superior to other path planning techniques especially if the 
number of DOF is high. To evaluate the efficiency of SamPP with respect to this, a scenario 
involving ViSHaRD10 (Ueberle et al., 2004) has been developed. ViSHaRD10 is a robot with 
10 rotational DOF, as shown in Figure 2. Its special kinematic configuration does not allow a 
direct DH transformation from one joint to another for the joints 5, 8 and 9. Thus, for each of 
this joint two additional rigid joints have been used such that the robot kinematics could be 
described. As VRML model of these pseudo joints, very small cubes have been used, which 
are completely surrounded by neighboring joint models. Thus, they have neither influence 
on the path planning nor on the visualization. 
The single joints of ViSHaRD10 are constrained by the wiring. We considered a restriction to 
[-1.2 π 1.2π] as appropriate to avoid damages, and applied this to every joint description. 
Furthermore, we had to find a suitable weighting for the joints. We did this for every single 
joint by using the maximum absolut worst-case displacement of all robot parts caused by a 
movement of this joint. These displacements were further used define the resolution for 
each joint. 
The robot exhibits the highest versatility in the horizontal plane. Thus, a path planning 
scenario involving lots of motions in this plane was assumed to be most difficult, as it can 
constrain a high number of joints. For the evaluation, we used two scenarios. 
Scenario 1 consisted of two narrow, parallel walls around the robot. The path planning task 
is to move the fully extended robot (q{1..10} = 0) to the opposite, fully stretched configuration 
(q1 = π, q{2..10} = 0). 
Scenario 2 is an extension of scenario 1, where one additional short wall is placed exactly in 
the middle of the other two walls. It is shown in Figure 2 (r.). The start configuration is given 
by (q1 = π, q2 = -π, q{3..10} = 0), the goal configuration by (q1 = -π, q2 = π, q{3..10} = 0). 
 

       
Fig. 2. VRML model of ViSHaRD10 (l.) and path planning scenario 2 with three walls (r.). 
 
Due to the high number of dimensions, PRM algorithms are not appropriate for a fast 
single-shot query, because a good coverage of the C-space would require a very large 
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number of states, such that the graph search on the roadmap would be much slower than a 
single query method. Thus, we only consider the two RRT algorithms RRT-cla and RRT-vis 
for these scenarios. The benchmark results are given in Table 1. 
 

   Algorithm min max σ E 

Scenario 1 
(two walls) 

Duration 
[s] 

RRT-cla 0.471 6.435 1.475 2.618 
RRT-vis 0.086 1.309 0.422 0.387 

Path length 
[NORM] 

RRT-cla   65.0   97.0   9.4   77.2 
RRT-vis 112.0 360.0 61.4 218.4 

Scenario 2 
(three walls) 

Duration 
[s] 

RRT-cla 2.099   7.438   1.127   3.537 
RRT-vis 3.026 43.079 11.659 17.125 

Path length 
[NORM] 

RRT-cla   92.0 188.0 35.1 125.9 
RRT-vis 164.0 432.0 62.0 290.9 

Table 1. Path planning benchmark results for the two ViSHaRD10 scenarios 1 and 2. 
 
The environment of the first scenario with two walls is not very narrow in joint space. 
Therefore, RRT-vis outperforms RRT-cla in the duration measures by a factor of 
approximately 3 to 6. The differences in the normalized path lengths clearly exhibit that 
despite the postprocessing of the path the faster RRT-vis produced costs whose average was 
three times higher than the RRT-cla. This shows one dilemma of sampling-based path 
planning: By choosing an appropriate algorithm and by tuning parameters, a trade-off has 
to be found for the scenario at hand. 
In the second scenario, the third wall leads to a very narrow area in the C-space. This limits 
the advantage of the RRT-vis, and consequently leads to a rather slow path planning when 
compared to RRT-cla. Again, the RRT-vis produces a much shorter path. For such an 
environment, the classic method is the best option. 
Thus, by applying SamPP to a robot with 10 DOF, we have shown that the implementations 
RRT-vis and RRT-cla are able to plan a path in a relatively short time. In two complex 
scenarios, the RRT-cla exhibited a maximum planning time of 7.4 s. Furthermore, it found 
relatively short paths when compared to the visibility based method. This has also been 
visually observed when executing the planned path on the robot. 

 
4.2 Preliminary Remarks on the Application to Different Scenarios with Car Doors 
We apply SamPP to some car doors with 2 DOF and investigate the effect of different 
environments etc. As models for the car door a VRML file with 31728 polygons has been 
used, the obstacles were represented as approximated spheres with 400 polygons each. 
The goal of the path planning is to provide a collision free path from a fully closed position 
to a given open position. The following methods are investigated: 

- RRT-vis: visibility-based RRT implementation  
- RRT-cla: classic RRT implementation 
- PRM-vis-P: proc. stage of PRM-vis 
- PRM-vis-Q: query stage of PRM-vis 
- PRM-cla-5P, PRM-cla-10P: proc. stage of PRM-cla with 5/10 nearest neighbours 
- PRM-cla-5Q, PRM-cla-10Q: query stage of PRM-cla with 5/10 nearest neighbours 

 

 

4.3 Application to a Double-Four-Links Car Door (2 DOF) 
In scenario 3, a car door with two serial links named Double-Four-Links Door is considered. 
Its kinematics is depicted in Figure 3 (r.). Though exhibiting four links and six joints, it only 
has two rotatory DOFs. Furthermore, due to the symmetry of the links, the door performs 
no rotation in world coordinates. 
 

      
Fig. 3. Double-Four-Links Door (l.) within three obstacles (r.) (scenario 3). 
 
We consider three different environments which consist of three spheres as is shown in 
Figure 3 (l.). The configuration space constrained by the environment is depicted in Figure 4 
(m.). The C-space consists of 3 non-connected areas. As both the start and the goal state are 
located in area 2, a path can be found. Area 1 represents sphere 2 and, in combination with 
area 3, forms a narrow corridor. This surely is the bottleneck for the path-planning. If sphere 
2 is varied only a little bit (Δy=0.01m nearer to the car, which has a length of l=1.30m), the 
corridor significantly narrows. In contrast, if sphere 2 is varied a little bit more (Δy=0.10m 
further away from the car), it is out of the workspace of the door and thus has no influence 
on the path-planning, see Figure 4 (l.). Area 2 is now a very large free space, and path 
planning should accordingly be very fast. This example illustrates how extremely small 
variations in the configuration of the obstacles can affect path planning. 
 

   
Fig. 4. Scenario 3: Broad (l.), narrow (m.) and very narrow (r.)  configurations in the C-space 
given by slightly varying the position of obstacle 2 (see also Figure 3). 
 
For all configurations of sphere 2 ("very narrow", "narrow", and "broad"), all path planning 
methods have been evaluated. The results are summarized in Table 2. 
For configuration "very narrow", RRT-cla performs best. The PRM methods are considerably 
slower in the processing stage, but excel in the variations PRM-cla-10Q and PRM-vis in the 
query stage. If many queries are to be performed on such a kind of environment, PRM seem 
to be a good choice. 
Interestingly, PRM-cla-10 is faster then PRM-cla-5 and PRM-vis. The reason for this must be 
that choosing 5 nearest neighbors leads to a roadmap which is too dense, while PRM-vis is 
to coarse. Thus, for every environment there is a range of connection length for which the 
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number of states, such that the graph search on the roadmap would be much slower than a 
single query method. Thus, we only consider the two RRT algorithms RRT-cla and RRT-vis 
for these scenarios. The benchmark results are given in Table 1. 
 

   Algorithm min max σ E 

Scenario 1 
(two walls) 

Duration 
[s] 

RRT-cla 0.471 6.435 1.475 2.618 
RRT-vis 0.086 1.309 0.422 0.387 

Path length 
[NORM] 

RRT-cla   65.0   97.0   9.4   77.2 
RRT-vis 112.0 360.0 61.4 218.4 

Scenario 2 
(three walls) 

Duration 
[s] 

RRT-cla 2.099   7.438   1.127   3.537 
RRT-vis 3.026 43.079 11.659 17.125 

Path length 
[NORM] 

RRT-cla   92.0 188.0 35.1 125.9 
RRT-vis 164.0 432.0 62.0 290.9 

Table 1. Path planning benchmark results for the two ViSHaRD10 scenarios 1 and 2. 
 
The environment of the first scenario with two walls is not very narrow in joint space. 
Therefore, RRT-vis outperforms RRT-cla in the duration measures by a factor of 
approximately 3 to 6. The differences in the normalized path lengths clearly exhibit that 
despite the postprocessing of the path the faster RRT-vis produced costs whose average was 
three times higher than the RRT-cla. This shows one dilemma of sampling-based path 
planning: By choosing an appropriate algorithm and by tuning parameters, a trade-off has 
to be found for the scenario at hand. 
In the second scenario, the third wall leads to a very narrow area in the C-space. This limits 
the advantage of the RRT-vis, and consequently leads to a rather slow path planning when 
compared to RRT-cla. Again, the RRT-vis produces a much shorter path. For such an 
environment, the classic method is the best option. 
Thus, by applying SamPP to a robot with 10 DOF, we have shown that the implementations 
RRT-vis and RRT-cla are able to plan a path in a relatively short time. In two complex 
scenarios, the RRT-cla exhibited a maximum planning time of 7.4 s. Furthermore, it found 
relatively short paths when compared to the visibility based method. This has also been 
visually observed when executing the planned path on the robot. 

 
4.2 Preliminary Remarks on the Application to Different Scenarios with Car Doors 
We apply SamPP to some car doors with 2 DOF and investigate the effect of different 
environments etc. As models for the car door a VRML file with 31728 polygons has been 
used, the obstacles were represented as approximated spheres with 400 polygons each. 
The goal of the path planning is to provide a collision free path from a fully closed position 
to a given open position. The following methods are investigated: 

- RRT-vis: visibility-based RRT implementation  
- RRT-cla: classic RRT implementation 
- PRM-vis-P: proc. stage of PRM-vis 
- PRM-vis-Q: query stage of PRM-vis 
- PRM-cla-5P, PRM-cla-10P: proc. stage of PRM-cla with 5/10 nearest neighbours 
- PRM-cla-5Q, PRM-cla-10Q: query stage of PRM-cla with 5/10 nearest neighbours 

 

 

4.3 Application to a Double-Four-Links Car Door (2 DOF) 
In scenario 3, a car door with two serial links named Double-Four-Links Door is considered. 
Its kinematics is depicted in Figure 3 (r.). Though exhibiting four links and six joints, it only 
has two rotatory DOFs. Furthermore, due to the symmetry of the links, the door performs 
no rotation in world coordinates. 
 

      
Fig. 3. Double-Four-Links Door (l.) within three obstacles (r.) (scenario 3). 
 
We consider three different environments which consist of three spheres as is shown in 
Figure 3 (l.). The configuration space constrained by the environment is depicted in Figure 4 
(m.). The C-space consists of 3 non-connected areas. As both the start and the goal state are 
located in area 2, a path can be found. Area 1 represents sphere 2 and, in combination with 
area 3, forms a narrow corridor. This surely is the bottleneck for the path-planning. If sphere 
2 is varied only a little bit (Δy=0.01m nearer to the car, which has a length of l=1.30m), the 
corridor significantly narrows. In contrast, if sphere 2 is varied a little bit more (Δy=0.10m 
further away from the car), it is out of the workspace of the door and thus has no influence 
on the path-planning, see Figure 4 (l.). Area 2 is now a very large free space, and path 
planning should accordingly be very fast. This example illustrates how extremely small 
variations in the configuration of the obstacles can affect path planning. 
 

   
Fig. 4. Scenario 3: Broad (l.), narrow (m.) and very narrow (r.)  configurations in the C-space 
given by slightly varying the position of obstacle 2 (see also Figure 3). 
 
For all configurations of sphere 2 ("very narrow", "narrow", and "broad"), all path planning 
methods have been evaluated. The results are summarized in Table 2. 
For configuration "very narrow", RRT-cla performs best. The PRM methods are considerably 
slower in the processing stage, but excel in the variations PRM-cla-10Q and PRM-vis in the 
query stage. If many queries are to be performed on such a kind of environment, PRM seem 
to be a good choice. 
Interestingly, PRM-cla-10 is faster then PRM-cla-5 and PRM-vis. The reason for this must be 
that choosing 5 nearest neighbors leads to a roadmap which is too dense, while PRM-vis is 
to coarse. Thus, for every environment there is a range of connection length for which the 
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planning performs best. In this particular case, by chance we found a good balance, as both 
a higher and a lower value perform worse. 
With respect to the length (cost) of the paths, there is no great difference between the 
planners for all three scenarios, see the example given in Table 2, scenario 3 “very narrow”. 
From the results for configuration "narrow", one can see that the RRT methods give a similar 
expectancy value, while exhibiting a significantly different variance. The reason is, that the 
RRT-vis sometimes "by chance" quickly finds a path through the narrow passage, but 
besides that works less efficient in such a kind of scenario. In contrast, from the PRM 
methods the PRM-vis performs best. This is due to the funnel-shaped C-space; if this was 
maze like, the results most likely would have been much worse. 
While there has been a strong improvement in the time duration, the path lengths seem not 
to significantly differ from the ones of the "very narrow" ones. 
 

   Algorithm min max σ E 

Scenario 3 
(broad) 

Duration 
[ms] 

RRT-cla   20   31     3   24 
RRT-vis     3     9     2     5 

PRM-cla-5P   22   48     8   35 
PRM-cla-5Q     7   17     3   11 
PRM-cla-10P   25   49     7   34 
PRM-cla-10Q     6   18     3   10 

PRM-vis-P   41 118   21   67 
PRM-vis-Q     4   13     2     6 

Scenario 3 
(narrow) 

Duration 
[ms] 

RRT-cla   33   49     4   38 
RRT-vis   13 102   21   35 

PRM-cla-5P 198 396 54 266 
PRM-cla-5Q   17   48     8   25 
PRM-cla-10P 117 160   31 231 
PRM-cla-10Q     7   15     3   22 

PRM-vis-P   86 187   26 120 
PRM-vis-Q     4   17     4     9 

Scenario 3 
(very narr.) 

Duration 
[ms] 

RRT-cla   31   66     8   44 
RRT-vis   21 375   95 115 

PRM-cla-5P 314 517   80 404 
PRM-cla-5Q   27   60   24 114 
PRM-cla-10P 240 382   40 275 
PRM-cla-10Q   14   38     6   23 

PRM-vis-P 374 548 102 448 
PRM-vis-Q   10   23     4   16 

Path 
length 

[NORM] 

RRT-cla 39 42 0.9 40.5 
RRT-vis 39 46 2.0 41.1 

PRM-cla-5P 39 43 1.1 40.3 
PRM-cla-10P 39 43 1.1 40.5 
PRM-vis-P 39 42 0.8 40.3 

Table 2. Path planning benchmark results for scenario 3 with variation of obstacle position. 

 
 

 

4.4 Application to SCARA-like Car Door (2 DOF) 
In scenario 4, SamPP has to be applied to the Two-Links Door which is depicted in Figure 5. 
The environment consists of four spheres. The main problem in doing this is to circumvent 
sphere 2 and to reach the state which is near the spheres 3 and 4. The C-space of this path 
planning problem is very narrow, as can be seen from Figure 5 (r.). In area 1 both the start 
and the goal configuration is contained, thus a valid path can be found. The representation 
of sphere 2 forms a long and narrow passage from the start state. 
 

       
Fig. 5. Scenario 4: Fully closed position (l.), fully opened position (m.) and depiction of 
narrow passage in the C-space of the Two-Links Car Door. 
 

   Algorithm min max σ E 

Scenario 4 
(very narr.) 

Duration 
[ms] 

RRT-cla   11   43   8   24 
RRT-vis     3   19     5     9 

PRM-cla-5P   75 168   23 103 
PRM-cla-5Q     6   17     3   11 
PRM-cla-10P   87 169   29 130 
PRM-cla-10Q     6   22     4   11 

PRM-vis-P   91 169   22 127 
PRM-vis-Q     4   19     4     9 

Path 
length 

[NORM] 

RRT-cla 19 44 7.5 36.8 
RRT-vis 36 62 7.2 54.0 

PRM-cla-5P 39 47 2.2 42.3 
PRM-cla-10P 37 47 2.3 41.8 
PRM-vis-P 32 62 6.4 46.0 

Table 3. Path planning benchmark results for scenario 4. 
 
The RRT methods perform the path planning considerably faster than the PRM methods. 
The RRT-vis exhibits an expectation value of 9 ms, thereby even undercutting the 
expectation value of the PRM queries. If the corridor in the C-space would not have been 
straight but curved, the PRM-cla would have been better. All PRM methods require a 
maximum of more than 150 ms for building the map. This makes them not suited for real-
time applications in scenarios like these. 
The path lengths exhibit a significant variance for all methods, which is a hint that the path 
postprocessing performs very poor for scenarios like these. Thus, it might be beneficial to 
improve this algorithm.  

 
 

www.intechopen.com



Real-Time Support of Haptic Interaction by Means of Sampling-Based Path Planning 555

 

planning performs best. In this particular case, by chance we found a good balance, as both 
a higher and a lower value perform worse. 
With respect to the length (cost) of the paths, there is no great difference between the 
planners for all three scenarios, see the example given in Table 2, scenario 3 “very narrow”. 
From the results for configuration "narrow", one can see that the RRT methods give a similar 
expectancy value, while exhibiting a significantly different variance. The reason is, that the 
RRT-vis sometimes "by chance" quickly finds a path through the narrow passage, but 
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sphere 2 and to reach the state which is near the spheres 3 and 4. The C-space of this path 
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Table 3. Path planning benchmark results for scenario 4. 
 
The RRT methods perform the path planning considerably faster than the PRM methods. 
The RRT-vis exhibits an expectation value of 9 ms, thereby even undercutting the 
expectation value of the PRM queries. If the corridor in the C-space would not have been 
straight but curved, the PRM-cla would have been better. All PRM methods require a 
maximum of more than 150 ms for building the map. This makes them not suited for real-
time applications in scenarios like these. 
The path lengths exhibit a significant variance for all methods, which is a hint that the path 
postprocessing performs very poor for scenarios like these. Thus, it might be beneficial to 
improve this algorithm.  
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4.5 Application to Car Doors with 2 DOF in the Presence of Many Obstacles 
When interfacing the path planner with a sensor system (Strolz et al. 2009), a much higher 
number of primitive objects will be used to represent obstacles in the workspace of the door. 
This motivated to evaluate the influence of the number of obstacles on the path planner. We 
replaced the spheres of the environment (which represented vertical pillars) by 100 spheres 
each. This increase in the number of obstacles does barely affect the C-space. 
From Table 4, it clearly can be seen that the RRT methods provide a much better 
performance than the PRMs for a single query. The reason is their reduce demand for 
collision checks: The PRMs suffer from the many collision queries that have to be performed 
when building the map. However, the maximum query time of the PRMs is significantly 
shorter than that of the RRT-vis. Thus, it is not possible to give a clear recommendation on 
whether to use PRMs or RRTs in a scenario with a high number of obstacles. In static 
scenarios, a combination might be a good choice: Two computers can be used, one running 
PRM-vis, the other RRT-vis. While the roadmap is built, only RRT-vis results are used for 
path planning. After that, as long as the environment does not change, both RRT-vis and a 
PRM-query a started simultaneously, and the faster result is used. For the evaluation 
scenarios, this would lead to a maximum time consumption for the "parallel query" of 68 
ms, which might be fast enough to be used in an haptic assistance task.  
 

   Algorithm min max σ E 
Modified 
Scenario 3 
(400 obst.) 

Duration 
[ms] 

RRT-vis   39   548 117   190 
PRM-vis-P 142 2084  382 1704 
PRM-vis-Q   16     66   11     41 

Modified 
Scenario 4 
(400 obst.) 

Duration 
[ms] 

RRT-vis     20   117   21     42 
PRM-vis-P 2497 2926 106 2643 
PRM-vis-Q     31     68     8     41 

Table 4. Path planning benchmark results for modified scenarios 3 and 4 with 400 obstacles. 

 
4.6 Short Performance Comparison to OpenRAVE 
We wanted to find out whether our implementation of sampling-based path planning 
algorithms had a performance that is comparable to implementations of other researchers. 
Recently, the professional, open-source path planning library OpenRAVE (Diankov, 2008) 
has been released. Its RRT algorithms seemed to be suitable to benchmark our 
implementations of RRT-cla and RRT-vis. 
At first, we installed OpenRAVE on the same Linux system that had been used for the 
evaluation of SamPP. We run the same scenarios which we described in the previous 
sections. The performance was really poor when compared to SamPP: All time measures 
were by approximately an order of magnitude worse than the ones for SamPP. For instance, 
the average time of the bidirectional RRT was 32.04 s (>> 0.39 s of our RRT-vis) for scenario 1 
and 146 ms (>> 9 ms of our RRT-vis) for scenario 4. We could not explain this discrepancy, 
so we installed OpenRAVE on a virtual Linux system (Ubuntu) which was running on a 
Windows system (Windows XP, 2 GB RAM) and repeated the evaluation. 
Despite the fact that the virtual Linux most likely increases the computational overhead, the 
results were much closer to the ones of SamPP. For instance, the average and minimum 
times of the bidirectional RRT was 2.45 s/0.53 s (> 0.39 s/0.09 s of our RRT-vis) for 
scenario 1 and 12 ms/5 ms (> 9 ms/3 ms of our RRT-vis) for scenario 4. 

 

While these comparisons do not enable a fair overall judgement of the path planning 
performance (different system configuration, heavily dependence on specific scenario), they 
nonetheless lead to the following conclusions: 

1. We were not able to identify the reason for the poor performance of OpenRAVE on 
the first system. Thus, we advice potential users of OpenRAVE or other complex 
path planning libraries to benchmark the software on different systems to 
minimize the risk of running it in a very suboptimal configuration. 

2. SamPP is comparable to professional state-of-the-art implementations of samping-
based path planning algorithms, as e.g. OpenRAVE  or PP. 

 
4.7 Remarks and Summary 
We evaluated the performance of SamPP for executing path planning for a 10 DOF robot 
and for different 2 DOF car doors within an (in terms of the configuration space) very 
demanding environment. Due to the RRT and PRM algorithms, SamPP is able to solve a 
variety of path planning problems efficiently. For the case of 300 to 400 obstacles, nearly 
"worst-case" placed in the workspace of these car doors, we found typical mean values for 
the path planning time in the area of 50 ms for RRTs, 1500 ms for building a PRM and 30 ms 
for PRM queries. The evaluation results for scenarios 3 and 4 show that the performance of 
SamPP indeed is sufficient for the haptic real-time assistance of a human in various 
scenarios with 2 DOF. Independently of the planning algorithm, the path postprocessing 
seems to work quite well if there are no overly narrow passages in the C-space of the robot.  
Note that the performance heavily depends on the environment at hand. The environments 
that we used for the evaluation often exhibited an uncluttered, rather free C-space. This 
promotes the visibility based methods. However, it has been shown that there is no "one 
size fits all" solution: depending on the environment at hand, variations of the parameter 
setting may decrease or increase the performance of the path planner.  
Further, we observed that a comparison of the performance of PRM methods for fixed 
processing times showed that larger roadmap leads to longer query response time, and that 
a reduction of the number of initial states proved to give better results for our scenario. It is 
relatively hard to find an appropriate number of initial sample states for simple 
environments of the robot. The roadmap has to sufficiently cover the C-space to provide a 
very high probability that the start and the end goal can be connected to the map. A large 
and complex roadmap, in turn, cannot quickly be evaluated by a graph search algorithm. 
This problem cannot occur when using an RRT method, because the planner is focused on 
connecting a start configuration as efficiently as possible with the goal configuration, such 
that no "overly complex" connection structure results. For rather simple scenarios, the total 
planning time of RRT-cla is faster than a query on a roadmap. For such cases, it does make 
no sense to use PRMs at all. 

 
5. Haptic User Support at a Virtual Car Door by Path Planning 
 

5.1 System Description 
In (Strolz et al., 2008), a system for the control of actuated car doors with arbitrary DOF has 
been introduced. This system should be augmented with an additional user support method 
given by an online path planning. An overview of the overall structure of the simulated 
system is given in Figure 6. The different modules are connected by UDP communication. 
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When interfacing the path planner with a sensor system (Strolz et al. 2009), a much higher 
number of primitive objects will be used to represent obstacles in the workspace of the door. 
This motivated to evaluate the influence of the number of obstacles on the path planner. We 
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performance than the PRMs for a single query. The reason is their reduce demand for 
collision checks: The PRMs suffer from the many collision queries that have to be performed 
when building the map. However, the maximum query time of the PRMs is significantly 
shorter than that of the RRT-vis. Thus, it is not possible to give a clear recommendation on 
whether to use PRMs or RRTs in a scenario with a high number of obstacles. In static 
scenarios, a combination might be a good choice: Two computers can be used, one running 
PRM-vis, the other RRT-vis. While the roadmap is built, only RRT-vis results are used for 
path planning. After that, as long as the environment does not change, both RRT-vis and a 
PRM-query a started simultaneously, and the faster result is used. For the evaluation 
scenarios, this would lead to a maximum time consumption for the "parallel query" of 68 
ms, which might be fast enough to be used in an haptic assistance task.  
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promotes the visibility based methods. However, it has been shown that there is no "one 
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Further, we observed that a comparison of the performance of PRM methods for fixed 
processing times showed that larger roadmap leads to longer query response time, and that 
a reduction of the number of initial states proved to give better results for our scenario. It is 
relatively hard to find an appropriate number of initial sample states for simple 
environments of the robot. The roadmap has to sufficiently cover the C-space to provide a 
very high probability that the start and the end goal can be connected to the map. A large 
and complex roadmap, in turn, cannot quickly be evaluated by a graph search algorithm. 
This problem cannot occur when using an RRT method, because the planner is focused on 
connecting a start configuration as efficiently as possible with the goal configuration, such 
that no "overly complex" connection structure results. For rather simple scenarios, the total 
planning time of RRT-cla is faster than a query on a roadmap. For such cases, it does make 
no sense to use PRMs at all. 

 
5. Haptic User Support at a Virtual Car Door by Path Planning 
 

5.1 System Description 
In (Strolz et al., 2008), a system for the control of actuated car doors with arbitrary DOF has 
been introduced. This system should be augmented with an additional user support method 
given by an online path planning. An overview of the overall structure of the simulated 
system is given in Figure 6. The different modules are connected by UDP communication. 
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Fig. 6. Advanced car door control system with haptic user assistance by path planning, 
collision avoidance and intention recognition (l.) and its visual simulation (r.). 
 
To achieve a precise path planning, a camera which monitors the workspace of the door and 
provides data about potential obstacles is simulated. The simulated data is continuously 
being sent to the path planning computer (in the form of primitive, convex shapes, e.g. 
spheres). Furthermore, the path planner continuously receives the start and goal 
configuration of the door from the door controller. For each new data packet, a path 
planning query trigger event occurs. As soon as the path planner finished a query and sent 
the collision-free path to the car door controller, it accepts such trigger events to restart path 
planning with the updated values. 
In the car door controller, in the joint space a supportive force is calculated which points 
into the direction of the middle  piece of the collision-free path. We chose an upper bound of 
2 N for this bound, such that it predominantly does not change the motion of the 
mechanism itself, but rather gives motion cues to the user to achieve an intuitive interaction. 

 
5.2 Experiment 
To evaluate the effect of the haptic user assistance, an experimental user study has been 
conducted. We chose car door and obstacle configuration similar to scenario 4, see Figure 5. 
Our hypotheses were: 

1. Users can handle the door easier and more intuitively if the door is actuated nad 
supportive forces are displayed to them. 

2. The path planning support is helpful during the haptic interaction. 
We designed the experiment such that different controller configurations were displayed, 
some of which included the path planning. By answering a questionaire, the participants 
should rate these configurations with respect to a reference scenario without path planning. 
The duration of the experiment was approximately 30 minutes, and 20 people (12 men; in 
average 26 years, 70 kg, 1.75 m) participated in it.  

 
5.3 Results and Discussion 
In Figure 7, some of the results are displayed. They show a predominant approval of the 
implemented car door control system with path planning. A T-test revealed that the rating 
of the two variations of the path planner assistance (with and without end positioning 
support) was significant on a 5% level (F(0.95; 38) = 2.09, p = 0.017 < 0.05) and (F(0.95; 38) = 
2.09, p = 0.0004 < 0.05)). Thus, the path planner indeed brings a significant advantage to 
users when they handle a novel car door. 
 

 

   
Fig. 7. Evaluation of the advanced car door control system: Comparison against reference 
scenario for the assistance in general (l.) and for two variations of the path planning 
assistance (r.) where the red bars represent an additional haptic support (Solhjoo, 2009). 

 
6. Further Enhancement: Parallel Execution of Different Path Planners 
 

6.1 Problem: There is no Best Algorithm 
In the introduction and the evaluation section, it was highlighted that there is no overall 
best-performing path planning algorithm, because the kinematics of the robot and the 
structure of the environment have a huge impact on the level of difficulty of the path 
planning task. To clarify this, in Table 5 a composition of the fastest planners is given for 
slight modifications of scenario 3. 
 

   Algorithm min max σ E 

Scenario 3 
(broad) 

Duration 
[ms] 

RRT-cla   20   31     3   24 
RRT-vis     3     9     2     5 

PRM-vis-P   41 118   21   67 
PRM-vis-Q     4   13     2     6 

Scenario 3 
(narrow) 

Duration 
[ms] 

RRT-cla   33   49     4   38 
RRT-vis   13 102   21   35 

PRM-vis-P   86 187   26 120 
PRM-vis-Q     4   17     4     9 

Scenario 3 
(very narr.) 

Duration 
[ms] 

RRT-cla   31   66     8   44 
RRT-vis   21 375   95 115 

PRM-vis-P 374 548 102 448 
PRM-vis-Q   10   23     4   16 

Modified 
Scenario 3 
(400 obst.) 

Duration 
[ms] 

RRT-vis   39   548 117   190 
PRM-vis-P 142 2084  382 1704 
PRM-vis-Q   16     66   11     41 

Table 5. Composition of the fastest planners for modifications of scenario 3. 

 
6.2 Solution: Parallelization of Different Algorithms (Generalized OR paradigm) 
As already explained in the introduction, two research directions have been proposed in the 
past to speed up complex path planning problems: 

1. Parallelization of subtasks of path planning algorithm: 
Decreasing the time consumption of specific path planning algorithms: 

2. OR-parallelization of a specific path planning algorithm: 
Increasing likelihood of a fast result by executing several instances of one planner 
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Fig. 6. Advanced car door control system with haptic user assistance by path planning, 
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To achieve a precise path planning, a camera which monitors the workspace of the door and 
provides data about potential obstacles is simulated. The simulated data is continuously 
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Fig. 7. Evaluation of the advanced car door control system: Comparison against reference 
scenario for the assistance in general (l.) and for two variations of the path planning 
assistance (r.) where the red bars represent an additional haptic support (Solhjoo, 2009). 

 
6. Further Enhancement: Parallel Execution of Different Path Planners 
 

6.1 Problem: There is no Best Algorithm 
In the introduction and the evaluation section, it was highlighted that there is no overall 
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structure of the environment have a huge impact on the level of difficulty of the path 
planning task. To clarify this, in Table 5 a composition of the fastest planners is given for 
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   Algorithm min max σ E 

Scenario 3 
(broad) 

Duration 
[ms] 

RRT-cla   20   31     3   24 
RRT-vis     3     9     2     5 

PRM-vis-P   41 118   21   67 
PRM-vis-Q     4   13     2     6 

Scenario 3 
(narrow) 

Duration 
[ms] 

RRT-cla   33   49     4   38 
RRT-vis   13 102   21   35 

PRM-vis-P   86 187   26 120 
PRM-vis-Q     4   17     4     9 

Scenario 3 
(very narr.) 

Duration 
[ms] 

RRT-cla   31   66     8   44 
RRT-vis   21 375   95 115 

PRM-vis-P 374 548 102 448 
PRM-vis-Q   10   23     4   16 

Modified 
Scenario 3 
(400 obst.) 

Duration 
[ms] 

RRT-vis   39   548 117   190 
PRM-vis-P 142 2084  382 1704 
PRM-vis-Q   16     66   11     41 

Table 5. Composition of the fastest planners for modifications of scenario 3. 

 
6.2 Solution: Parallelization of Different Algorithms (Generalized OR paradigm) 
As already explained in the introduction, two research directions have been proposed in the 
past to speed up complex path planning problems: 

1. Parallelization of subtasks of path planning algorithm: 
Decreasing the time consumption of specific path planning algorithms: 

2. OR-parallelization of a specific path planning algorithm: 
Increasing likelihood of a fast result by executing several instances of one planner 
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We propose a promising third alternative: 
3. OR-parallelization of different path planning algorithms: 

Increasing likelihood of a fast result by executing a number of instances of different 
planners and/or planner parametrizations 

To prove this principle mathematically, we extend Equ. (1) (Challou, 1995) to the 
Generalized OR paradigm: Be P1,2,..,k(t) the probability that the different path planning 
programs 1, 2, ..., k do not find a collision-free path within the time t. Then, the probability 
that a path is found within t is 
 

          P(t) = 1 – Pn+o+...+q(t) = (1 – P1(t))n(1 – P2(t))o…(1 – Pk(t))q (2) 
 

where n, o, ..., q denote the number of the parallel executed instances of the respective 
programs. The programs might be different in respect of the algorithm and/or the 
parametrization of the algorithm. 

 
6.3 General remarks to the Generalized OR paradigm 
The effect of this approach can be shown by the evolution of the probabilities of some 
random processes and their combinations. Several sequences of random numbers were 
generated based on an exponential distribution function. They are characterized by an 
exponential coefficient (8, 10, 9, 11 in our case) and a static time offset (0.30s, 0.15s, 0.25s, 
0.18s) to represent the characteristics of different path planner evaluations. 
Exemplary, in Figure 8 the probability of finding a collision-free path is depicted as a 
function of time and of number of programs. The arrow in the upper left axis indicates that 
for an increasing number of parallel path planning programs, the probability approaches a 
step function at  time t = tOffset + tcalc, min which due to the probabilistical completness of 
sampling-based path planning would be achieved for an infinite number of simultaneously 
starting programms. The upper and lower axes show four different occurrences of path 
planning probability functions for 1 to 66 parallely running programms. In the middle axes, 
the combinations of 33 of the upper and 33 of the lower algorithms is depicted. Note that in 
both cases, a speedup with respect to the worse performing algorithm is achieved. 
 

                   
Fig. 8. Evolution of the probability of finding a collision-free path. The arrow indicates that 
for an increasing number of programs, the probability approaches a step function. 

inc. 66 
Alg. 1 

inc. 66 
Alg. 2 

inc. 66 
Comb
 

p p 

 

Based on Equ. (2), the general conclusion can be drawn that from an algorithmic point of 
view the performance of the overall sampling-based path planning will always increase if 
additional planners are started, because each planner contributes to the overall probability. 
In the following, we point out four advantages and research directions arising from this. 

 
6.4 Potential Advantage 1: Synergy by combining PRMs and RRTs 
Often, path planning queries can be faster calculated for existing PRMs than for single-shot 
RRTs. However, building the PRM requires a significant amount of time, which limits their 
application. The best option might be to build one ore more roadmaps while path planning 
queries are answered by other algorithms. Then, as long as the environment doesn’t change 
significantly, the typically very efficient PRM queries can be performed. This way, both the 
advantages of PRMs and RRTs can be utilized. For the example given in Table 5, 
combinations of RRT-cla, RRT-vis and PRM-vis could drastically reduce the worst-case 
maximum duration of path planning both during and after building a PRM. 
In Figure 9, the performance of the parallel execution of RRT-cla and RRT-vis is given for 
scenario 3. As had been expected from the results of Table 5, the RRT-vis was better in the 
broad configuration space and the RRT-cla in the very narrow one. Due to this combination, 
the poor performance of the RRT-cla in the very narrow case are barely noticable when 
compared to parallel executions of only RRT-vis. This underlines the increase of the 
reliability which is inherently achieved by the Generalized OR-parallelization. 
 

     
Fig. 9. Decrease of the shortest computation time per run with increase of the number of 
RRT-based path planner pairs for scenario 3 (“broad”, l. and “very narrow”, r.). 

 
6.5 Potential Advantage 2: Utilization of Different Parameterizations of Algorithms 
The choice of the parameters of an algorithm drastically influences its performance, see e.g. 
Section 3.6. One of the big problems with the parameterization is that due to the infinite 
combinations of robots and environments, most planners will perform badly for at least 
some “pathological” cases, where e.g. the C-space is extremely dense. However, the default 
parameter set of e.g. a PRM planner might not be designed for solving this particular case, 
but to perform well in the majority of the planning tasks. Using our approach, well-proven 
default and purpose-built parameter sets can be used for arbitrary scenarios. 
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6.6 Potential Advantage 3: Adaptive Parameterization of the Algorithms 
Additionally to the utilization of different parameter sets for path planning algorithms, 
these parameters should be adapted online. In the previous sections, we pointed out that 
especially the performance of PRM planners relies on appropriate parameters such as the 
number of initial states or the desired density of the map. Based on PRM performance 
criteria such as query time and query success, these parameters can be adaptively balanced. 

 
6.7 Potential Advantage 4: Advanced Adaptive OR-Parallelization Scheme 
If there are enough processing resources that all relevant planning algorithms can be 
executed simultaneously, an advanced adaptive OR-parallelization can be realized: Based 
on the evolution of the path planning duration of the individual algorithms, the candidate(s) 
with the highest likelihood for fast path planning results is identified online and 
subsequently started more often than the other planners. Thus, based on the definition of 
specific criteria, an optimization of the OR-parallelization can be performed. This 
optimization should take into account the quality of the estimation of the path planning 
durations, e.g. it has to take care that sufficiently “non-optimal” algorithms are running. 

 
7. Conclusion and Future Work 

We have developed SamPP, a generic sampling-based path planning library and 
successfully applied to a variety of robots and environments. Due to the implementation of 
RRT and PRM algorithms, SamPP is able to solve low- as well as high-dimensional 
problems efficiently. 
The ability to solve a high-dimensional path planning scenarios has been shown by the 
example of ViSHaRD10, a robot with 10 DOF. 
Furthermore, we evaluated the performance of SamPP for executing path planning for 
different car doors with 2 DOF within an (in terms of free configuration space) very 
demanding environment. For the case of 300 to 400 obstacles, nearly "worst-case" placed in 
the workspace of these car doors, we found typical mean values for the path planning time 
in the area of 50 ms for RRTs, 1500 ms for building a PRM and 30 ms for PRM queries. The 
evaluation results show that the performance of SamPP indeed is sufficient for the haptic 
real-time assistance of a human in various scenarios with 2 DOF. Independently of the 
planning algorithm, the path postprocessing seems to work quite well if there are no overly 
narrow passages in the C-space of the robot. 
Based on these results, we developed a “real-time” haptic support method and applied it to 
a virtual car door. An experimental user study revealed that the haptic support is 
appreciated by the users.  
Furthermore, we enhanced the path planning performance for unknown or dynamical 
environments significantly by the OR-Parallelization of different path planning queries. This 
Generalized OR-Parallelization is a novel concept that to the best knowledge of the authors has 
not been proposed beforehand. We showed that for the case of dynamic environments the 
likelihood of a fast path planning result is higher with our approach. 
Finally, we highlight four promising research directions to exploit the advantages of the 
concept of Generalized OR-Parallelization: 1) Combination of PRMs and RRTs to achieve 
synergy of the advantages of both concepts, 2) concurrent use of different parameter sets of 

 

path planning algorithms, 3) online adaptation of these parameter sets and 4) online 
adaptation of the types and numbers of parallel executed path planning programs. 
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