We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

3,900 Open access books available
116,000 International authors and editors
120M Downloads

154 Countries delivered to
TOP 1% Our authors are among the most cited scientists
12.2% Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
1. Introduction

Autonomous control of unmanned helicopters has the advantage that there is no need to develop skilled workers and has potential for surveillance tasks in dangerous areas including forest-fire reconnaissance and monitoring of volcanic activity. For vehicle navigation, the use of computer vision as a sensor is effective in unmapped areas. Visual feedback control is also suitable for autonomous takeoffs and landings, since precise position control is required at a neighborhood of the launch pad or the landing pad. Such applications have generated considerable interest in the vision based control community (Altug et al., 2005; Amidi et al., 1999; Ettinger et al., 2002; Mahony & Hamel, 2005; Mejias et al., 2006; Proctor et al., 2006; Saripalli et al., 2003; Shakernia et al., 2002; Wu et al., 2005; Yu et al., 2006).

The authors have developed a visual control system for a micro helicopter (Watanabe et al., 2008). The helicopter does not have any sensors that measure its position or posture. Two cameras are placed on the ground. They track four black balls attached to rods connected to the bottom of the helicopter. The differences between the current ball positions and given reference positions in the camera frames are fed to a set of PID controllers. It is not required that sensors for autonomous control are installed on the helicopter body, and we need no mechanical or electrical improvements of existing unmanned helicopters that are controlled remotely and manually.

In visual control, tracked objects have to be visible in the camera views, but tracking may fail due to occlusions. An occlusion occurs when an object moves across in front of a camera or when the background color happens to be similar to the color of a tracked object. Multicamera systems are suitable for designing a robust controller under occlusions, since even when a tracked object is not visible in a camera view, the other cameras may track it. The visual control system with two cameras proposed in (Yoshihata et al., 2007) is robust against temporary occlusions. If an occlusion is detected in a camera view then the other camera is used to control the helicopter. The positions of the invisible tracked objects in the image plane of the occluded camera are estimated by using the positions in the other image plane. The control method proposed in (Yoshihata et al., 2007) is called the camera selection approach in this paper.

This paper proposes another switched visual feedback control method that is called the image feature selection approach. It is robust against temporary and partial occlusions even
when a tracked object is not visible in any of the camera views. We also use two cameras and two tracked objects for each camera. This configuration is redundant for helicopter control, but it is suitable for making a control system robust against occlusions. This paper assumes that at most one tracked object is occluded at each time, as a first step towards a unified framework that combines the image feature selection approach presented in this paper and the camera selection approach proposed in (Yoshihata et al., 2007). The errors between the current positions of the tracked objects and pre-specified references are used to compute the control input signals, when all the tracked objects are visible. If one of the tracked objects is invisible, then the controller uses the errors given by the other three tracked objects. The position of the occluded object is also estimated by using the other three tracked objects.

2. Experimental setup

The experimental system considered in this paper consists of a small helicopter and two stationary cameras as illustrated in Fig. 1. The helicopter does not have any sensors that measure the position or posture. It has four small black balls, and they are attached to rods connected to the bottom of the helicopter. The black balls are indexed from 1 to 4. The two cameras are placed on the ground and they look upward. Snapshots of the helicopter from the two cameras can be seen in Fig. 2. The camera configuration and the use of the redundant tracked objects enable a robust controller design under temporary and partial occlusions as described in Section 6.

The system takes 8.5 milli-seconds to make the control input signals from capturing images of the balls. This follows from the use of fast IEEE 1394 cameras, Dragonfly Express. The small helicopter used in experiments is X. R. B-V2-lama developed by HIROBO (see Fig. 3). It has a coaxial rotor configuration. The two rotors share the same axis, and they rotate in opposite directions. The tail is a dummy. A stabilizer is installed on the upper rotor head. It mechanically keeps the posture horizontal.

Table 1 summarizes specifications of the system.

Table 1: Specifications of the System

<table>
<thead>
<tr>
<th>Camera 1</th>
<th>Camera 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helicopter</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. System configuration.

1 Dragonfly Express is a trademark of Point Grey Research Inc.
Fig. 2. Snapshots of the helicopter. The right one was captured from camera 1 and the left one from camera 2. The helicopter was controlled manually.

Fig. 3. X.R.B. with four black balls.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of the helicopter</td>
<td>0.40 [m]</td>
</tr>
<tr>
<td>Height of the helicopter</td>
<td>0.20 [m]</td>
</tr>
<tr>
<td>Rotor length of the helicopter</td>
<td>0.35 [m]</td>
</tr>
<tr>
<td>Weight of the helicopter</td>
<td>0.22 [kg]</td>
</tr>
<tr>
<td>Focal length of the lens</td>
<td>0.0045 [m]</td>
</tr>
<tr>
<td>Camera resolution</td>
<td>640 × 480 [pixels]</td>
</tr>
<tr>
<td>Pixel size</td>
<td>7.4 [μm] × 7.4 [μm]</td>
</tr>
</tbody>
</table>

Table 1. Specifications of the system.

3. Mathematical preliminaries

3.1 Coordinate frames

Let Σ^w be the world reference frame and a coordinate frame Σ^b be attached to the helicopter body as illustrated in Fig. 4. The z^w axis is directed vertically downward. A coordinate frame
\(\Sigma_j \) is attached to camera \(j \) for \(j = 1, 2 \). The \(z^j \) axis lies along the optical axis of camera \(j \). The axes \(x^w, x^1 \) and \(x^2 \) are parallel. The coordinate frame \(x^j/y^j \) corresponds to the image frame of camera \(j \), and it is denoted by \(\Sigma^j \).

Fig. 4. Coordinate frames.
The helicopter position relative to the world reference frame Σ^w is denoted by (x, y, z). The roll, pitch and yaw angles are denoted by ψ, θ, ϕ, respectively. The following four variables are individually controlled by signals supplied to the transmitter (see Fig. 5):

- B: Elevator, pitch angle of the lower rotor.
- A: Aileron, roll angle of the lower rotor.
- T: Throttle, resultant force of the two rotor thrusts.
- Q: Rudder, difference of the two torques generated by the two rotors.

The corresponding input signals are denoted by V_B, V_A, V_T and V_Q. Note that x, y, z and ϕ are controlled by applying V_B, V_A, V_T and V_Q, respectively.

3.2 Mathematical preliminaries

In this paper, we make the following four assumptions:

1. It is supposed that

$$\theta(t) = 0, \psi(t) = 0, \forall \ t \geq 0,$$

where recall that θ denotes the angle about y^w axis and ψ the angle about x^w axis.

2. The reference position relative to the world reference frame Σ^w is always set to 0. When the reference position is changed, the world reference frame is replaced and the reference position is set to the origin of the new world reference frame.

3. Camera 1 captures images of balls 1 and 2, and camera 2 takes images of balls 3 and 4.

4. At most one tracked object is occluded at each time.

Recall that the helicopter has the horizontal-keeping stabilizer. Both the angles θ and ψ converge to zero fast enough even when the body is inclined. Thus, the first assumption is not far from the truth in practice. We here define

$$\mathbf{r} = [x \ y \ z \ \phi]^T.$$ \hspace{1cm} (2)

Note that \mathbf{r} means the vector of the generalized coordinates. Then, our goal is that $\mathbf{r}(t) \rightarrow 0$ as $t \rightarrow \infty$ from the first and second assumptions.
The third and fourth assumptions are made to consider a simple example in which visible image features should be selected from redundant features under temporary and partial occlusions. The assumptions are suitable for a first step towards a unified framework that combines the image feature selection approach presented in this paper and the camera selection approach proposed in (Yoshihata et al., 2007).

4. Image Jacobian

This section derives the image Jacobian that gives a relationship between the vector of the generalized coordinates \(\mathbf{r} \) and the vector of the image features. The position of the center of gravity of ball \(i \) in the image frame is denoted by \(\mathbf{\xi}_i = [\xi_{ix}, \xi_{iy}]^T \in \mathbb{R}^2 \) for \(i = 1, \ldots, 4 \). We define

\[
\mathbf{\xi}_0 = \begin{bmatrix} \mathbf{\xi}_1^T & \mathbf{\xi}_2^T & \mathbf{\xi}_3^T & \mathbf{\xi}_4^T \end{bmatrix}^T.
\]

(3)

In addition, we set

\[
\mathbf{\xi}_i = \begin{bmatrix} \mathbf{\xi}_{\sigma_{i1}}^T & \mathbf{\xi}_{\sigma_{i2}}^T & \mathbf{\xi}_{\sigma_{i3}}^T \end{bmatrix}^T,
\]

(4)

for \(i = 1, \ldots, 4 \), where

\[
\sigma_{i} \in \{1,2,3,4\} \setminus \{i\}, \quad k = 1,2,3,
\]

(5)

\[
\sigma_{i1} < \sigma_{i2} < \sigma_{i3}.
\]

(6)

The vector \(\mathbf{\xi}_0 \) is used as the vector of image features, when all positions of the tracked balls can be measured correctly. On the other hand, \(\mathbf{\xi}_i \) for \(i = 1, 2, 3, 4 \) implies the vector of visible image features when ball \(i \) is occluded. They enable us to give a switched controller that is robust against occlusions, if the fourth assumption holds or equivalently at most one tracked object is occluded. Details will be discussed in the next section.

Let \(\mathbf{p}_i \in \mathbb{R}^3 \) denote the position of ball \(i \) in the frame \(\Sigma^b \). The position of ball \(i \) in the frame \(\Sigma^j \) is denoted by

\[
\mathbf{p}_i = [x_i, y_i, z_i]^T \in \mathbb{R}^3,
\]

(7)

where \(j = 1 \) for \(i = 1, 2 \) and \(j = 2 \) for \(i = 3, 4 \). We have

\[
\begin{bmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \end{bmatrix} = H_a(r)^w H_b(r)^w \begin{bmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \end{bmatrix},
\]

(8)

where \(H_a(r) \) and \(H_b(r) \) are the homogeneous transformation matrices from \(\Sigma^w \) to \(\Sigma^j \) and from \(\Sigma^b \) to \(\Sigma^w \), respectively (see for example (Spong et al., 2005) for deriving the homogeneous transformation matrices). It then holds that

\[
\begin{bmatrix} \mathbf{\xi} \\ 1 \end{bmatrix} = \mathbf{F} \begin{bmatrix} \mathbf{p}_1 \\ 1 \end{bmatrix}
\]

(9)
where

\[F = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \tag{10} \]

and \(f \) is the focal length of the lens (see for example (Ma et al., 2004) for the camera model). It is straightforward to verify that

\[\xi = \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix} = f \begin{bmatrix} x_i \\ y_i \end{bmatrix}, \tag{11} \]

We here define

\[\beta_i(r) = [\alpha_i(r) \quad \alpha_i(r) \quad \alpha_i(r)]^T, \tag{12} \]

\[\beta_i(r) = [\alpha_{i1}(r) \quad \alpha_{i2}(r) \quad \alpha_{i3}(r)]^T, \tag{13} \]

for \(i = 1, \ldots, 4 \), where \(\sigma_{i1}, \sigma_{i2} \) and \(\sigma_{i3} \) are defined by (5) and (6). The equations (12) and (13) provide transformations from the generalized coordinates \(r \) to the image features \(\zeta_i \).

We define

\[J_i = \frac{\partial \beta_i}{\partial r} \bigg|_{r=0}. \tag{14} \]

Then it holds that

\[\dot{\zeta}_i = J_i r, \tag{15} \]

at \(r = 0 \). Each \(J_i (i = 0, \ldots, 4) \) is referred to as the image Jacobian.

5. Controller design

This paper proposes a switched visual feedback control system illustrated in Fig. 6, where \(\xi_{\text{ref}} \) denotes the image reference of ball \(i \) relative to the corresponding image frame \(\Sigma^j \) and

\[S_0^\text{ref} = [\xi_{\text{ref}}^{\text{ref}} \quad \xi_{\text{ref}}^{\text{ref}} \quad \xi_{\text{ref}}^{\text{ref}} \quad \xi_{\text{ref}}^{\text{ref}}]^T, \tag{16} \]

\[S_1^\text{ref} = [\xi_{\text{ref}}^{\text{ref}} \quad \xi_{\text{ref}}^{\text{ref}} \quad \xi_{\text{ref}}^{\text{ref}} \quad \xi_{\text{ref}}^{\text{ref}}]^T, \tag{17} \]

for \(i = 1, \ldots, 4 \), where \(\sigma_{i1}, \sigma_{i2} \) and \(\sigma_{i3} \) are defined by (5) and (6). The system is an image-based visual servo system, since the proposed controller uses the image Jacobian derived in the previous section and the errors between the vector of the image features \(\zeta_i(t) \) and the corresponding given reference \(\xi_{\text{ref}}^{\text{ref}} \) to obtain the input signals. Image-based visual servo control is robust against model uncertainties (Hashimoto, 2003).
The switch in the closed loop depends on which image feature ξ_i is invisible. The decision of switching will be described in Section 5.2. In this paper, the image feature ξ_i is labeled as ‘normal’, when the system decides that ξ_i is measured correctly. Similarly, ξ_i is labeled as ‘occluded’, when the system decides that ξ_i is not measured correctly.

5.1 Measurement of image features

An image feature $\xi_i(t)$ ($i = 1, \ldots, 4$) is given by the following manner. A binary data matrix at time t is first obtained from an image captured by camera j, and it is denoted by $I_j(x_j,y_j)$ for $j = 1, 2$. The matrix $I_j(x_j,y_j)$ has values of 1 for black and 0 for white. We then make a search window S_i whose center is defined as follows:

Normal case: It is set at $\xi_i(t-h)$, where h denotes the sampling time.

Occluded case: We estimate $\xi_i(t)$ by

$$J_0 J_i^T (\xi_i(t) - \xi_i^{\text{ref}}) + \xi_i^{\text{ref}} = \begin{bmatrix} \xi_2^T & \xi_3^T & \xi_4^T \end{bmatrix}^T,$$

where J_i^T denotes the Moore-Penrose inverse of J_i^T. The center is set at ξ_i.

The size of the window S_i is given by a constant. We define an image data matrix by

$$\bar{T}_j(x',y') = \begin{cases} I_j(x',y'), & \text{for } (x',y') \in S_i, \\ 0, & \text{otherwise}, \end{cases}$$

where $j = 1$ for $i = 1, 2$ and $j = 2$ for $i = 3, 4$. The image feature $\xi_i(t)$ is the center of mass of $\bar{T}_j(x',y')$.

5.2 Selection of image features

Let three constants δ, m_{min}, and m_{max} be given. Let $m_i(t)$ denote the area, or equivalently the zero-th order moment, of the image data $\bar{T}_j(x',y')$. An occlusion is detected or cancelled for each image feature $\xi_i(t)$ in the following manner.
Normal case: If $m_{\text{min}} \leq m_i(t) \leq m_{\text{max}}$ holds, then $\xi_i(t)$ is labeled as ‘normal’ again. Otherwise, it is labeled as ‘occluded’.

Occluded case: If it holds that $m_{\text{min}} \leq m_i(t) \leq m_{\text{max}} \text{ and } || J_i(\xi_i(t) - \xi^{\text{ref}}_{i}) - J_i(\xi_i(t) - \xi^{\text{ref}}_{i}) || < \delta$, then $\xi_i(t)$ is labeled as ‘normal’. Otherwise, it is labeled as ‘occluded’ again.

If $\xi_i(t)$ is occluded for i, then $\xi_i(t)$ is used at the next step. Otherwise, or equivalently if every image feature $\xi_i(t)$ is normal, then ξ_0 is used at the next step.

5.3 Control input voltages

We compute

$$\begin{bmatrix} \dot{x}(t) & \dot{y}(t) & \dot{z}(t) & \dot{\phi}(t) & \dot{\theta}(t) \end{bmatrix}^T = J_i^{-1}(\xi_i(t) - \xi^{\text{ref}}_{i}),$$

for ξ_0 selected in the previous subsection. The input signals are given by a set of PID controllers of the form

$$V_a(t) = b_1 - P_a + I_a \int_0^t \dot{x}dt - D_a \dot{x},$$

$$V_b(t) = b_2 - P_b + I_b \int_0^t \dot{y}dt - D_b \dot{y},$$

$$V_c(t) = b_3 - P_c + I_c \int_0^t \dot{z}dt - D_c \dot{z},$$

$$V_d(t) = b_4 - P_d + I_d \int_0^t \dot{\phi}dt - D_d \dot{\phi},$$

where b_i, P_i, I_i and D_i are constants for $i = 1, \ldots, 4$.

6. Experiment and result

The world reference frame Σ^w and the camera frames Σ^1 and Σ^2 are located as shown in Fig. 7. The controller gains are tuned to the values in Table 2. The positions of the four black balls in the frame Σ^b are given by

$$b_p_1 = [0.1 	 0.1 	 0.04]^T,$$

$$b_p_2 = [-0.1 	 0.1 	 0.04]^T,$$

$$b_p_3 = [0.1 	 -0.1 	 0.04]^T,$$

$$b_p_4 = [-0.1 	 -0.1 	 0.04]^T.$$
Fig. 7. Locations of the world reference frame Σ^w and the camera frames Σ^1 and Σ^2. The angle a is set to $a = \frac{11\pi}{36}$.

V_B = 3.47 3.30 0.05 2.60
V_A = 3.38 3.30 0.05 2.60
V_T = 2.70 1.90 0.05 0.80
V_Q = 1.92 3.00 0.05 0.08

Table 2. PID gains.

Fig. 8. A snapshot of helicopter flight under an occlusion. This was captured by a camera placed next to camera 2. Ball 3 was not captured correctly at this moment.

The image reference ξ_0^{ref} is set to

$$\xi_0^{ref} = [84.6 \ 10.5 \ -21.1 \ 16.1 \ -65.6 \ 41.9 \ 43.4 \ 40.9]^T, \text{ (pixels)}.$$ \hspace{1cm} (29)
This was obtained by an actual measurement. Ball 1 or 3 was occluded temporarily and intentionally. Long time occlusions for around 10 seconds were presented twice for each ball. Short time occlusions were done four times for each ball, and they were successively done from ball 3 to 1. A snapshot of helicopter flight under an occlusion can be seen at Fig. 8.

Fig. 9 shows the x positions of balls 1 and 3 in the corresponding image planes. When an occlusion is detected, the value is set at –150 in the figure to make the plot easy to read. For example, ξ_3 was labeled ‘occluded’ from 15 to 25 seconds. It is seen that the number of occlusion detection is equivalent to the number of intentional occlusions.

![Fig. 9. Experimental result. Solid lines: Time profiles of the positions of image features. When an occlusion is detected, the value is set to ~150. Dotted lines: Given references.](image1)

![Fig. 10. Experimental result: Time profiles of the positions of image features. This is a closeup of Fig. 9 between 49.6 and 50.2 seconds.](image2)
Fig. 10 illustrates a closeup of Fig. 9 between 49.60 and 50.20 seconds. An occlusion is detected for ball 3 from 49.72 to 49.88 seconds. After 50 milli-seconds, an occlusion is detected for ball 1. Our system deals with such rapid change, since high-speed cameras are used.

Fig. 11 shows the generalized coordinates \tilde{r} defined by (20). It is seen that the helicopter hovered in a neighborhood of the reference position. In particular, the z position is within 7 cm for all time.

Fig. 11. Experimental result: Time profile of the generalized coordinates \tilde{r}.

Several movies can be seen at http://www.ic.is.tohoku.ac.jp/E/research/helicopter/. They show stability, convergence and robustness of the system in an easy-to-understand way, while the properties may not be seen easily from the figures shown here.
7. Conclusion

This paper has presented a visual control system that enables a small helicopter to hover under temporary and partial occlusions. Two stationary and upward-looking cameras track four black balls attached to rods connected to the bottom of the helicopter. The differences between the current tracked object positions and pre-specified reference positions are fed to a set of PID controllers, when all the tracked objects are visible. If an occlusion is detected for a tracked object, the controller uses the errors given by the other three tracked objects. The system can keep the helicopter in a stable hover, and the proposed method is robust to temporary and partial occlusions even when a tracked object is not visible in any of the camera views.

8. References

The goal of this book is to introduce the vision application by excellent researchers in the world currently and offer the knowledge that can also be applied to another field widely. This book collects the main studies about machine vision currently in the world, and has a powerful persuasion in the applications employed in the machine vision. The contents, which demonstrate that the machine vision theory, are realized in different field. For the beginner, it is easy to understand the development in the vision servoing. For engineer, professor and researcher, they can study and learn the chapters, and then employ another application method.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
