
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

�������	
	�����������	������������������	��������	������������ ���

0

Multi-Robot Systems: Modeling,

Specification, and Model Checking

Ammar Mohammed and Ulrich Furbach
University of Koblenz-Landau, Department of Computer Science

Germany

Frieder Stolzenburg
Harz University of Applied Sciences, Department of Automation and Computer Sciences

Germany

1. Introduction

Specifying behaviors of physical multi-agent systems (MAS) – also called multi-robot systems
– is a demanding task, especially when they are applied in safety critical applications. For this,
formal methods based on mathematical models of the system under design are helpful. They
allow us not only to formally specify the system at different levels of abstraction, but also
to analyze the consistency of the specified systems before implementing them. The formal
specification aims at both, a precise and unambiguous description of the behavior of MAS,
and a formal verification whether a given specification is satisfied. For example, it should be
possible to show that unsafe regions of the state space cannot be reached, or that a particular
property is satisfied.
Generally, the behavior of an agent in MAS can be driven by external events and internal
states. Therefore, an efficient way to model such systems is to use state transition diagrams,
which are well established in software engineering. A state transition diagram describes the
dynamic behaviour of an agent in terms of how the agent acts in certain scenarios of the

defend

simple plyer

line up

attack

line up
line up

kick off

game over

team lost ball

team got ball

game over

simple player

Fig. 1. A description of a simple agent in robotic soccer as a transition system.

��

www.intechopen.com

�	
	���	���!���

environment. It aims at defining the behavior rules for the agents of the system. For example,
Fig. 1 shows the behavior of an abstract simple agent/player in robotic soccer modeled as
a state transition diagram. The agent may either defend or attack, depending on which team
is controlling the ball. All changes of such global behaviors happen in response to one or
more external events. Generally, state transition diagrams have been applied successfully
for MAS, particularly in the RoboCup, a simulation of (human) soccer with real or virtual
robots (cf. Arai & Stolzenburg, 2002; da Silva et al., 2004), in particular for the teams RoboLog
Koblenz (two-dimensional simulation league) and Harzer Rollers (standard four-legged league)
(Murray et al., 2002; Ruh & Stolzenburg, 2008).
In realistic physical environments, it is necessary to consider continuous actions in addition
to discrete changes of the behaviors. Take for example, the movement of a soccer agent to
kick off or to go to the ball, the process of putting out the fire by a fire brigade agent in a
rescue scenario, or any other behaviors that depend on any timed physical law. Hybrid au-
tomata (Henzinger, 1996) offer an elegant method to model such types of behaviors. Basically,
hybrid automata extend regular state transition diagrams with methods that deal with those
continuous actions. The state transition diagrams are used to model the discrete changes of
the agents’ behavior, while differential equations are used to model the continuous changes.
The semantics of hybrid automata make them accessible to a formal validation of systems, es-
pecially for those systems which are situated in safety critical environments. Model checking
can be used to prove desirable features or the absence of unwanted properties in the specified
systems (Clarke et al., 1999). Specifying and verifying behaviors of MAS by means of hybrid
automata is challenging for many reasons. One of those is a state space problem: Essentially,
MAS are specified as concurrent automata that have to be composed in parallel. The result
of this composition captures all possible behaviors that may occur among the agents, which
can be checked by hybrid automata verification tools (Behrmann et al., 2004; Frehse, 2005;
Henzinger et al., 1995b). Obviously, this composition process may lead to a state explosion.
Another problem is that hybrid automata describe not only the internal behaviors of agents,
but also the external interaction among agents. This definitely adds complexity, which de-
mands for structured and systematic methods for the specification of MAS. We propose to
combine hybrid automata with software engineering methods to overcome these problems.
In this chapter, we provide a framework based on hybrid automata, which allows us to conve-
niently specify and verify physical MAS situated in a continuous dynamic environment. We
will address the state space complexity raised from composition of agents, by composing the
automata dynamically during the verification phase. This can relieve the problem in such a
way that only the exact reached parts of the state space are activated, instead of activating all
the entire state space at once.
Furthermore, in order to cope with complex multi-agent structures, we combine hybrid au-
tomata with hierarchical UML statecharts, which allows MAS specification with different lev-
els of abstraction. We also give a formal semantics for this combination, and show how to
analyze the dynamic behaviors of MAS. In principle, a straightforward way to analyze a hi-
erarchical machines is to flatten them and to apply verification techniques to the resulting
ordinary finite state machines. We show how this flattening can be avoided.

2. Hybrid Finite State Machines

Originally, hybrid automata (Henzinger, 1996) have been proposed as formal models for de-
scribing hybrid systems. They have been built as a generalization of timed automata (Alur &
Dill, 1994), which have been used successfully as a standard framework to specify real-time

www.intechopen.com

�������	
	�����������	������������������	��������	������������ ��%

systems. In addition to their mathematical models to formally specify and verify systems,
the underlying mathematical models of hybrid automata can be represented graphically as a
finite state machine (FSM). There are several approaches to apply this framework to MAS (see
e.g. Egerstedt, 2000; Furbach et al., 2008; Mohammed & Furbach, 2008a).
In order to specify MAS by means of hybrid automata, the team of agents is described as
concurrent automata, which in turn are combined via parallel composition into a global au-
tomaton, in order to coordinate their behaviors for reaching a common goal. It is well known
that the major problem in applying model checking to analyze concurrent systems is the po-
tential combinatorial explosion of the state space arising from parallel composition. Typically
the state space of the parallel composition of an agent with K1 states and another agent with
K2 states leads to a state space of K1 × K2 states. Accordingly, the parallel composition of N
agents, each with a state space of K states, leads to a state pace of KN states. Even for small
systems this may easily run out of control. Additionally, the state explosion problem is even
more serious in verifying continuous dynamic systems. As such systems must satisfy certain
timing and continuous constraints on their behaviors, a model checker must keep track not
only of the part of the state space explored, but also of timing and continuous evolution in-
formation associated with each state, which is both time and space consuming. Traditionally,
global state-space representations are constructed without regard to whether the states are
reachable or not. In this section we will give a framework where the state space is built on the
fly during the execution of the concurrent MAS. This can relieve the complexity in a sense that
only the active parts of the state space will be taken into consideration during the run, instead
of producing the composition prior to the verification phase.
In this section we will define the syntax and the semantics of our framework. Additionally,
we will show how the composition of automata can be formally constructed. Finally, we will
use constraint logic programming to implement the proposed framework. All this will be
exemplified by a simple rescue scenario.

2.1 Rescue Scenario: Example

In the RoboCup rescue simulation league (Tadokoro et al., 2000), a large scale disaster is sim-
ulated. The simulator models part of a city after an earthquake. Buildings may be collapsed,
or are on fire, and roads are partially or completely blocked. A team of heterogeneous agents
consisting of police forces, ambulance teams, a fire brigade, and their respective headquarters
is deployed. The agents have two main tasks, namely finding and rescuing the civilians and
extinguishing fires. An auxiliary task is the clearing of blocked roads, such that agents can
move smoothly. As their abilities enable each type of agent to solve only one kind of task (e.g.
fire brigades cannot clear roads or rescue civilians), the need for coordination and synchro-
nization among agents is obvious in order to accomplish the rescue tasks.
Now, consider the following simple scenario. If a fire breaks out somewhere, a fire brigade
agent is ordered by its headquarters to extinguish the fire. The fire brigade agent moves to the
fire and begins to put it out. If the agent runs out of water, it has to refill its tank at a supply
station and return to the fire to fulfill its task. Once the fire is extinguished, the fire brigade
agent is idle again.
An additional task of the agent is to report any injured civilians it discovers. In addition
to the fire brigade agent, the model should include a fire station, fire, and civilians in the
environment. A part of this scenario, specified as hybrid automata, is depicted in Fig. 2. The
complete description and specification of the scenario will be shown in Sec. 3 (cf. Fig 4).

www.intechopen.com

�	
	���	���!���

Fire

idle
move2firemove2supply

refill

extinguish

Civilians

burn

no fire

f: ˙boom = 1

boom = 3/neededw′ = 120
i: boom ≤ 3

burning

f: ˙boom = 0

i: neededw > 0
neededw = 0

f: ˙boom = 0

i: true

put out
boom = 0

FirebrigadeMain

w = 0/w′ = 10

help

injured

w = 10

f: ẇ = −1

i: w ≥ 0

i: true

civ > 0/
civ′ = civ − 1

i: m2ftime ≥ 0
f: ˙m2ftime = −1f: ˙m2stime = −1

i: m2stime ≥ 0

∧civ = 0
∧neededw = 0

wLevel = wlMax

i: wLevel ≤ wlMax
f: ˙wLevel = rFill

i: wLevel ≥ 0

f: ˙wLevel = −rExt
˙neededw = −rExt

wLevel = 0/m2stime′ = tSupply m2ftime = 0

m2stime = 0

reported

emergency

true /m2ftime′ = 3

wLevel = wlMax ∧ neededw = 0

neededw = 0 ∧ wLevel > 0

wLevel = wlMax ∧ neededw > 0 /
m2ftime′ = tSupply

Fig. 2. A part of the RoboCup rescue scenario specified as hybrid automata.

As depicted in Fig. 2, the behavior of the agent FirebrigadeMain consists of five states corre-
sponding to movements (move2fire, move2supply), extinguishing (extinguish), refilling the tank
(refill), and an idle state (idle). It can report the discovered civilians when it is in its idle state.
Details of this figure will be explained in details during this chapter.
It should be obvious that even in this simple case with very few components, it is difficult to
see if the agent behaves correctly. Important questions like:

- Does the fire brigade agent try to extinguish without water?

- Will every discovered civilian (and only those) be reported eventually?

depend on the interaction of all components and cannot be answered without an analysis of
the whole system.

2.2 Syntax

Since we intend to specify a multi-agent system with hybrid automata, the intuitive meaning
of an agent is a hybrid automaton, which is represented graphically as a finite state machine,
augmented with mathematical formalisms on both transitions and control states. Formally
speaking, a hybrid automaton (agent with continuous actions) is defined as follows:

Definition 2.1 (basic components). A hybrid automaton is a tuple
H = (Q, X, Inv, Flow, E, Jump, Reset, Event, σ0) where:

www.intechopen.com

�������	
	�����������	������������������	��������	������������ ��&

• Q is a finite set of locations which defines the possible behaviors of the agent.
For example, in Fig. 2, the FirebrigadeMain agent has the locations move2fire, move2supply,
extinguish, refill, and idle as possible behaviors. On the other hand, the Fire has no fire,
burning and put out as its locations. It should be mentioned that we use the concept
location instead of state, because an agent possesses different states inside each location,
which are raised as a reason of continuous evolution. This will be described later in
more details.

• X = {x1, x2, ..., xn} is a finite set of n real-valued variables, including the variable t that denotes
the time.
These variables will be used to model the continuous dynamics of the automaton with
respect to t. For example, the variable wLevel represents the amount of water of the fire
brigade, and it can be used to model the rate of change to refill or flow the water with
respect to the time inside the tank. On the other hand, the variable m2ftime represents
the distance to the fire, and its rate of change with respect to the time models the speed
of the fire brigade agent.

• Inv is a mapping which assigns an invariant condition to each location q ∈ Q. The invariant
condition Inv(q) is a predicate over the variables in X.
The control of a hybrid automaton will remain at a location q ∈ Q, as long as Inv(q)
holds. In the graphical representation, the invariant is tagged with the symbol i:. For
instance the invariant wlevel≤ wlMax inside the location refill of FirebrigadeMain shows
that the fire brigade fills the water as long as the water level does not reach the maxi-
mum level represented by the wlMax. Conventionally, writing Inv(q)[v] means that the
invariant condition inside the location q holds, whenever the valuations of variables
inside q are v.

• Flow is a mapping, which assigns a flow condition to each control location q ∈ Q. The flow
condition Flow(q) is a predicate over X that defines how the variables in X evolve over the time
t at location q.
In the graphical representation, it is tagged with the symbol f:. A flow of a variable
x is denoted as ẋ. In our example, the dotted variable ˙wLevel describes the change of
the water level in the location refill. The flow inside locations may be empty and hence
omitted, if nothing changes continuously in the respective location.

• E ⊆ Q × Q is the discrete transition relation over the control locations.

• Jump is a mapping which assigns a jump condition (guard) to each transition e ∈ E. The jump
condition jump(e) is a predicate over X that must hold to fire e.
Omitting a jump condition on a transition means that the jump condition is always
true and it can be taken at any point of time. In the rescue example Fig. 2, the jump
condition between the locations extinguish and move2supply is given as wLevel=0, which
means that the transition between these locations can be taken whenever wLevel reaches
to 0. Conventionally, writing Jump(e)[v] means that the jump condition on a transition
e holds, when the valuations of variables on the transition are v.

• Reset is a mapping, which assigns values to variable to each transition e ∈ E. Reset(e) is a
predicate over X that defines how the variables are reset.
In the graphical representation, resetting a variable x ∈ X is denoted as x′. For example,
when the transition between location refill and move2fire holds, the action m2ftime′ =
tSupply is executed, which means that the variable m2ftime is reset to the value tSupply.

www.intechopen.com

�	
	���	���!��'

Resetting variables are omitted on transition, if the values of the variables do not change
before the control goes from a location to another.

• Event is a mapping which assigns an event to each transition e ∈ E from a set of events EventH .
For instance, the transition between the locations idle and move2fire in FirebrigadeMain
has emergency as its event. As we will see later, EventH is used to synchronize the
automaton H with any other automata that share the same common events. It should be
noted that in the graphical diagrams, an event Event(e) ∈ EventH is implicitly omitted,
if it is not shared among any automata.

• σ0 is the initial state of the automaton. It defines the initial location together with the initial
values of the variables X.
For example, the initial state of the agent FirebrigadeMain is the location idle with initial
valuations wLevel = wlMax, neededw = 0, and civ = 0 to its variables wLevel, neededw,
and civ respectively.

Before describing the semantics of a hybrid automaton, it should be mentioned that the hybrid
automata are classified according to the type of continuous flow:

• If ẋ = c (constant), then the hybrid automaton is called linear hybrid automaton. A
special case of linear hybrid automata are timed automata (Alur & Dill, 1994), where
c = 1).

• If c1 ≤ ẋ ≤ c2, then the hybrid automaton is called rectangular hybrid automaton.

• If ẋ = c1x + c2, then the hybrid automaton is called non-linear hybrid automaton.

2.3 Semantics

Intuitively, a hybrid automaton can be in exactly one of its control locations at each stage of
it computation. However, knowing the present control location is not enough to determine
which of the outgoing transitions can be taken next, if any. A snapshot of the current state
of the computation should also remember the present valuation of the continuous variables.
Therefore, to formalize the semantics of a hybrid automaton, we first have to define the con-
cept of a state.

Definition 2.2 (State). At any instant of time, a state of a hybrid automaton is given by σi =
〈qi, vi, t〉, where qi ∈ Q is a control location, vi is the valuation of its real variables, and t is the
current time. A state σi = 〈qi, vi, t〉 is admissible if Inv(qi)[vi] holds (i.e., the valuations of the vari-
ables satisfies the invariant at location qi.

A state transition system of a hybrid automaton H starts with the initial state σ0 = 〈q0, v0, 0〉,
where the q0 and v0 are the initial location and valuations of the variables respectively. For
example, the initial state of the Civilians (see Fig. 2) can be specified as 〈injured, 10, 0〉.
Informally speaking, the semantics of a hybrid automaton is defined in terms of a labeled tran-
sition system between states. Generally, transitions between states are categorized into two
kinds of transitions: continuous transitions, capturing the continuous evolution of states, and
discrete transitions, capturing the changes of location. More formally, we can define hybrid
automaton semantics as follows.

Definition 2.3 (Operational Semantic). A transition rule between two admissible states σ1 =
〈q1, v1, t1〉 and σ2 = 〈q2, v2, t2〉 is

www.intechopen.com

�������	
	�����������	������������������	��������	������������ ��(

discrete iff e = (q1, q2) ∈ E, t1 = t2 and Jump(e)[v1] and Inv(q2)[v2] hold. In this case an event

a ∈ Event occurs. Conventionally, we write this as σ1
a
→ σ2.

continuous(time delay) iff q1 = q2, and t2 > t1 is the duration of time passed at location q1, during
which the invariant predicate Inv(q1)[v1] and Inv(q1)[v2] holds.

In the previous definition, it should be noted that v2 results from resetting variables on a
transition in case of the discrete transition rule, while it results from the continuous evolution
of the variables in case of the continuous transition rule. Intuitively, an execution of a hybrid
automaton corresponds to a sequence of transitions from a state to another. Therefore we
define the valid run as follows.

Definition 2.4 (Run: micro level). A run of a hybrid automaton ∑ = σ0σ1σ2, . . . , is a finite or
infinite sequence of admissible states, where the transition from a state σi to a state σi+1 is related by
either a discrete or a continuous transition and σ0 is the initial state.

It should be noted that the continuous change in the run may generate an infinite number of
reachable states. It follows that state-space exploration techniques require a symbolic repre-
sentation way in order to represent the set of states in an appropriate way. A good way is
to use mathematical intervals. This interval captures all possible states. We call this interval
region, which is defined as follows:

Definition 2.5 (Region). given a run ∑, a sub-sequence of states Γ = (σi+1 · · · σi+m) ⊆ ∑ is called
a region, if for all states σi+j with 1 ≤ j ≤ m, it holds qi+j = q and if there exist a state σi and a state
σi+m+1 with respective locations q1 and q2, then it must hold q1 	= q and q2 	= q. Conventionally, a
region Γ is written as Γ = 〈q, V, T〉, where ti+1 ≤ T ≤ ti+m is the interval of continuous time, and V
is the set of intervals Vk of the interval defined by the values of xk ∈ X in the time interval T. A region
Γ is called admissible if each state σ ∈ Γ is admissible.

The previous definition reveals that a region captures the possible states that can be reached
using continuous transitions in each location q ∈ Q. Therefore, T represents the continuous
reached time. Additionally, a region captures the continuous values for each variable xi ∈
X. These continuous values can be represented as an interval Vi of real values. Therefore,
V = {V1, V1, ..., Vn} represents a set of intervals of the variables in X. Now, the run of hybrid
automata can be rephrased in terms of reached regions, where the change from one region to
another is fired using a discrete step.

Definition 2.6 (Run: macro level). A run of hybrid automaton H is ∑H = Γ0Γ1, ..., a sequence of
(possibly infinite) admissible regions, where a transition from a region Γi to a region Γi+1 is enabled

(written as Γi
a
→ Γi+1), if there is σi

a
→ σi+1, where σi ∈ Γi, σi+1 ∈ Γi+1 and a ∈ Event is the

generated event before the control goes to the region Γi+1. Γ0 is the initial region obtained from a start
state σ0 by means of continuous transitions.

The operational semantics is the basis for verification of a hybrid automaton. In particular,
model checking of a hybrid automaton is defined in terms of the reachability analysis of its
underlying transition system. The most useful question to ask about hybrid automata is the
reachability of a given state. Thus, we define the reachability of states as follows.

Definition 2.7 (Reachability). A region Γi is called reachable in ∑H , if Γi ⊆ ∑H . Consequently, a
state σj is called reachable, if there is a reached region Γi such that σj ∈ Γi

www.intechopen.com

�	
	���	���!��)

The classical method to compute the reachable states consists of performing a state space ex-
ploration of a system, starting from a set containing only the initial state and spreading the
reachability information along control locations and transitions until fixed regions are ob-
tained. Stabilization of a region is detected by testing, whether the current region is included
in the union of the reached regions obtained in previous steps. It is worth mentioning that
checking reachability for hybrid automata is generally undecidable. However, under various
constraints, reachability is decidable for certain classes of hybrid automata including timed
and initialized rectangular automata (Henzinger et al., 1998). A rectangular automaton is ini-
tialized if each continuous variable is reset every time a discrete transition is taken.

2.4 State Machine Composition

For the specification of complex systems, we extend hybrid automata by parallel composition.
Basically, the parallel composition of hybrid automata can be used for specifying larger sys-
tems (multi-agent systems), where a hybrid automaton is given for each part of the system,
and communication between the different parts may occur via shared variables and synchro-
nization labels. Technically, the parallel composition of hybrid automata is obtained from the
different parts using a product construction of the participating automata. The transitions
from the different automata are interleaved, unless they share the same synchronization label.
In this case, they are synchronized on transitions. As a result of the parallel composition a
new automaton called composed automaton, is created, which captures the behavior of the
entire system. In turn, the composed automata are given to a model checker that checks the
reachability of a certain state.
It is of advantage to do this during the verification process, instead of constructing the parallel
composition before involving in the verification phase. Intuitively, the composition of hybrid
automata H1 and H2 can be defined in terms of synchronized or interleaved regions of the
regions produced from run of both H1 and H2. As a result from the composition procedure,
compound regions are constructed, which consists of a conjunction of a region Γ1 = 〈q1, V1, T〉
from H1 and another region Γ2 = 〈q2, V2, T〉 from H2. Therefore, each compound region takes
the form Λ = 〈(q1, V1), (q2, V2), T〉 (shortly written as Λ = 〈Γ1, Γ2, T〉), which represents the
reached region at both control locations q1 and q2 the during a time interval T. Now the run
of composed automata can be defined as the sequence ∑H1◦H2

= Λ0, Λ1, ... of compound re-
gions, where a transition between compound regions Λ1 = 〈Γ1, γ1, T1〉 and Λ2 = 〈Γ2, γ2, T2〉

(written as Λ1
a
→ Λ2) is enabled, if one of the following holds:

• a ∈ EventH1
∩ EventH2

is a joint event, Γ1
a
→ Γ2, and γ1

a
→ γ2. In this case , we say that

the region Γ1 is synchronized with the region γ1.

• a ∈ EventH1
\ EventH2

(respectively a ∈ EventH2
\ EventH1

), Γ1
a
→ Γ2 and γ1 → γ2,

such that both γ1 and γ2 have the same control location (i.e., they relate to each other
using a continuous transition).

The previous procedures give the possibility to construct the composition dynamically during
the run/verification phase. Obviously, as it has been said, computing the composition in such
a way is advantageous. This is because only the active parts of the state space will be taken
into consideration during the run instead of producing the composition procedure prior to the
verification phase. This can relieve the state space problem raised from modeling multi-agent
systems.
In the following, we show how the previous procedure can be performed with the help of
constraint logic programming.

www.intechopen.com

�������	
	�����������	������������������	��������	������������ ��*

2.5 Constraint-Based Modeling

In Mohammed & Furbach (2009) we showed how to encode the syntax and semantics of
hybrid automata, described previously, as a constraint logic program (CLP) (Jaffar & Lassez,
1987). A primary version of this model was given by Mohammed & Furbach (2008b). There
are diverse motivations beyond choosing CLP as a modeling prototype to implement the
framework. Firstly, hybrid automata can be described as a constraint system, where the
constraints represent the possible flows, invariants, and transitions. Secondly, constraints can
be used to characterize certain parts of the state space (e.g., the initial states or a set of unsafe
states). Further, there are close similarities in operational semantics between CLP and hybrid
automata. Ideally, state transition systems can be represented as a logic program, where
the set of reachable states can be computed. Moreover, constraints enable us to represent
infinite states symbolically as a finite interval. For instance, the infinite states can be handled
efficiently as an interval constraint that bounds the set of infinite reachable state as a finite
interval (i.e., 0 ≤ X ≤ 250). Hence, a constraint solver can be used to reason about the
reachability of a particular state inside this interval. A further motivation to choose CLP is
its enrichment with many efficient constraint solvers of various domains. For example, CLP
contains a constraint solver over real interval constraints, which can be used to represent the
continuous flows as constraint relations to the time, as well as to reason about a particular
valuation. On the other hand CLP contains a constraint solver over symbolic domains, which
are appropriate to represent the synchronization events (communication messages) among
agents. Last but not least, by employing CLP the automata composition can be constructed on
the fly (during models checking). This can be done by investigating the constraints appeared
during running models. In turn, the previous can relieve the state space problem raised from
specifying MAS.

Our implementation prototype was built using ECLiPSe Prolog (Apt & Wallace, 2007). The
prototype follows the definitions of both the formal syntax and semantics of hybrid automata,
which are defined in the previous section. To start implementing a hybrid state machine,
we primarily begin with modeling the locations and their constraints (e.g. flows, invariants),
which are modeled as the predicate automaton as follows:

%%% automaton(+Location,?Vars,+Vars0,+T0,?Time)

%%% models invariant and flow inside location

automaton(Location,Vars,Vars0,T0,Time):-

Flow(Vars),

Inv(Vars),Time $>=T0.

Here, automaton is the name of the automaton itself, and Location represents the actual name
of the current locations of the automaton. Vars is a list of real variables participating in the
automaton, whereas Vars0 is a list of the corresponding initial values. Inv(Vars) is the list of
invariant constraint on Vars inside the location. The constraint predicate Flow(vars) models
the continuous flows of the variables Vars with respect to time T0 and Time, given initial
values Vars0 of the variables Vars at the start of the flow. T0 is the initial time at the start of the
continuous flow. As it has been described in Subsection 2.2, a hybrid automaton is classified
according to the constraints on the continuous flow. Therefore, Flow(Vars) is represented in
terms of constraints as Vars = Var0 + c · (Time − T0) in case of a linear hybrid automaton,
as Var0 + c · (Time − T0) ≤ Vars ≤ Var0 + c · (Time − T0) in case of a rectangular hybrid
automaton, and as Vars = Var0− c2/c1 + c2/c1 · exp(c1 · (Time − T0)) in case of a non-linear
hybrid automaton. Here, (Time − T0) models the delay inside the location. It should be noted

www.intechopen.com

�	
	���	���!�&+

that after executing the predicate automaton, Vars and Time holds the reached valuations of the
variables together with the reached time respectively. The following is an example showing
the concrete implementation of the location injured in the automaton Civilians Fig. 2. The $
symbol in front of the (in)equalities is the constraint relation for interval arithmetic constraints
(library ic in ECLiPSe Prolog).

civilians(injured,[W],[W0],T0,Time):-

W $= W0-(Time-T0),

W $>=0, Time $>=T0.

According to operational semantics defined in Def. 2.3, a hybrid automaton has two kinds
of transitions: continuous transitions, capturing the continuous evolution of variables, and
discrete transitions, capturing the changes of location. For this purpose, we encode transition
systems into the predicate evolve, which alternates the automaton between a discrete and a
continuous transition. The automaton evolves with either discrete or continuous transitions
according to the constraints appearing during the run.

%%% evolve(+Automaton,+State,-Nextstate,+T0,+Time,?Event)

evolve(Automaton,(L1,Var1),(L2,Var2),T0,Time,Event) :-

continuous(Automaton,(L1,Var1),(L1,Var2),T0,Time,Event);

discrete(Automaton,(L1,Var1),(L2,Var2),T0,Time,Event).

When a discrete transition occurs, it gives rise to updating the initial variables from Var1 into
Var2, where Var1 and Var2 are the initial variables of locations L1 and L2 respectively. Oth-
erwise, a delay transition is taken using the predicate continuous. It is worth noting that there
are infinite states due to the continuous progress. However, this can be handled efficiently
as an interval constraint that bounds the set of infinite reachable state as a finite interval (i.e.,
0 ≤ X ≤ 250).
In addition to the variables, each automaton is augmented with a set events called
EventAutomaton. An example of this set of events of the automaton FirebrigadeMain is denoted
as {reported, emergency}. For this reason, each transition is augmented with the variable Event,
which is used to define the parallel composition from the automata individuals sharing the
same event. The variable Event ranges over symbolic domains and guarantees that whenever
an automaton generates an event, the corresponding synchronized automata have to be taken
into consideration simultaneously. It should be mentioned that the declaration of automata
events must be provided in the modeling example. For instance, the declaration of the possi-
ble events domain of Fig. 2. is coded as follows :

:- local domain(events(emergency,reported,hlep,burn)).

This means that the domains of events are declared symbolically to capture the set of all possi-
ble events applicable to the underlying modeled system. The appropriate solver of a symbolic
domain deals with any defined constraints in terms of the declared domains. Now after defin-
ing the domains of events, a variable of type events can be declared as follow:

Event &:: events, Event &= domain_value.

The variable Event is declared with domain values defined by events, and is initialized with
a specific value from its domain. The & symbol is a constraint relation for symbolic domains
(library sd in ECLiPSe Prolog).
The following is the general implementation of the predicate discrete, which defines transitions
between locations.

www.intechopen.com

�������	
	�����������	������������������	��������	������������ �&�

%%% driver(+State1,+State2,...,+Staten,+T0,-Regions,+PastRegion).

%%% perform composition and reachability

driver((L1,Var01),(L2,Var02),...,(Ln,Var0n),T0,[Reg|NxtReg],PastReg) :-

automaton1(L1,Var1,Var01,T0,Time),

automaton2(L2,Var2,Var02,T0,Time),

... ,

automatonn(Ln,Varn,Var0n,T0,Time),

evolve(automaton1,(L1,Var01),(NxtL1,Nvar01),T0,Time,T,Event),

evolve(automaton2,(L2,Var02),(NxtL2,Nvar02),T0,Time,T,Event),

... ,

evolve(automatonn,(Ln,Var0n),(NxtLn,Nvar0n),T0,Time,T,Event),

\+ member((L1,L2,..,Ln,Var1,Var2,..,Varn,_,Event), PastReg),

Reg = (L1,L2,..,Ln,Var1,Var2,..,Varn,Time,Event),

NpastReg =[Reg|PastReg],

driver((NxtL1,Nvar01),(NxtL2,Nvar02),...,(NxtLn,Nvar0n),T,NxtReg,NpastReg).

Fig. 3. A state machine to drive the execution of automata.

%%% discrete(+Automaton,+State1,-State2,+IntTime,-Time,-Event)

discrete(Automaton,(Loc1,Var1),(Loc2,Var2),T0,Time,Event):-

automaton,(Loc1,Var1,Var,T0,Time),

jump(Var), reset(Var2),

Event &::events,Event &=domain_value.

In the previous predicate, domain_value must be a member in EventAutomaton. Here, when the
discrete predicate is fired, the automaton generates an event by constraining the variable Event
to the suitable value from its domain.
The following is an instance showing the concrete implementation of the discrete predicate
between locations no fire and burning in automaton fire.

discrete(fire,(no_fire,[B0,N0]),(burning,[BB0,NN0]),T0,Time,Event):-

fire(no_fire,[B0,N0],[BB0,NN0],T0,Time),

BB0 $=3, NN0 $=120,

Event &::events, Event &=burn.

Once the locations and transition rules have been modeled, a state machine needs to be im-
plemented in order to execute the model. For this purpose, a driver program is implemented
as shown in Fig. 3.
The driver is a state machine that is responsible to generate and control the behaviors of the
concurrent hybrid automata, as well as to provide the reachable regions symbolically. The
driver takes the starting state for each participating automaton (i.e. a control location as input
argument as well as the list of initial valuations of the variables). In addition, it takes the
starting time T0 as begin of the execution, followed by the list of reached regions, which is
needed for the purpose of the verification. It should be noted that during the course of the
execution of the driver, there is a symbolic domain variable Event shared among automata,
which is used by the appropriate solver to ensure that only one event is generated at a time.
Precisely when an automaton generates an event, due to a discrete transition of one of the
predicates evolve of the concurrent automata, the symbolic domain solver will exclude all the

www.intechopen.com

�	
	���	���!�&�

domain of values of the other automata that are not coincident with the generated event. This
means that only one event is generated at a time. If more than one automaton generates
different events at the same point of time, then the symbolic domain solver will handle only
one of them at a time, but the other events will be handled using backtracking.
Since each automaton generates an event by a discrete step at the end of its continuous evolu-
tion, then the precedence of events that appear during the run is important to both composi-
tion and the verification process. For this reason, an obvious way to deal with this precedence
is to use constraints on the time of the generated events. To accomplish this, we constraint
the execution of each automaton with a shared variable Time. The constraint solver, in turn,
binds this variable with the minimum execution time among the automata. It follows that this
variable Time eventually holds the minimum time needed to generated an event. The previ-
ous computation partitions the state space into regions, where the transition from one region
to another depends on the minimum time needed to generate an event. Consequently, this
shows how the automata composition can be implicitly constructed efficiently on the fly (i.e.
during the computation).
It has been said that we are not only concerned with running and composing the automata,
but also with the their verification. For this purpose, the driver is augmented with the list of
reached compound regions. At each step of the execution of the driver execution, a compound
region, of the form 〈locations, Variables, Time, Event〉 is added to the list of reached regions.
This region symbolically represents the set of reached states and times to each control location
as mathematical constrains. Additionally, each region contains the generated event before the
control goes to another region using a discrete step. Technically, the driver computes the set
of reached regions until fixed regions are obtained. This is computed by checking, in each
iteration of driver, if the reached region is not contained in the list of the previously reached
regions. For this purpose, the last argument of the driver holds for the list of these regions.
Due to the undecidability of hybrid automata (Henzinger et al., 1998), the termination of the
driver to reach to a fixed regions is not guaranteed generally. To overcome the non termination
problem, we augment the predicate driver with a depth limit, by which the driver is enforced
to stop upon reaching a given depth.
Reachable regions should contain only those variables, which are important for the verifi-
cation of a given property. Therefore, the last argument list of the predicate driver can be
expanded or shrunk as needed to contain the significant variables.
As soon as the driver has been built, the complete model should be invoked for the purpose
of execution and hence verification. For this reason, the predicate runmodel is implemented to
invoke the driver with the initial states of the hybrid automata. An example showing how to
query the driver on the running scenario (see Fig. 2) takes the form:

runmodel(Reached) :-

driver((idle,[wlMax,0,0]),(injured,[10]),(no_fire,0),0,Reached,[]).

2.5.1 Verification as Reachability Analysis

Now we have an executable constraint-based specification, which can be used to verify prop-
erties of a multi-agent system. In particular, one can check properties on states using reach-
ability analysis. For this we have two basic steps. Firstly, we compute the state space of the
automaton under consideration by using the predicate driver. Secondly, we search for states

www.intechopen.com

�������	
	�����������	������������������	��������	������������ �&%

that satisfy or contradict given properties. This is done with the help of standard Prolog pred-
icates like member/2 and append/3. Thus it is possible to implement our entire framework by
some very simple Prolog rules.
In terms of CLP, a state is reached iff the constraint solver succeeds in finding a satisfiable solu-
tion for the constraints representing the intended state. In other words, assuming that Reached
represents the set of all reachable states computed by the CLP model from an initial state, then
the reachability analysis can be generally specified, using CLP, by checking whether Reached
|= Ψ holds, where Ψ is the constraint predicate that describes a property of interest. In prac-
tice, many problems to be analyzed can be formulated as a reachability problem. For example,
a safety requirement can be checked as a reachability problem, where Ψ is the constraint pred-
icate that describes forbidden states, and then the satisfiability of Ψ wrt. Reached is checked.
An example would be to check that the state where the fire can be put out is reached. The
following very simple CLP query gives us the answer yes:

?- runmodel(L),

member((_firebrigade,_civilian,Fire,_var1,_var2,_var3,_time,_event),Reached),

Fire $=put_out.

Other properties concerning the reachability of certain states can be verified similarly. Addi-
tionally, constraint solvers can be used to reason about the reachability of interesting proper-
ties within a region, like properties of the variables that model the continuous dynamics of a
model. For example, we can reason about the water level of the firebrigade after putting out
the fire.
Mohammed & Furbach (2009) provide various verification rules based on reachability anal-
ysis. For example, finding the time delay between events is possible within the framework.
This is because both the events and time are recorded at reached regions. Another example
is to find a condition on a certain variable, which is necessary to to reach a particular state.
We also did some experiments on a set of benchmarks taken from the domain of hybrid au-
tomata. The experiments have been compared with HyTech (Henzinger et al., 1995a). HyTech
was chosen as a reference tool, because it is one of the most well-known tools for the verifica-
tion of hybrid automata, and it tackles verification similarly based on reachability analysis. In
HyTech, however, the automata working in parallel are composed before they are involved in
the verification phase.
The experimental results revealed that our framework has a slight advantage wrt. In terms of
the run-time of checking the properties of the benchmarks. With respect to the expressiveness,
our approach is more powerful, because HyTech can not deal directly with non-linear hybrid
automata. The continuous dynamics of non-linear hybrid automata have to be approximated
in a linear form, before applying the model checking. Additionally, HyTech cannot verify
simple properties that depend on the occurrence of events – i.e. checking the reachability of
the event help –, despite of the fact that events are used to synchronize the automata. HyTech
is able to verify time properties of events; however, this can be checked only after augment-
ing the original automata with an extra automaton. Its functionality is to observe the model
without changing its behavior and to record the time of occurring events. In contrast to our
framework, verifying this type of properties can be checked without any extra automaton,
since the events and time are recorded in the reached regions. For further details about the
experimental results, the reader is referred to Mohammed & Furbach (2009).

www.intechopen.com

�	
	���	���!�&�

3. Hybrid Statecharts

So far, we have used hybrid Finite State Machines (FSMs) to specify and verify a group of
agents. Unfortunately, classical FSMs lack support for modularity, which is very important
when modeling complex systems that contain similar subsystems. All states are equally visi-
ble and are considered to be at the same level of abstraction, which makes modeling cluttered
and unreadable. In practice, to describe complex systems using FSMs, several extensions are
useful. Statecharts have been introduced by Harel (1987) to overcome the limitations of tra-
ditional FSM. The most important extension is hierarchy, or what is called hierarchical (nested)
FSM. Such a hierarchy has descriptive advantages over ordinary FSM in a sense that hierar-
chy of states offers a convenient structuring mechanism that allows us to specify systems with
different levels of view. For their expressiveness, statecharts have become part of the Unified
modeling language (UML) (UML, 2009).
The main purpose of statecharts has been the description of complex reactive systems. How-
ever, in order to cope with those reactive systems that exhibit continuous timed behaviors, it
seems to be advantageous to extend statecharts with continuous actions inside states. This
extension allows complex/multi-agent systems to be modeled with different levels of abstrac-
tion and provides a formal way to analyze the dynamical behavior of the modeled systems.
There are two possibilities of combination, namely combining statecharts with differential
equations or extending hybrid automata with hierarchy. Therefore, both terms hierarchical
hybrid automata (HHA) and hybrid statecharts can be used interchangeably.
Basically, the straightforward way to analyze hierarchical machines is to flatten them and
apply model checking tools on the resulting ordinary FSM. For example, Möller et al.
(2003) have presented hierarchical specification of timed automata. In order to verify a
hierarchical model, it has to be transformed first to flat timed automata, which in turn can
be used as input for the model checker tool UPPAAL (Behrmann et al., 2004). Similarly,
Ruh (2007) has presented a translator tool that automatically converts hybrid hierarchical
statecharts, defined as an ASCII-formatted specification, into an input format for a model
checker of simple hybrid automata (Henzinger et al., 1995a). In this section, we show, how hi-
erarchical hybrid automata can be analyzed without getting involved in the flattening process.

Let us come back to the illustrative RoboCup rescue scenario given in Sec. 2.1. Suppose that
the specification of the fire brigade agent consists of the main control structure (Firebrigade-
Main) and a rescue sub-system (FirebrigadeRSS) which are supposed to run in parallel. The
latter just records the detected civilians. In addition to the fire brigade, the model should in-
clude a fire station, whose responsibility to inform and assign a fire brigade to a fire as soon as
a fire alarm received. Now let us describe the scenario in a hierarchical way. At the top level
is the rescue scenario, which in turn comprises at the lower level Fire, Civilians, Firestation,
and Firebrigade. The latter can be described in a further lower level, which is FirebrigadeMain,
and FirebrigadeRSS. The specification of this hierarchical structure is shown in Fig. 4. In the
following, the hierarchical specification will be described in a formal flavor.

3.1 Formal Hierarchy

As illustrated by Fig. 4, for hierarchical hybrid automata (HHA), locations are generalized
into a set Q of locations, which is partitioned into three disjoint sets: Qsimple, Qcomp, and Qconc

— called simple, composite and concurrent locations. There is one designated start state, which
is the topmost location in the hierarchy. In essence, the locations of plain hybrid automata
correspond to simple location in the hybrid FSM. Composite and concurrent locations belong

www.intechopen.com

�������	
	�����������	������������������	��������	������������ �&&

FirebrigadeAgent

listen
help

Fire

Civilians

Firestation

Firebrigade

idle
move2firemove2supply

refill

extinguish

burn

no fire

f: ˙boom = 1

boom = 3/neededw′ = 120
i: boom ≤ 3

burning

f: ˙boom = 0

i: neededw > 0
neededw = 0

f: ˙boom = 0

i: true

put out
boom = 0

Rescuescenario

w = 0/w′ = 10

help

injured

w = 10

f: ẇ = −1

i: w ≥ 0

FirebrigadeMain

FirebrigadeAgent

FirebrigadeRSS

idle
assignFB

i: true i: false

burn

emergency

reported

i: true

civ > 0/
civ′ = civ − 1

i: m2ftime ≥ 0
f: ˙m2ftime = −1f: ˙m2stime = −1

i: m2stime ≥ 0

∧civ = 0
∧neededw = 0

wLevel = wlMax

i: wLevel ≤ wlMax
f: ˙wLevel = rFill

wLevel = wlMax ∧ neededw > 0 /
m2ftime′ = tSupply

i: wLevel ≥ 0

f: ˙wLevel = −rExt
˙neededw = −rExt

wLevel = 0/m2stime′ = tSupply m2ftime = 0

m2stime = 0

reported

emergency

true /m2ftime′ = 3

wLevel = wlMax ∧ neededw = 0

neededw = 0 ∧ wLevel > 0

i: true true /civ′ = civ + 1

Fig. 4. A hierarchical hybrid state machine for a RoboCup rescue scenario.

to the definition of statecharts (Harel, 1987) and have become part of UML (UML, 2009). They
are useful for expressing the overall system on several levels of abstraction and multi-agent
aspects, respectively. Events are treated as global variables in this context. Based on this, we
will now introduce the concepts of HHA more formally (Furbach et al., 2008).

Definition 3.1 (Hierarchy components). The basic components of HHA are the following disjoint
sets:

www.intechopen.com

�	
	���	���!�&'

Q : a finite set of locations, which is partitioned into three disjoint sets: Qsimple, Qcomp, and Qconc

— called simple, composite and concurrent locations, containing one designated start state
q0 ∈ Qcomp ∪ Qconc.

In the rescue example (Fig. 4), idle, extinguish or listen are simple locations, and FirebrigadeAgent
is a concurrent location and FirebrigadeMain and FirebrigadeRSS are composite locations, which
are separated by a dashed line. m2ftime and wLevel are examples for real valued variables.

Definition 3.2 (Location hierarchy). Each location q is associated with zero, one or more initial loca-
tions α(q): a simple location has zero, a composite location exactly one, and a concurrent location more
than one initial location. Moreover, each location q ∈ Q \ {q0} is associated to exactly one superior
state β(q). Therefore, it must hold β(q) ∈ Qconc ∪ Qcomp. A concurrent state must not directly con-
tain other concurrent ones and all transitions (q1, q2) must keep to the hierarchy, i. e. β(q1) = β(q2).

For the example in Fig. 4, according to the previous Def. 3.2, it holds e.g.:

α(Civilian) =injured. α(Firebrigade) = FirebrigadeAgent.
α(FirebrigadeAgent)={ FirebrigadeMain,FirebrigadeRSS}. α(Fire) = no_fire.
α(Rescuescenario)={Fire,Civilian,Firestation,Firebrigade} α(Firestantion) = idle.
β(burning) = Fire. β(Fire) = Rescuescenario.

The function β from the previous definition naturally induces a location tree with q0 as root.
This is shown for the running example in Fig. 5. While processing, each composite location
of the state machine contains only one active location. These locations also form a tree, called
configuration. A configuration of the given state machine, is indicated by the thick lines in
Fig. 5. Let us now define the notion configuration more formally.
As shown in Def. 2.3, a hybrid automaton may change in two ways: discretely, from location q1

to another location q2, when the transition e ∈ E between the two locations is enabled (i.e., the
jump condition holds) and continuously within a control location q ∈ Q, by means of a finite
(positive) time delay t. The semantics of our automata can now be defined by alternating
sequences of discrete and continuous steps between configurations.

Definition 3.3 (Semantics). The state machine starts with the initial configuration, i.e. the com-
pleted topmost initial state s0 of the overall state machine. In addition, an initial condition must be
given as a predicate with free variables from X. The current situation of the whole system can be char-
acterized by a triple (c, v, t) where c is a configuration, v a valuation (i. e. a mapping v : X → IRn),
and t the current time. The initial situation is a situation (c, v, t) where c is the initial configuration,
v satisfies the initial condition, and t = 0. The following steps are possible in the situation (c, v, t):

discrete step: a discrete/micro-step from one configuration c of a state machine to a configuration
(c′, v′, t) by means of a transition (q, q′) ∈ E with some jump condition in the current situation
(written c → c′) is possible iff:

1. c contains a node labeled with q;

2. the jump condition of the given transition holds in the current situation (c, v, t);

3. c′ is identical with c except that q together with its sub tree in c is replaced by the comple-
tion of q′;

4. the variables in X are set by executing specific assignments.

www.intechopen.com

�������	
	�����������	������������������	��������	������������ �&(

complete(T,Rest,State,[State:Var|Complete]) :-

init(T,State,[Var|Rest],Init,_),

maplist(complete(T,[Var|Rest]),Init,Complete).

discrete(T,Rest1,Rest2,[State1:Var1|_],[State2:Var2|Conf]) :-

trans(T,State1,[Var1|Rest1],State2,[Var2|Rest2]),

complete(T,Rest2,State2,[State2:Var2|Conf]).

discrete(T,Rest1,Rest2,[Top:Var1|Sub],[Top:Var2|Tree]) :-

Sub \= [],

maplist(discrete(T,[Var1|Rest1],[Var2|Rest2]),Sub,Tree).

continuous(T1,T2,Rest1,Rest2,[State:Var1|Sub],[State:Var2|Tree]) :-

flow(T1,T2,State,[Var1|Rest1],[Var2|Rest2]),

maplist(continuous(T1,T2,[Var1|Rest1],[Var2|Rest2]),Sub,Tree).

Fig. 6. Code for the abstract state machine for HHA in CLP. The Rest variables host nested
lists of the variables declared in the states superior to the current state. The built-in predicate
maplist is a macro for applying a predicate call (first argument of maplist) to a list of
arguments (second and third argument) one by one.

continuous step: a continuous step/flow within the actual configuration to the situation (c, v′, t′) re-
quires the computation of all x ∈ X that are valid in c at the time t′ according to the conjunction
of all state conditions (i.e. flow conditions plus invariants) of the active locations q ∈ c, where it
must hold t′ > t.

FirebrigadeMain FirebrigadeRSS

FirebrigadeAgent

extinguishmove2fireidle listenrefillmove2supply

Fig. 5. Location hierarchy and configuration tree (thick lines).

Definition 3.4 (Configuration and Completion). A configuration c is a rooted tree of locations
where the root node is the topmost initial location q0 of the overall state machine. Whenever a location
q is an immediate predecessor of q′ in c, it must hold β(q′) = q. A configuration is completed by
applying the following procedure recursively as long as possible to leaf nodes: if there is a leaf node in c
labeled with a location q, then introduce all α(q) as immediate successors of q.

3.2 Hierarchy Implementation with CLP

In Sec. 2.5, a CLP implementation of concurrent hybrid automata was given which imple-
ments hybrid finite state machine. Now we will show how to implement an abstract state ma-
chine for HHA, treating hierarchies and concurrency more explicitly (Mohammed & Stolzen-
burg, 2008; 2009). This leads to a lean implementation of hybrid automata, where efficient
CLP solvers are employed for performing complex analyses.
Fig. 6 shows parts of the abstract state machine in Prolog, namely the code for completion
and for performing discrete and continuous steps according to Def. 3.3 and 3.4. Discrete steps
take zero time; continuous steps remain within the same configuration, but the variable values
may differ. The flow conditions of active locations (in the configuration) must be applied, as

www.intechopen.com

�	
	���	���!�&)

time passes by. In this context, configurations are encoded in Prolog lists, where the head of
a list corresponds to the root of the respective configuration tree. In addition, each location
is conjoined by a colon (:) with its list of local variables. Thus, according to Def. 3.4, the
completed start configuration will be represented as shown below.
The use of lists is straightforward and allows us to implement the abstract state machine for
HHA (see Fig. 6) within only a dozen lines of CLP/Prolog code. By this technique, explicit
composition of automata is avoided. For each location, its initial states have to be declared
together with their continuous flow conditions. For all discrete transitions, the jump condi-
tions have to be stated. Local variables are expressed by nested lists of variables valid in the
respective state. Since the abstract state machine is of constant size and the abstract machine
computes complex configurations only on demand, there is a one-to-one correspondence be-
tween the elements of the HHA and its CLP/Prolog implementation. Thus, the program size
is linear to the size of the HHA.
In the concrete implementation of the rescue example, the overall start location q0 is indicated
by the predicate start, while init defines the initial states for each state (α values according
to Def. 3.2). The flow and the jump conditions have to be expressed by means of the predicates
flow and trans. The reader can easily see from Fig. 7 that the size of the CLP program is only
directly proportional to the size of the given HHA, because there is a one-to-one correspon-
dence between the graphical specification and its encoding in Prolog, whereas computing the
composition of concurrent automata explicitly leads to an exponential increase. Furthermore,
since the overall system behavior is given by the abstract state machine (Fig. 6), this approach
is completely declarative and concise.
Similarly, in the CLP model of hybrid FSM, reachability analysis is performed by computing
the state space of HHA under consideration starting from the initial configuration. For details
as well as experiments on benchmarks, the reader is referred to (Mohammed & Stolzenburg,
2009).

4. A Tool: Automatic Design and Verification

In the previous sections, we have shown a framework to specify and verify multi-agent sys-
tem by means of hybrid automata. Traditionally, in order to verify a certain model with any
hybrid automata model-checking tool, one has to specify such model textually with a suitable
description language of a model checker. In our framework, one has to specify a multi-agent
system in a constraint logic approach. However, in order to textually specify a certain scenario,
generally two alternatives can be used: either designing a scenario prior to put it conveniently
in a textual specification format to a model checker, or starting to specify the scenario directly
with the suitable description languages, which is definitely a tedious and undesirable work,
particularly when specifying safety critical systems. From this we may conclude, that it is
favorable to graphically specify and automatically verify a certain scenario. For this, a combi-
nation of the graphical notations from software engineering with the formal methods realm is
necessary.
Generally, the graphical notation is becoming more and more accepted, as it is expected
that designers will be more familiar with graphical notation. Therefore, several researchers
have approached specifying the behaviors of multi-agent systems using graphical notations,
namely UML statechart. For instance, Murray (2004) presents the statechart editor StatEdit
that is used to graphically specify behaviors multi-agent systems with a layered structured.
He has used StatEdit to design agents for the RoboCup simulation league. However, neither
model checking, nor timed notation are allowed in the tool. In order to combine the formal

www.intechopen.com

�������	
	�����������	������������������	��������	������������ �&*

%%% rescue scenario

start(rescuescenario).

init(T,rescuescenario,[[Event]],

[fire,civilians,firestation,firebrigade],_) :-

Event = none.

flow(T1,T2,rescuescenario,[[Event]],[[Event]]).

%%% fire

init(T,fire,[[Boom,Neededw]|_],[no_fire],rescuescenario) :-

Boom $= 0.

flow(T1,T2,fire,_,_).

init(T,no_fire,[[]|_],[],fire).

flow(T1,T2,no_fire,[[],[Boom1,Neededw]|_],[[],[Boom2,Neededw]|_]) :-

Boom2 $=< 3,

Boom2 $>= Boom+(T2-T1).

trans(T,no_fire,[[],[Boom,Neededw],[Event1]],burning,[[],

[Boom,Neededw],[Event2]]) :-

Event2 = burn,

Neededw $= 120.

Fig. 7. A part of the HHA implementation of the rescue example.

verification with graphical models, there already exist a number of tools proposed for valida-
tion of UML statecharts by translating models into the input language of existing model check-
ers. For example, Lilius & Porres (1999) have presented the tool vUML for model checking
systems, which have been modeled by UML statecharts. They have used SPIN model checker
(Holzmann, 1997) as the underlying verification engine in their tool. On the other hand, in
order to graphically specify real time software using UML models, several researchers have
extended the standard UML with time notation (Graf et al., 2006). For this purpose, several
tools have been developed in order verify the timed UML models by mapping them to input
languages of timed automata, which in turn are verified using existing timed automata model
checkers. For example, (Del Bianco et al., 2002) have used Kronos (Yovine, 1997) as a model
checker to verify their system, whereas (Knappi et al., 2002) have used UPPAAL (Behrmann
et al., 2004) as a model checker for the purpose .
Stemming from the previous discussion, we find that it seems advantageous to implement
a tool (see Fig.8) that combines both design and verification in the same framework, instead
of generating an intermediate specification, which in turn is given to a model checkers. To
our knowledge, there is no tool that supports the integration of graphical notations and for-
mal verification of hybrid automata with two different views of multi-agent systems, namely
the concurrent and the hierarchical view. For this aim, the tool HieroMate (Mohammed &
Schwarz, 2009) has been presented, which aims to simplify the process of specification and
verification of MAS by combining the advantages of both graphical notations of software en-
gineering together with formal methods. In the tool, the specification of MAS together with
their requirements are graphically specified, then the process of verification is achieved auto-
matically.

www.intechopen.com

�	
	���	���!�'+

Fig. 8. A tool for modeling and verification based on CLP.

A designer interacts with HieroMate using context sensitive menus that allows only meaning-
ful actions. For example, the user is able to add a location to an automaton by right clicking
onto the automaton and selecting Add location from a context menu. After a model has been
built, the specification should be given for formal verification. Actually, a user can either spec-
ify queries manually using CLP Prolog, use the tool to generate simple queries automatically,
or combine both methods.

4.1 Examples with Model checking

As we already mentioned, the formal semantics of our framework gives the possibility to ap-
ply formal methods in order to prove certain properties of specified systems, e.g. by model
checking. However, in the context of hybrid automata the term model checking usually refers to
reachability testing, i.e. the question whether some (unwanted) state is reachable from the ini-
tial configuration of the specified system. For this purpose, some exemplary model checking
tasks for the rescue scenario can be investigated.
For the behavior specification shown in Fig. 4 we conducted several experiments with Hiero-
Mate. The tool performs reachability tests on the state space of the model. This is done by
first computing all reachable states from the initial state/configuration, and then checking the
resulting set for the needed properties. In the following, we present some exemplary model
checking tasks for the rescue scenario.

Is it possible to extinguish the fire? When the state of the automaton modeling the fire
changes from no fire to burning, the variable neededw stores the amount of water needed for
putting out the fire (neededw = 120 in the beginning). When the fire is put out, i.e. neededw = 0,
the automaton enters the state put out. Thus the fire can be extinguished, iff there is a reach-
able configuration cout where fire is in the state put out. It is easy to see from the specification,
that this is indeed the case, as neededw is only decreased after the initial setting, and so the
transition from burning to put out is eventually forced.

www.intechopen.com

�������	
	�����������	������������������	��������	������������ �'�

Does the agent try to extinguish with an empty water tank? To answer this question, we
should check the reachability of certain intervals in the continuous valuation of the automaton.
The fact that the fire brigade agent tries to put out the fire without water corresponds to the
simple state extinguish being active while wLevel < 0. Note that we must not test for wLevel ≤
0, as the state extinguish is only left when the water level is zero, so including a check for
equality leads to false results.

Won’t the fire brigade move to the fire if it is not burning? This is a kind of questions that
needs to check the reachability of composed locations in the same time. This can be checked
by investigating that no location where firebrigade is in location move2fire and fire is in location
nofire, or putout is reachable

Does the agent report all discovered civilians? We can check properties about the history of
a certain state and the reachable states from a given state, this allows more complex questions
like this question. Actually, this question contains two properties to be checked:

(a) all discovered civilians are reported eventually, and

(b) the agent does not report more civilians than it found.

The property (a) corresponds to the fact that from every reachable state there is a state reach-
able where all discovered civilians have been reported. This again means that the number of
transitions labeled with help equals the number of transitions labeled with reported. Property
(b) holds if in the history of each reachable state the number of transitions labeled with help is
always greater or equal to the number of transitions that are labeled with reported.
All properties described above could be successfully proven using our framework.

5. Related Works

Hybrid automata have not only been used in the context of robot soccer, but also in many other
applications of multi-agent and multi-robot systems. Therefore, we will give a brief overview
on related works on modeling, specification, and model checking such systems with focus on
approaches that employ CLP.
Using hybrid automata (Henzinger, 1996) is a well accepted method to model and analyze
(mobile) multi-agent systems (Alur et al., 1999; 1996). Hierarchical hybrid automata (HHA)
can be used for building up and describing multi-layer control architectures based on physical
motion dynamics of moving agents (Borges de Sousa et al., 2007; Furbach et al., 2008). In many
applications they form a link between multi-robot systems and theories of hybrid systems as
in Zelinski et al. (2003). CLP as a programming paradigm has already been applied to mod-
eling hybrid systems including solving differential equations (Hickey & Wittenberg, 2004b).
Several authors propose the explicit composition of different concurrent automata by hand
leading to one single automaton, before a CLP implementation is applied. This is a tedious
work, especially when the number of automata increases. The latter case is exemplified in
Urbina (1996) and Jaffar et al. (2004), where approaches to model and analyze hybrid systems
using CLP(R) (Jaffar et al., 1992) are introduced.
In Banda & Gallagher (2008), it is shown how reachability analysis for linear hybrid automata
can be done by means of CLP, again by computing compositions of (simple) hybrid automata.
Events are handled as constraints, which avoids some of the effort for computing composition,
which leads to an exponential increase in the number of clauses in general. In our approach,
however, we compute configurations of the overall system only if required.

www.intechopen.com

�	
	���	���!�'�

In contrast to our approach, some authors approached modeling the behavior of hybrid sys-
tems as an automaton using CLP, but they do not handle a hybrid system consisting of differ-
ent interacting hybrid automata. For example, Hickey & Wittenberg (2004a) present a hybrid
system modeled as an automaton using CLP(F) (Hickey & Wittenberg, 2004b), but neither
handling concurrency nor hierarchies. Other authors employ CLP for implementing hybrid
automata (Ciarlini & Frühwirth, 2000; Delzanno & Podelski, 1999; Gupta & Pontelli, 1997), but
restrict attention to a simple class of hybrid systems (e.g. timed systems). They do not con-
struct the overall behavior prior to modeling, but model each automaton separately. However,
the run of the model takes all possible paths into consideration, resulting from the product of
each component, which leads to unnecessary computation.
Another interesting approach on model checking hybrid systems is presented in Gulwani &
Tiwari (2008). There, an analysis technique is proposed that is able to derive verification condi-
tions, i.e. constraints that hold in reachable states. These conditions are universally quantified
and transformed into purely existentially quantified conditions, which is more suitable for
constraint solving. For this, an implementation in Lisp is available employing a satisfiability
modulo theories (SMT) solver, whereas the Prolog implementation presented in this chapter,
allows to express discrete transitions explicitly and allows the use of several constraint solvers.
Another approach for verification of hybrid systems is presented in Fränzle & Herde (2007).
In particular, the authors apply so-called bounded model checking (BMC) (Biere et al., 1999)
to linear hybrid automata, by encoding them into predicative formulae suitable for BMC.
For this reason, they developed a tool called HySAT that combines a SAT solver with linear
programming, where the Boolean variables are used for encoding the discrete components,
while real variables represent the continuous component. The linear programming routine
is used to solve large conjunctive systems of linear inequalities over reals, whereas the SAT
solver is used to handle disjunctions. Similar to this approach, our approach presented in this
chapter has the essence of BMC. However, instead of checking the satisfiability of formulae to
some given finite depth k, we find the set of reachable states and verify various properties on
this set. In Biere et al. (1999), neither concurrency nor hierarchy of hybrid automata is taken
into consideration.
Differently to this chapter, Jha et al. (2007) introduce symbolic reachability analysis of lazy lin-
ear hybrid automata. They provide a verification technique based on bounded model check-
ing and k-induction for reachability analysis. In their technique, SAT-based decision proce-
dures are used to perform a symbolic analysis instead of an enumerative analysis. However,
they did not show how the interacting concurrent components can be handled in their ap-
proach.

6. Conclusion

In this chapter, we have shown a framework to formally specify and verify physical multi-
agent systems by means of hybrid automata, especially for those agents that are defined
through their capability to continuously react to a physical environment, while respecting
some time constraints. The framework provided two different views of behaviors’ specifica-
tions, namely, the concurrent and the hierarchical view. In the concurrent view, it has been
demonstrated how to avoid the composition of the agents before getting involved into the
verification phase,which, in turn can relieve the state explosion problem that may raise as the
result of specifying multi-agent systems. On the other hand, in the hierarchical view, we show
how multi-agent systems can be hierarchically specified and formally verified without flatten-
ing the hierarchy, as it is commonly done. We have shown the implementations of both views

www.intechopen.com

�������	
	�����������	������������������	��������	������������ �'%

by means of constraint logic programming, which forms the specification and the verification
engine of the framework. In addition, we have presented a tool that graphically specifies both
views, in order to combine the powerful of software engineering into our framework. A case
study taken from RoboCup rescue simulation has been depicted to show applicability of our
approach.

7. References

Alur, R. & Dill, D. (1994). A Theory of Timed Automata, Theoretical Computer Science
126(2): 183–235.

Alur, R., Esposito, J. M., Kim, M., Kumar, V. & Lee, I. (1999). Formal modeling and analysis of
hybrid systems: A case study in multi-robot coordination, World Congress on Formal
Methods, pp. 212–232.
URL: citeseer.ist.psu.edu/article/alur99formal.html

Alur, R., Henzinger, T. A. & Ho, P.-H. (1996). Automatic symbolic verification of embedded
systems., IEEE Transactions on Software Engineering 22(3): 181–201.

Apt, K. R. & Wallace, M. (2007). Constraint Logic Programming Using Eclipse, Cambridge Uni-
versity Press, Cambridge, UK.

Arai, T. & Stolzenburg, F. (2002). Multiagent systems specification by uml statecharts aiming
at intelligent manufacturing, AAMAS ’02: Proceedings of the first international joint
conference on Autonomous agents and multiagent systems, ACM, New York, NY, USA,
pp. 11–18.

Banda, G. & Gallagher, J. P. (2008). Analysis of linear hybrid systems in CLP, in M. Hanus (ed.),
Pre-Proceedings of LOPSTR 2008 – 18th International Symposium on Logic-Based Program
Synthesis and Transformation, Technical University of Valencia, Spain, pp. 58–72.

Behrmann, G., David, A. & Larsen, K. G. (2004). A tutorial on Uppaal, in M. Bernardo &
F. Corradini (eds), Proceedings of 4th International School on Formal Methods for the De-
sign of Computer, Communication, and Software Systems – Formal Methods for the Design
of Real-Time Systems (SFM-RT), LNCS 3185, Springer, Berlin, Heidelberg, New York,
pp. 200–236.

Biere, A., Cimatti, A., Clarke, E. M. & Zhu, Y. (1999). Symbolic model checking without BDDs,
Proceedings of 5th International Conference on Tools and Algorithms for Construction and
Analysis of Systems (TACAS), LNCS 1579, Springer, Berlin, Heidelberg, New York,
pp. 193–207.

Borges de Sousa, J., Johansson, K. H., Silva, J. & Speranzon, A. (2007). A verified hierarchical
control architecture for coordinated multi-vehicle operations, International Journal of
Adaptive Control and Signal Processing 21(2-3): 159–188. Special issue on autonomous
adaptive control of vehicles.

Ciarlini, A. & Frühwirth, T. (2000). Automatic derivation of meaningful experiments for hy-
brid systems, Proceeding of ACM SIGSIM Conf. on Artificial Intelligence, Simulation, and
Planning (AIS’00) .

Clarke, E., Grumberg, O. & Peled, D. (1999). Model checking, Springer.
da Silva, V., Choren, R. & de Lucena, C. (2004). A UML Based Approach for Modeling and

Implementing Multi-Agent Systems, Proceedings of the Third International Joint Confer-
ence on Autonomous Agents and Multiagent Systems-Volume 2, IEEE Computer Society
Washington, DC, USA, pp. 914–921.

Del Bianco, V., Lavazza, L. & Mauri, M. (2002). Model checking uml specifications of real time
software, p. 203.

www.intechopen.com

�	
	���	���!�'�

Delzanno, G. & Podelski, A. (1999). Model checking in CLP, Proceedings of 5th International
Conference on Tools and Algorithms for Construction and Analysis of Systems (TACAS),
LNCS 1579, Springer, Berlin, Heidelberg, New York, pp. 223–239.

Egerstedt, M. (2000). Behavior Based Robotics Using Hybrid Automata, Proceedings of the Third
International Workshop on Hybrid Systems: Computation and Control, Springer, pp. 103–
116.

Fränzle, M. & Herde, C. (2007). HySAT: An efficient proof engine for bounded model checking
of hybrid systems, Formal Methods in System Design 30(3): 179–198.

Frehse, G. (2005). PHAVer: Algorithmic verification of hybrid systems past HyTech, in
M. Morari & L. Thiele (eds), Hybrid Systems: Computation and Control, 8th International
Workshop, Proceedings, LNCS 3414, Springer, Berlin, Heidelberg, New York, pp. 258–
273.

Furbach, U., Murray, J., Schmidsberger, F. & Stolzenburg, F. (2008). Hybrid multiagent systems
with timed synchronization – specification and model checking, in M. Dastani, A. El
Fallah Seghrouchni, A. Ricci & M. Winikoff (eds), Post-Proceedings of 5th International
Workshop on Programming Multi-Agent Systems at 6th International Joint Conference on
Autonomous Agents & Multi-Agent Systems, LNAI 4908, Springer, pp. 205–220.

Graf, S., Ober, I. & Ober, I. (2006). A real-time profile for UML, International Journal on Software
Tools for Technology Transfer (STTT) 8(2): 113–127.

Gulwani, S. & Tiwari, A. (2008). Constraint-based approach for analysis of hybrid systems,
in J.-F. Raskin & P. S. Thiagarajan (eds), Proceedings of 20th International Conference
on Computer Aided Verification (CAV 2008), LNCS 5123, Springer, Berlin, Heidelberg,
New York, Princeton, NJ, pp. 190–203.

Gupta, G. & Pontelli, E. (1997). A constraint-based approach for specification and verification
of real-time systems, Proceedings of IEEE Real-time Symposium pp. 230–239.

Harel, D. (1987). Statecharts: A visual formalism for complex systems, Science of Computer
Programming 8: 231–274.

Henzinger, T. (1996). The theory of hybrid automata, Proceedings of the 11th Annual Sympo-
sium on Logic in Computer Science, IEEE Computer Society Press, New Brunswick, NJ,
pp. 278–292.

Henzinger, T. A., Ho, P.-H. & Wong-Toi, H. (1995a). HyTech: The Next Generation, IEEE
Real-Time Systems Symposium, pp. 56–65.

Henzinger, T., Ho, P.-H. & Wong-Toi, H. (1995b). A user guide to HyTech, Proceedings of Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), LNCS 1019, Springer, Berlin, Heidelberg, New York, pp. 41–71.

Henzinger, T., Kopke, P., Puri, A. & Varaiya, P. (1998). What’s Decidable about Hybrid Au-
tomata?, Journal of Computer and System Sciences 57(1): 94–124.

Hickey, T. J. & Wittenberg, D. K. (2004a). Rigorous modeling of hybrid systems using inter-
val arithmetic constraints, in R. Alur & G. J. Pappas (eds), Proceedings of 7th Interna-
tional Workshop on Hybrid Systems: Computation and Control (HSCC 2004), LNCS 2993,
Springer, Berlin Heidelberg, New York, Philadelphia, PA, USA, pp. 402–416.

Hickey, T. J. & Wittenberg, D. K. (2004b). Using analytic CLP to model and analyze hybrid sys-
tems, in V. Barr & Z. Markov (eds), Proceedings of the 17th International Florida Artificial
Intelligence Research Society Conference, AAAI Press.

Holzmann, G. (1997). The model checker SPIN, IEEE Transactions on software engineering
23(5): 279–295.

www.intechopen.com

�������	
	�����������	������������������	��������	������������ �'&

Jaffar, J. & Lassez, J. (1987). Constraint logic programming, Proceedings of the 14th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, ACM New York,
NY, USA, pp. 111–119.

Jaffar, J., Michaylov, S., Stuckey, P. & Yap, R. (1992). The CLP(R) language and system, ACM
Transactions on Programming Languages and Systems 14(3): 339–395.

Jaffar, J., Santosa, A. & Voicu, R. (2004). A clp proof method for timed automata, Real-Time
Systems Symposium, IEEE International 0: 175–186.

Jha, S., Brady, B. A. & Seshia, S. A. (2007). Symbolic reachability analysis of lazy linear hybrid
automata, in J.-F. Raskin & P. S. Thiagarajan (eds), Proceedings of 5th International Con-
ference on Formal Modeling and Analysis of Timed Systems (FORMATS 2007), LNCS 4763,
Springer, Berlin, Heidelberg, New York, Salzburg, Austria, pp. 241–256.

Knappi, A., Merzi, S. & Rauh, C. (2002). Model Checking Timed UML State Machines and
Collaborations, Proceedings of the 7th International Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems: Co-sponsored by IFIP WG 2.2, Springer, p. 395.

Lilius, J. & Porres, I. (1999). Formalising UML state machines for model checking, The Unified
Modeling Language: UML’99: Beyond the Standard: Second International Workshop, Fort
Collins, Springer, p. 430.

Mohammed, A. & Furbach, U. (2008a). Modeling multi-agent logistic process system using
hybrid automata, Modelling, Simulation, Verification and Validation of Enterprise Infor-
mation Systems, Proceedings of the 6th International Workshop on Modelling, Simulation,
Verification and Validation of Enterprise Information Systems, MSVVEIS-2008, INSTICC
PRESS, pp. 141–149.

Mohammed, A. & Furbach, U. (2008b). Using CLP to model hybrid systems, Proceedings of
Annual ERCIM Workshop on Constraint Solving Programming (CSCLP2008).
URL: http://pst.istc.cnr.it/CSCLP08/program

Mohammed, A. & Furbach, U. (2009). Multi-agent systems: Modeling and verification using
hybrid automata, Proceedings of the 7th International Workshop on Programming Multi-
Agent Systems (ProMAS 2009), May 10-15, 2009, Budapest, Hungary. Extended version
available as Technical Report 8/2009, Department of Computer Sceince,University of
Koblenz-landau.

Mohammed, A. & Schwarz, C. (2009). HieroMate: A graphical tool for specification and verifi-
cation of hierarchical hybrid automata, in B. Mertsching, M. Hund & Z. Aziz (eds), KI
2009: Advances in Artificial Intelligence, Proceedings of 32nd Annual German Conference
on Artificial Intelligence, LNAI 5803, Springer, Berlin, Heidelberg, New York, Pader-
born, pp. 695–702.

Mohammed, A. & Stolzenburg, F. (2008). Implementing hierarchical hybrid automata using
constraint logic programming, in S. Schwarz (ed.), Proceedings of 22nd Workshop on
(Constraint) Logic Programming, University Halle Wittenberg, Institute of Computer
Science, Dresden, pp. 60–71. Technical Report 2008/08.

Mohammed, A. & Stolzenburg, F. (2009). Using constraint logic programming for modeling
and verifying hierarchical hybrid automata, Technical Report 6/2009, Department of
Computer Science, Universität Koblenz–Landau.

Möller, O., David, A. & Yi, W. (2003). Verification of uml statechart with real-time extensions,
Fundamental Approaches to Software Engineering (FASE’2002), LNCS 2306, Springer-
Verlag, pp. 218–232.

www.intechopen.com

�	
	���	���!�''

www.intechopen.com

Robot Soccer

Edited by Vladan Papi

ISBN 978-953-307-036-0

Hard cover, 348 pages

Publisher InTech

Published online 01, January, 2010

Published in print edition January, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

The idea of using soccer game for promoting science and technology of artificial intelligence and robotics was

presented in the early 90s of the last century. Researchers in many different scientific fields all over the world

recognized this idea as an inspiring challenge. Robot soccer research is interdisciplinary, complex, demanding

but most of all, fun and motivational. Obtained knowledge and results of research can easily be transferred

and applied to numerous applications and projects dealing with relating fields such as robotics, electronics,

mechanical engineering, artificial intelligence, etc. As a consequence, we are witnesses of rapid advancement

in this field with numerous robot soccer competitions and a vast number of teams and team members. The

best illustration is numbers from the RoboCup 2009 world championship held in Graz, Austria which gathered

around 2300 participants in over 400 teams from 44 nations. Attendance numbers at various robot soccer

events show that interest in robot soccer goes beyond the academic and R&D community. Several experts

have been invited to present state of the art in this growing area. It was impossible to cover all aspects of the

research in detail but through the chapters of this book, various topics were elaborated. Among them are

hardware architecture and controllers, software design, sensor and information fusion, reasoning and control,

development of more robust and intelligent robot soccer strategies, AI-based paradigms, robot communication

and simulations as well as some other issues such as educational aspect. Some strict partition of chapter in

this book hasn’t been done because areas of research are overlapping and interweaving. However, it can be

said that chapters at the beginning are more system-oriented with wider scope of presented research while

later chapters generally deal with some more particular aspects of robot soccer.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ammar Mohammed, Ulrich Furbach and Frieder Stolzenburg (2010). Multi-Robot Systems: Modeling,

Specification, and Model Checking, Robot Soccer, Vladan Papi (Ed.), ISBN: 978-953-307-036-0, InTech,

Available from: http://www.intechopen.com/books/robot-soccer/multi-robot-systems-modeling-specification-

and-model-checking

www.intechopen.com

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

Phone: +86-21-62489820

Fax: +86-21-62489821

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed under

the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0

License, which permits use, distribution and reproduction for non-commercial

purposes, provided the original is properly cited and derivative works building

on this content are distributed under the same license.

