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1. Introduction 

Underactuation, impulsive nature of the impact with the environment, the existence of feet 
structure and the large number of degrees of freedom are the basic problems in control of 
the biped robots. Underactuation is naturally associated with dexterity [1]. For example, 
headstands are considered dexterous. In this case, the contact point between the body and 
the ground is acting as a pivot without actuation. The nature of the impact between the 
lower limbs of the biped walker and the environment makes the dynamic of the system to 
be impulsive. The foot-ground impact is one of the main difficulties one has to face in design 
of robust control laws for biped walkers [2]. Unlike robotic manipulators, biped robots are 
always free to detach from the walking surface and this leads to various types of motions 
[2]. Finally, the existence of many degrees of freedom in the mechanism of biped robots 
makes the coordination of the links difficult. According to these facts, designing practical 
controller for biped robots remains to be a challenging problem [3]. Also, these features 
make applying traditional stability margins difficult.  
In fully actuated biped walkers where the stance foot remains flat on the ground during 
single support phase, well known algorithms such as the Zero Moment Point (ZMP) 
principle guarantees the stability of the biped robot [4]. The ZMP is defined as the point on 
the ground where the net moment generated from ground reaction forces has zero moment 
about two axes that lie in the plane of ground. Takanishi [5], Shin [6], Hirai [7] and Dasgupta 
[8] have proposed methods of walking patterns synthesis based on ZMP. In this kind of 
stability, as long as the ZMP lies strictly inside the support polygon of the foot, then the 
desired trajectories are dynamically feasible. If the ZMP lies on the edge of the support 
polygon, then the trajectories may not be dynamically feasible. The Foot Rotation Indicator 
(FRI) [9] is a more general form of the ZMP. FRI is the point on the ground where the net 
ground reaction force would have to act to keep the foot stationary. In this kind of stability, 
if FRI is within the convex hull of the stance foot, the robot is possible to walk and it does 
not roll over the toe or the heel. This kind of walking is named as fully actuated walking. If 
FRI is out of the foot projection on the ground, the stance foot rotates about the toe or the 
heel. This is also named as underactuated walking. For bipeds with point feet [10] and 

Source: Human-Robot Interaction, Book edited by: Daisuke Chugo,  
 ISBN 978-953-307-051-3, pp. 288, February 2010, INTECH, Croatia, downloaded from SCIYO.COM
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Passive Dynamic walkers (PDW) [11] with curved feet in single support phase, the ZMP 
heuristic is not applicable. Westervelt in [12] has used the Hybrid Zero Dynamics (HZD) 
[13], [14] and Poincaré mapping method [15]-[18] for stability of RABBIT using 
underactuated phase. The controller proposed in this approach is organized around the 
hybrid zero dynamics so that the stability analysis of the closed loop system may be reduced 
to a one dimensional Poincaré mapping problem. HZD involves the judicious choice of a set 
of holonomic constraints that were imposed on the robot via feedback control [19]. 
Extracting the eigenvalues of Poincaré return map is commonly used for analyzing PDW 
robots. But using of eigenvalues of Poincaré return maps assumes periodicity and is valid 
only for small deviation from limit cycle [20].        
The ZMP criterion has become a very powerful tool for trajectory generation in walking of 
biped robots. However, it needs a stiff joint control of the prerecorded trajectories and this 
leads to poor robustness in unknown rough terrain [20] while humans and animals show 
marvelous robustness in walking on irregular terrains. It is well known in biology that there 
are Central Pattern Generators (CPG) in spinal cord coupling with musculoskeletal system 
[21]-[23]. The CPG and the feedback networks can coordinate the body links of the 
vertebrates during locomotion. There are several mathematical models which have been 
proposed for a CPG. Among them, Matsuoka's model [24]-[26] has been studied more. In 
this model, a CPG is modeled by a Neural Oscillator (NO) consisting of two mutually 
inhibiting neurons. Each neuron in this model is represented by a nonlinear differential 
equation. This model has been used by Taga [22], [23] and Miyakoshi [27] in biped robots. 
Kimura [28], [29] has used this model at the hip joints of quadruped robots. 
The robot studied in this chapter is a 5-link planar biped walker in the sagittal plane with 
point feet. The model for such robot is hybrid [30] and it consists of single support phase 
and a discrete map to model the frictionless impact and the instantaneous double support 
phase. In this chapter, the goal is to coordinate and control the body links of the robot by 
CPG and feedback network. The outputs of CPG are the target angles in the joint space, 
where P controllers at joints have been used as servo controllers. For tuning the parameters 
of the CPG network, the control problem of the biped walker has been defined as an 
optimization problem. It has been shown that such a control system can produce a stable 
limit cycle (i.e. stride). The structure of this chapter is as follows. Section 2 models the 
walking motion consisting of single support phase and impact model. Section 3 describes 
the CPG model and tuning of its parameters. In Section 4, a new feedback network is 
proposed. In Section 5, for tuning the weights of the CPG network, the problem of walking 
control of the biped robot is defined as an optimization problem. Also the structure of the 
Genetic algorithm for solving this problem is described. Section 6 includes simulation 
results in MATLAB environment. Finally, Section 7 contains some concluding remarks. 

2. Robot model  

The overall motion of the biped involves continuous phases separated by abrupt changes 
resulting from impact of the lower limbs with the ground. In single support phase and 
double support phase, the biped is a mechanical system that is subject to unilateral 
constraints [31]-[33]. In this section, the biped robot has been assumed as a planar robot 
consisting of n  rigid links with revolute and parallel actuated joints to form a tree structure. 

In the single support phase, the mechanical system consists of 2n +   DOF, where 1n −  

www.intechopen.com



Design of a Neural Controller for Walking of a 5-Link Planar Biped Robot via Optimization   

 

269 

DOF associated with joint coordinates which are actuated, two DOF associated with 
horizontal and vertical displacements of the robot in the sagittal plane which are 
unactuated, and one DOF associated with orientation of the robot in sagittal plane which is 

also unactuated. With these assumptions, the generalized position vector of the system (
e
q ) 

can be split in two subsets q  and r . It can be expressed as   

 : ( , ) ,T T T
eq q r=  (1) 

where 0 1 1: ( , ,..., )Tnq q q q −=  encapsulates the joint coordinates and 0q  which is the 

unactuated DOF between the stance leg and the ground. Also 2: ( , )Tr x y= ∈ {  is the 

Cartesian coordinates of the stance leg end.   

A. Single support phase  

Figure 1 depicts the single support phase and configuration variables of a 5-link biped robot 
( 5n = ). In the single support phase, second order dynamical model immediately follows 
from Lagrange's equation and the principle of virtual work [34]-[36]  
 

 

Fig. 1. Single support phase and the configuration variables. 

 ,( ) ( , ) ( ) ( , ) ( ) ,st T ext st
e e e e e e e e e e e e e e eM q q H q q G q B u B F q q J q F+ + = − +$$ $ $  (2) 

where ( 2) ( 2)( ) n n
e eM q + × +∈ {  is the symmetric and positive definite inertia matrix, 

2( , ) n
e e eH q q +∈$ {  includes centrifugal and Coriolis terms and 2( ) n

e eG q +∈ { is the vector 

containing gravity terms. Also 1
1 2 1: ( , ,..., )T n

nu u u u −
−= ∈ { includes the joint torques 

applied at the joints of the robot, ( 2) ( 1)n n
eB

+ × −∈ {  is the input matrix, 1( , ) n
e e eF q q −∈$ {  

includes the joint frictions modeled by viscous and static friction terms, 
2 ( 2)( ) :st st n

e e eJ q r q × += ∂ ∂ ∈ {  is the Jacobian at the stance leg end. Also 

, , , 2: ( , )ext st ext st ext st T
x yF F F= ∈ {  is the ground reaction force at the stance leg end. With 

setting : ( , )T T T
eq q r=  in (2), the dynamic equation of the mechanical system can be 

rewritten as the following form   
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,

11 12 1 1

,
2 212 2

2 1 2 1

0 0
( ) ( ) ( , ) ( )

( , ) ( )  ,
( , ) ( )( )  

0 0

ext st
e e e e e xst T

e eT ext st
e e e e e y

M q M q q H q q G q F
u F q q J q

r H q q G qM q m I F
× ×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + = − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

$$ $
$

$$ $
 (3) 

where m  is the total mass of the robot. If we assume that the Cartesian coordinates have 

been attached to the stance leg end and the stance leg end is stationary (i.e. in contact with 

the ground and not slipping), these assumptions (i.e. 0,  0,  0r r r= = =$ $$ ) will allow one to 

solve for the ground reaction force as explicit functions of ( , , )q q u$  [37], [38]. Also, the 

dynamic equation in (3) will be reduced with this assumptions and this will lead to a lower 

dimensional mechanical model which describes the single support phase if the stance leg 

end is stationary as follows     

 
,

0 0
( ) ( , ) ( )

( , )

( , , ),ext st

M q q H q q G q
u F q q

F q q u

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ + = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= Ψ

$$ $
$

$
 (4) 

where 11( ) ( )M q M q=  and 1 2(.) : nTQ −Ψ × →{ {  is a nonlinear mapping of ( , , )q q u$ . Also 

: { : ( , )  ,  }T T T nTQ x q q q Q q= = ∈ ∈$ $ { is the state space of the reduced model where Q  is a 

simply connected, open subset of [ , )nπ π− . Note that 0q  is an unactuated DOF in (4) (i.e. 

without actuation) and hence dim dimu q< . It can be shown that  

 1

1

  

( , , ) ,
( )

( )

n

i i
cmi

n
cm

i i

i

m x
mx

q q u
m y g

m y g

=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥Ψ = =⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥⎣ ⎦+⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑

$$ $$
$

$$
$$

 (5) 

where : ( , )Ti i ir x y= and : ( , )Tcm cm cmr x y= are the coordinate of the mass center of link i  and 

the mass center of the robot, respectively, im  is the mass of the link i  and g  is the 

gravitational acceleration. With assumption 1( )
cm
x f q=  and 2( )

cm
y f q= , we have 

 
2 2

1 1

2 2
2 2

( )
( , , ) .

( )

T

cm T

f q q f q q
r q q q q

f q q f q q

⎡ ⎤⎡ ⎤∂ ∂ ∂ ∂⎢ ⎥⎢ ⎥= + ⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

$ $
$$ $ $$ $$

$ $
 (6) 

With setting 1 1( ) (0, ) ( ) ( ( , ) ( ))T Tq M q u M q H q q G q− −= − +$$ $  where : ( , )u u F q q= − $  from 

equation (4) in equation (6) and using equation (5), we have     

 

1 1 1

11

2

0 0
( , , ) ( ) ( ) ( ) ( ) ( ) ( ) ( , )

( , )

( ) 0
( ) ( ) ( )  ,                                       

( )

c c c

T

c

T

q q u mJ q M q mJ q M q mJ q M q H q q
u F q q

q H q q
mJ q M q G q m

mgq H q q

− − −

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Ψ = − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥− + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

$ $
$

$ $

$ $

 (7)     
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where 1 2

2

( ) :c n
cm

f q
J q r q

f q
×

⎡ ⎤∂ ∂⎢ ⎥= ∂ ∂ = ∈⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦
{  is the Jacobian matrix at the center of mass, also 

2 2
1 1( ) : n nH q f q ×= ∂ ∂ ∈ {  and 2 2

2 2( ) : n nH q f q ×= ∂ ∂ ∈ { . The validity of the reduced 

model in (4) is dependent on two following conditions     

 
)   0

)   ,
cm

cm cm

i y g

ii x y gμ
+ >
< +

$$
$$ $$

 (8) 

where μ  is the static friction coefficient between the stance leg end and the ground. The first 

condition in (8) is to ensure that the stance leg end is contact with the walking surface and 
the second condition is to ensure that the slipping dos not occur at the stance leg end [39]. 

The dynamic equation of (4) in the state-variable is expressed as ( ) ( )x f x g x u= +$  where 

: ( , )T T Tx q q TQ= ∈$  is the state vector. If we assume that 1 :x q=  and 2 :x q= $ , we get 

1 2( , )T T Tx x x=  and   

 

2

1
1 1 2 1

1 2

1

1 11
1

1

0( )
( ) ( , ) ( )  

( , )

0

0( ) .
( ) 

n n

n

n

x

f x
M x H x x G x

F x x

g x
M x

I

−

× −

× −−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎛ ⎛ ⎞⎞= ⎟⎟⎜ ⎜⎢ ⎥⎟⎟⎜ ⎜− + + ⎟⎟⎢ ⎥⎜ ⎜ ⎟⎟⎟⎟⎜ ⎜⎝ ⎝ ⎠⎠⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥⎛ ⎞= ⎟⎜⎢ ⎥⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

 (9) 

B.  Frictionless impact model 

In this section, following assumptions are done for modeling the impact [40]:    

A1. the impact is frictionless (i.e. ( , ) 0F q q =$ ). The main reason for this assumption is the 

problem arising of the introducing of dry friction [2]; 
A2. the impact is instantaneous; 
A3. the reaction forces due to the impact at impact point can be modeled as impulses; 
A4. the actuators at joints are not impulsive; 
A5. the impulsive forces due to the impact may result in instantaneous change in the 

velocities, but there is no instantaneous change in the positions; 
A6. impact results in no slipping and no rebound of the swing leg; and 
A7. stance foot lifts from the ground without interaction.   
With these assumptions, impact equation can be expressed by the following equation 

 ,( ) ( ) ( ) ( ) ( ) ,sw T ext sw
e e e e e e e eM q q t M q q t J q Fδ+ −− =$ $  (10) 

where , ,: ( )
t

ext sw ext sw

t
F F dδ τ τ

+

−
= ∫  is the impulsive force at impact point and 

2 ( 2)( ) :sw sw n
e e e
J q r q × += ∂ ∂ ∈ {  is the Jacobian matrix at the swing leg end. The assumption 

A6 implies that impact is plastic. Hence, impact equation becomes  
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,( ) ( ) ( ) ( ) ( )

( ) ( ) 0.

sw T ext sw
e e e e e e e e

sw
e e e

M q q t J q F M q q t

J q q t

δ+ −

+

− =

=

$ $

$
 (11) 

This equation is solvable if the coefficient matrix has full rank. The determinant of the 

coefficient matrix is equal to 1det ( ) det( ( ) ( ) ( ) )sw sw T
e e e e e e e eM q J q M q J q−×  and it can be shown 

that the coefficient matrix has full rank iff the robot is not in singular position. The solution 
of the equation in (11) can be given by the following equation     

 
,

( ) ( ) ( )
( ) ,

0

e e e e
eext sw

q t M q q t
q

Fδ

+ −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= Λ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

$ $
 (12) 

where 

 

1
( ) ( )

( ) : ,
( ) 0

sw T
e e e e

e sw
e e

M q J q
q

J q

−⎡ ⎤−⎢ ⎥Λ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 (13) 

and also ( )( ) : ( ) ,0,0
T

T
e
q t q t− −=  and ( )( ) : ( ) ,0,0

T
T

e
q t q t+ += . The map from ( )eq t

−$  to ( )eq t
+$  

without relabeling is  

 11

,
21

( ) ( ) ( ) ( )

( ) ( ) ( ).

e e e e e

ext sw
e e e e

q t q M q q t

F q M q q tδ

+ −

−

= Λ

= Λ

$ $

$
 (14) 

After solving these equations, it is necessary to change the coordinates since the former 
swing leg must now become the stance leg. Switching due to the transfer of pivot to the 

point of contact is done by relabeling matrix [39], [40] n nR ×∈ { . Hence, we have 

 
2 11

( ) ( )

( ) 0 ( ) ( ) ( ).  
n n e e e e

q t Rq t

q t R I q M q q t

+ −

+ −
×

=
⎡ ⎤= Λ⎢ ⎥⎣ ⎦$ $

 (15) 

The final result is an expression for x+  in terms of x− , which is written as [39]-[41] 

 ( ).x x+ −= Δ  (16) 

In equation (16), (.) : S TQΔ →  is the impact mapping where 

: {( , )  ( ) 0}swS q q TQ y q= ∈ =$  is the set of points of the state-space where the swing leg 

touches the ground. : ( ( ) , ( ) )T T Tx q t q t+ + += $  and : ( ( ) , ( ) )T T Tx q t q t− − −= $  are the state vector 

of the system after impact and the state vector of the system before impact, respectively. 
Also, we have  

 1

1 2

( )
( ) : ,

( ( )) ( )

Rx t
x

x t x t

−
−

− −

⎡ ⎤
⎢ ⎥Δ = ⎢ ⎥Σ⎢ ⎥⎣ ⎦

 (17) 
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where (.) : n nQ ×Σ → {  by 1 2 11
2

( ( )) : 0 ( ) ( )
0
n

n n e e e
n

I
x t R I q M q−

×
×

⎡ ⎤
⎢ ⎥⎡ ⎤Σ = Λ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

. The ground 

reaction force due to the impact can be shown as the following form   

 ,
1 2( ( )) ( ),ext swF x t x tδ − −= Γ  (18) 

where 2(.) : nQ ×Γ → {  by 1 21
2

( ( )) : ( ) ( )
0
n

e e e
n

I
x t q M q−

×

⎡ ⎤
⎢ ⎥Γ = Λ ⎢ ⎥
⎢ ⎥⎣ ⎦

. The validity of the results of 

equation (17) depends on two following conditions  

 1 2

2 1 2 1 1 2

)      ( ( )) ( ) 0

)      ( ( )) ( ) ( ( )) ( ) 0,

i x t x t

ii x t x t x t x tμ

− −

− − − −

Θ >

Γ − Γ >
 (19) 

where  1
1 1 1( ( )) : ( ( )) ( ( ))sw n

yx t J Rx t x t− − − ×Θ = Σ ∈ {  and 1( ) :sw sw n
y
J q y q ×= ∂ ∂ ∈ { . The first 

condition is to ensure that the swing foot lifts from the ground at t+ . The second condition 
is to ensure that the impact results in no slipping [39].  The valid results are used to re-
initialize the model for next step. Furthermore, the double support phase has been assumed 
to be instantaneous. If we define  

 1 2 1 2 2 1 2 1 1 2: { ( , ) ( ) 0 ,  ( ) ( ) 0},T T Tx x x S x x x x x xμΩ = = ∈ Θ > Γ − Γ >  (20) 

the hybrid model of the mechanical system can be given by   

 
( ) ( )      

( )            ,

x f x g x u x S

x x x

−

+ − −

= + ∉

= Δ ∈ Ω

$
 (21) 

where ( ) : lim ( )
t

x t x
τ

τ
−

−

→
= . For x S− ∈ − Ω , this model is not valid. Also the validity 

conditions in (8) can not be expressed only as a function of x  and they can be expressed as a 

function of ( , )x u .   

3. Control system 

Neural control of human locomotion is not yet fully understood, but there are many 
evidences suggesting that the main control of vertebrates is done by neural circuits called 
central pattern generators (CPG) in spinal cord which have been coupled with 
musculoskeletal system. These central pattern generators with reflexes can produce 
rhythmic movements such as walking, running and swimming. 

A. Central pattern generator model 

There are several mathematical models proposed for CPG. In this section, neural oscillator 
model proposed by Matsuoka has been used [24], [25]. In this model, each neural oscillator 
consists of two mutually inhibiting neurons (i.e. extensor neuron and flexor neuron). Each 
neuron is represented by the following  nonlinear differential equations  
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{ , } { , } { , } { , } 0 { , } { , } { , }
1

{ , } { , } { , }

{ , } { , }

 

 

  max(0, ),

n

e f i e f i fe f e i e f i e f i e f ij e f j

j

e f i e f i e f i

e f i e f i

u u w y v u Feed w y

v v y

y u

τ β

τ
=

= − + − + + +

′ = − +
=

∑$

$  (22) 

where suffixes f and e  mean flexor muscle and extensor muscle, respectively. Also suffix i  

means the i th oscillator. iu  is the inner state of i th neuron, iy is the output of the i th 

neuron, iv is a variable which represents the degree of self-inhibition effect of the i th 

neuron, 0u  is an external input from brain with a constant rate and iFeed  is a feedback 

signal from the mechanical system which can be an angular position or an angular velocity. 

Moreover, τ  and τ ′  are the time constants associated with iu  and iv , respectively, β  is a 

constant representing the degree of the self-inhibition influence on the inner state and ijw  is 

a connecting weight between the i th and j th neurons. Finally, the output of the neural 

oscillator is a linear combination of the extensor neuron inner state and the flexor neuron 

inner state 

 , , , .  NO i e e i f f iy p u p u= − +  (23) 

The positive or negative value of ,NO iy  corresponds to activity of flexor or extensor muscle, 

respectively. The output of the neural oscillator can be used as a reference trajectory, joint 
torque and phase. In this chapter, it is used as a reference trajectory at joints. The studied 
robot (see Fig. 1) has four actuated joints (i.e. hip and knee joints of the legs). We assume 
that one neural oscillator has been used for generating reference trajectories at each of the 
actuated joints.    

B.  Tuning of the CPG parameters  

The walking period is a very important factor since it much influences stability, maximum 
speed and energy consumption. The walking mechanism has its own natural frequency 
determined mainly by the length of the links of the legs. It appears that humans exploit the 
natural frequencies of their arms, swinging pendulums at comfortable frequencies equal to 
the natural frequencies [26]. Human arms can be thought of as masses connected by springs, 
whose frequency response makes the energy and the control required to move the arm vary 
with frequency [26]. Humans certainly learn to exploit the dynamics of their limbs for 
rhythmic tasks [42], [43]. Robotic examples of this idea include open-loop stable systems 
where the dynamics are exploited giving systems which require little or no active control for 
stable operation (e.g. PDW [11]). At the resonant frequency, the control need only inject a 
small amount of energy to maintain the vibration of the mass of the arm segment on the 
spring of the muscles and tendons. Extracting and using the natural frequency of the links of 
the robots is a desirable property of the robot controllers. According to these facts, we match 
the endogenous frequency of each neural oscillator with the resonant frequency of the 
corresponding link. On the other hand, when swinging or supporting motions of the legs 
are closer to the free motion, there will not be any additional acceleration and deceleration 
and the motion will be effective [44]. When no input is applied to the CPG, the frequency of 
it is called endogenous frequency. Endogenous frequency of the CPG is mainly determined 
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by τ  and τ ′ .  In this section, we change the value of τ  with constant value of τ τ ′ . In this 

case, the endogenous frequency of CPG is proportional to 1 τ . It was pointed out that the 

proper value of the τ τ ′  for stable oscillation is within 0.1,0.5⎡ ⎤⎣ ⎦  [42]. After tuning the time 

constants of the CPG, other parameters of CPG can be tuned by using the necessary 

conditions for free oscillation. These necessary conditions for free oscillation can be written 

as the following form [24], [25]  

 

0

)     1

)    (1 )

)  0. 

fe

fe

i w

ii w

iii u

β
τ τ

> − −
′< − +

>
 (24) 

Table I specifies the lengths, masses and inertias of each link of the robot studied in this 

chapter [3]. By these data and extracting and using resonant frequencies of the links, we 

match the endogenous frequency of the CPG with the resonant frequency of each link. In 

this case, τ  is designed at 0.13 ( )s  and 1.53 0.2 (s)τ τ′ = =  for all of the neural oscillators. 

According to conditions in (24), we tune β   and 
few  to 2 and -2, respectively. Also 0u  is 

equal to 5. The amplitude of the output signal of the CPG is approximately proportional to 

0u , ep  and 
fp .  The output parameters of the CPGs (i.e. ep  and 

fp  of oscillators at the knee 

and the hip joints) can be determined by the amplitude of the desired walking algorithm. 

Table II specifies the designed values of the output parameters of the oscillators at the knee 

and the hip joints of the robot. 
 

 mass ( )kg  length ( )m  inertia 2( )kgm  

Torso 12.00 0.625 1.33 

Femur 6.80 0.40 0.47 

Tibia 3.20 0.40 0.20 

Table I. The parameters of the robot 

 knee hip 

fp 0.11 0.15 

ep  0.01 0.02 

Table II. The output parameters of the cpg 

4. Feedback network  

It is well known in biology that the CPG network with feedback signals from body can 

coordinate the members of the body, but there is not yet a suitable biological model for 

feedback network. The control loop used in this section is shown in the Fig. 2 where 

( )1 2 3 4: , , ,
T

q q q qθ =#  encapsulates the actuated joint coordinates and there is not any feedback 

signal from the unactuated DOF (i.e. 0q ). The feedback network in this control loop is for 

autonomous adaptation of the CPG network. In other hand, by using feedback network, the 
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CPG network (i.e. the higher level of the control system) can correct its outputs (i.e. 

reference trajectories) in various conditions of the robot.  
In animals, the stretch reflexes act as feedback loop [44]. In this section, the feedback signals 
to the CPG neurons of the hip joints are the tonic stretch reflex as follows [22], [23] 

 , , 0,

, , 0,

 ( )

( ),
e h tsr h hip hip

f h tsr h hip hip

Feed k

Feed k

θ θ
θ θ

= −
= − −

 (25) 

where ,tsr hk  is a constant value and also 0,hipθ  is the neutral point of this feedback loop at 

hip joints. We tune the ,tsr hk  and 0,hipθ  to 1 and 0 ( )rad , respectively.  
One of important factors in control of walking is the coordination of the knee and the hip 
joints in each leg. For tuning the phase difference between the oscillators of the knee and the 
hip joints in each leg, we propose the following feedback structure which is applied only at 
oscillators of the knee joints     
 

 

Fig. 2. The control loop used for the biped walker. 

 , , 0, 0,

, , 0, 0,

  ( ) (  ) ( ) ( )

( ) (  ) ( ) ( ),
e k tsr k knee knee hip f hip hip hip

f k tsr k knee knee hip f hip hip hip

Feed k u k u

Feed k u k u

θ θ θ θ θ θ
θ θ θ θ θ θ

= − − + −

= − − − − −

$ $
$ $  (26) 

where ,tsr hk and fk  are constant values , 0,kneeθ  is the neutral point of the tonic stretch reflex 

signal at knee joints and (.)u  is a unit step function. The first terms of feedback signals in 

(26) are the tonic stretch reflex terms. These terms are active in stance phase (i.e. 0hipθ <$ ). 

With these terms, we force the mechanical system to fix the stance knee at a certain angular 

position (i.e. 0,kneeθ ) during the single support phase like the knee joints of the human being. 

We call 0,kneeθ  as the bias of the stance knee. In this section, we tune ,tsr hk  and 0,kneeθ  to 10 

and 0.1 ( )rad , respectively. The second terms in (26) are active in swinging phase (i.e. 

0hipθ >$ ). These terms force the knee oscillator to increase its output at the beginning of 

swinging phase (i.e. 0,hip hipθ θ< ). Also these terms force the knee oscillator to decrease its 

output at the end of swinging phase (i.e. 0,hip hipθ θ> ). We tune fk  and 0,hipθ to 4 and 

0 ( )rad , respectively.   

5. Tuning of the weights in the CPG network  

The coordination and the phase difference among the links of the biped robot in the 
discussed control loop are done by the synaptic weights of connections in the CPG network. 
There are two kinds of connections in the CPG network. One of them is the connections 
among the flexor neurons and the other one is the connections among the extensor neurons. 

CPG 

Network 

Servo 

Controller uxgxfx ~ )()( +=$

)( −+ Δ= xx

Feedback 

Network 

Feed dθ
~

θ
~

u~ θ
~

Ω∈−x+= xx0
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The neural oscillators in the CPG network can be relabeled as shown in the Fig. 3. According 
to this relabeling law,  
 

 

Fig. 3. The CPG network and the synaptic connections. 

NO1, NO2, NO3 and NO4 correspond to the right knee, the right hip, the left hip and the 

left knee neural oscillators, respectively. We show the weight matrix among the flexor and 

extensor neurons by 
fW and e

W , respectively. According to the symmetry between the right 

leg and the left leg, these matrixes can be written as the following form 

 

{ , },(1,2) { , },(1,3) { , },(1,4)

{ , },(2,1) { , },(2,3) { , },(2,4)
{ , }

{ , },(2,4) { , },(2,3) { , },(2,1)

{ , },(1,4) { , },(1,3) { , },(1,2)

0

0
.

0

0

f e f e f e

f e f e f e
f e

f e f e f e

f e f e f e

w w w

w w w
W

w w w

w w w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (27) 

This symmetry can be given by the following equations 

 { , },( , ) { , },(5 ,5 )

{ , },( , )

     ; , 1,  ... ,4

0                     ; 1,  ... ,4.
f e i j f e i j

f e i i

w w i j

w i

− −= =
= =

 (28) 

In this chapter, we assume f eW W= . With this assumption and the symmetry between legs, 

there are six unknown weights which should be determined (bold lines in Fig. 3). For tuning 
the unknown weights of the CPG network, we should use a tool of the concept of stability 
for the biped robots. But the concept of stability and stability margin for biped robots is 
difficult to precisely define, especially for underactuated biped robots with point feet. Since 
the discussed robot in this chapter has point feet, the ZMP heuristic is not applicable for 
trajectory generation and verification of the dynamic feasibility of trajectories during 
execution. In addition, extracting the eigenvalues magnitude of the Poincaré return map 
may be sufficient for analyzing periodic bipedal walking but they are not sufficient for 
analyzing nonperiodic motions such as when walking over discontinuous rough terrain. 
Also, large disruptions from a limit cycle, such as when being pushed, cannot be analyzed 
using this technique. Some researchers [45] have suggested that angular momentum about 
the Center of Mass (CoM) should be minimized throughout a motion. As studied in [20], 
minimizing the angular momentum about the CoM is neither necessary nor sufficient 
condition for stable walking. According to these facts, for tuning the weights of the CPG 
network, we define the control problem of the underactuted biped walking as an 
optimization problem. By finding the optimal solution of the optimization problem, the 
unknown weights are determined. The total cost function of the optimization problem in 
this chapter is defined as a summation of sub cost functions and it can be given by 

)2,1(w )1,2(w

)3,2(w

)4,1(w

)3,1(w

)4,2(w

NO1 

Right knee 

NO3 

Left hip 

NO4 

Left knee 

NO2 

Right hip 
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 1 1 2 2 3 3( ) : ( ) ( ) ( ),J X a J X a J X a J X= + +  (29) 

where 

 ( )(1,2) (1,3) (1,3) (2,1) (2,3) (2,4): , , , , ,
T

X w w w w w w=  (30) 

and 
6

0.5,0.5X ⎡ ⎤∈ −⎣ ⎦ . Also ; 1,2,3ia i =  are the positive weights. The first sub cost function 

in (29) can be defined as a criterion of the difference between the distance travelled by the 

robot in the sagittal plane and the desired distance 

 

1

1
...

1
( ) : ( ),

i f

i
m T T t

J X sl T
D + + ≤

= ∑  (31) 

where ( )isl T  is the step length of the i th step, iT  is the time duration of the i th step and 

mD  is an upper bound of the traveled distance. Also, ft  is the duration of the simulation. 

This sub cost function is a good criterion of the stability.  
The second sub cost function in (29) can be defined as the least value of the normalized 
height of the CoM of the mechanical system during simulation and it can be given by 

 2
[0 ]

,max

( )
( ) : min ,

f

cm

t t
cm

y t
J X

y∈
=  (32) 

where ,maxcmy  is the value of the height of the CoM where the vector q  is equal to zero. 

Since the biped should maintain an erect posture during locomotion, this sub cost function 

is defined as a criterion of the erect body posture.  

The regulation of the rate change of the angular momentum about the CoM is not a good 

indicator of whether a biped will fall but the reserve in angular momentum that can be 

utilized to help recover from push or other disturbance is important. We use the rate change 

of the angular momentum about the CoM for defining the third sub cost function. With 

 

 

Fig. 4. The virtual inverted pendulum. 
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setting sincmx l ϕ=  and coscmy l ϕ=  in equation (5) where l  is the distance from the 

stance leg end to the CoM and ϕ  is the angle from the stance leg end to the CoM with 

vertical being zero (see Fig. 4), the equation (5) becomes   

 
2

2

2 sin

cos ,
l

ml mll mgl lF

ml ml mg F

ϕ ϕ ϕ

ϕ ϕ
⊥+ − = −

− + =

$$$ $
$$ $

 (33) 

where , ,: sin cosext st ext st
l x yF F Fϕ ϕ= +  and , ,: cos sinext st ext st

x yF F Fϕ ϕ⊥ = − + . Also, the total 

momentum about the stance leg end consists of the angular momentum of the CoM rotating 
the stance foot plus the angular momentum about the CoM 

 2 ,tot cmH ml Hϕ= +$  (34) 

where totH  and cmH  are the angular momentums about the stance leg end and CoM, 

respectively. Also the net angular momentum rate change is equal to 

sintot cmH mgx mgl ϕ= =$   [3], [20]. With differentiating of equation (34) and setting 

sintotH mgl ϕ=$  in it and comparing with equation (33), it can be shown that  

 .
cm
H lF⊥=$  (35) 

Hence, the third sub cost function is defined as following    

 3   2 2

0  0

1 1
( ) : .

1  ( ) 1  ( ) ( ) 
f ft t

cm

J X

H t dt l t F t dt⊥

= =
+ +∫ ∫$

 (36)  

In this chapter, 1 4a = , 2 1a =  and 3 1a =  and the control problem of the biped walking is 

defined as the optimal solution of the following optimization problem    

 max  ( ).
X
J X  (37) 

By using Genetic algorithm, the optimal solution can be determined. Genetic algorithm is 
one of the evolutionary algorithms based on the natural selection. In this section, the size of 
each generation in this algorithm is equal to 400, and at the end of each generation, 50% of 
chromosomes are preserved and the others are discarded. The roulette strategy is employed 
for selection and 100 selections are done by this strategy. With applying one-point crossover, 
200 new chromosomes are produced. The mutation is done for all of the chromosomes with 
the probability of 10% except the elite chromosome which has the most fitness. Also, each 
parameter is expressed in 8 bits.   

6. Simulation results  

In this section, the simulation of a 5 link planar biped robot is done in MATLAB 

environment. Table I specifies the lengths, masses and inertias of each link of the robot. This 

is the model of RABBIT [3]. RABBIT has 1:50  gear reducers between its motors and links. 

In this biped robot, the joint friction is modeled by viscous and static friction terms as 
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described by ( , ) : sgn( )v sF q q F q F q= +$ $ $ . Joint PI controllers have been used as servo 

controllers. Because of the existence of the abrupt changes resulting from the impacts in the 

hybrid model, the servo controller does not include the derivative terms.  We have designed 

30HP = , 30KP = , 10HI =  and 10KI =  for the servo controllers at the hip and the knee 

joints. Also in optimization problem, we tune 10 ( )mD m=  and 10 ( )ft s= . By using 

Genetic algorithm, the optimal solution of the optimization problem in (37) is determined 

after 115 generations. The optimal solution of the optimization problem in (37) is equal to 

( )0.063,0.429,0.172,0.141, 0.109, 0.016 .
T

X = − − −  
 

   

   

Fig. 5. The snapshots of one step for the biped robot with the best fitness. 

The period of the neural oscillators in the biped robot with the best fitness is equal to 

1.10 ( )s . The time between consecutive impacts for this robot is equal to 0.55 (s)T = . Also 

the step length during the walking (the distance between consecutive impacts) is equal to 

0.33 (m)sl = . The snapshots of one step for the best biped robot at limit cycle in this set of 

experiments are depicted in Fig. 5. In this picture, the left leg is taking a step forward. It can 
be seen that the swing leg performs a full swing and it allows sufficient ground clearance for 
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the foot to be transferred to a new location.  In Fig. 6, the CPG outputs and the joint angle 

positions of the leg joints during 10 ( )s  are shown with dashed lines and solid lines, 

respectively. Figure 7 depicts the phase plot and the limit cycle of joint angle vs. velocity at 

the unactuated joint ( 0 0q q− $  plane) during 10 ( )s . Also Fig. 8 depicts the limit cycles at the 

phase plots of the leg joints during 10 ( )s .   
 

 

Fig. 6. The CPG outputs and the joint angle positionsof leg joints during 10 ( )s . 

 

 

Fig. 7. The phase plot of joint angle vs. velocity at the unactuated joint ( 0 0q q− $  plane) 

during 10 ( )s .  

www.intechopen.com



 Human-Robot Interaction 

 

282 

 

Fig. 8. The phase plots of joint angle vs. velocity at the leg joints during 10 ( )s .  

Control signals of the servo controllers during 10 ( )s  are depicted in Fig. 9. The validity of 

the reduced single support phase model and impact model can be seen by plotting the 

ground reaction forces as plotted in Fig. 10.  

 
Fig. 9. The control signals of the servo controllers during 10 ( )s . 
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Fig. 10. The ground reaction forces at the leg ends during 10 ( )s . 

For evaluating the robustness of the limit cycle of the closed loop system, an external force 

as disturbance is applied to the body of the biped robot. We assume that the external force is 

applied at the center of mass of the torso and it can be given by 

( ) : ( ( ) ( ))
d d d d d
F t F u t t u t t t= − − − −Δ  where d

F  is the disturbance amplitude, dt  is the 

time when the disturbance is applied, d
tΔ  is the duration of the pulse and (.)u  is a unit step 

function. The stick figure of the robot for a pulse with amplitude 25 ( )
d
F N=  and with 

pulse duration equal to  0.5 ( )
d
t sΔ =  which is applied at 3 ( )

d
t s=  is shown in Fig. 11. 

This figure shows the robustness of the limit cycle due to disturbance.  Also Fig. 12 shows 

the stable limit cycle at the unactuated joint. Figure 13 shows the maximum value of the 

positive and negative pulses vs. pulse duration which don’t result in falling down. 
 

 
Fig. 11. Stick figure of the robot.  
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Fig. 12. The phase plot of joint angle vs. velocity at the unactuated joint. 

 

Fig. 13. Maximum amplitude of the pulse vs. pulse duration. 

7. Conclusion 

In this chapter, the hybrid model was used for modeling the underactuated biped walker. 
This model consisted of single support phase and the instantaneous impact phase. The 
double support phase was also assumed to be instantaneous. For controlling the robot in 
underactuated walking, a CPG network and a new feedback network were used. It is shown 
that the period of the CPG is the most important factor influencing the stability of the biped 
walker. Biological experiments show that humans exploit the natural frequencies of their 
arms, swinging pendulums at comfortable frequencies equal to the natural frequencies. 
Extracting and using the natural frequency of the links of the robots is a desirable property 
of the robot controller. According to this fact, we match the endogenous frequency of each 
neural oscillator with the resonant frequency of the corresponding link. In this way, 
swinging motion or supporting motion of legs is closer to free motion of the pendulum or 
the inverted pendulum in each case and the motion is more effective. 
It is well known in biology that the CPG network with feedback signals from body can 

coordinate the members of the body, but there is not yet a suitable biological model for 

feedback network. In this chapter, we use tonic stretch reflex model as the feedback signal at 
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the hip joints of the biped walker as studied before. But one of the most important factors in 

control of walking is the coordination or phase difference between the knee and the hip 

joints in each leg. We overcome this difficulty by introducing a new feedback structure for 

the knee joints oscillators. This new feedback structure forces the mechanical system to fix 

the stance knee at a constant value during the single support phase. Also, it forces the swing 

knee oscillator to increase its output at the beginning of swinging phase and to decrease its 

output at the end of swinging phase.  

The coordination of the links of the biped robot is done by the weights of the connections in 

the CPG network. For tuning the synaptic weight matrix in CPG network, we define the 

control problem of the biped walker as an optimization problem. The total cost function in 

this problem is defined as a summation of the sub cost functions where each of them 

evaluates different criterions of walking such as distance travelled by the biped robot in the 

sagittal plane, the height of the CoM and the regulation of the angular momentum about the 

CoM. By using Genetic algorithm, this problem is solved and the synaptic weight matrix in 

CPG network for the biped walker with the best fitness is determined. Simulation results 

show that such a control loop can produce a stable and robust limit cycle in walking of the 

biped walker. Also these results show the ability of the proposed feedback network in 

correction of the CPG outputs. This chapter also shows that by using the resonant 

frequencies of the links, the number of unknown parameters in the CPG network is reduced 

and hence applying Genetic algorithm is easier.  
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