We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

3,900
Open access books available

116,000
International authors and editors

120M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Asymptotic Motions of Three-Parametric Robot Manipulators with Parallel Rotational Axes

Ján Bakša
Technical University in Zvolen
Slovak Republic

1. Introduction

In this paper we deal with the properties of 3-parametric robot manipulators (in short robots) with parallel rotational axes. We describe motions of the robot effector by using the theory of Lie groups and Lie algebras which is applied to the Lie group $E(3)$ of all orientation preserving congruences of the Euclidean space E^3. By the concept of an n-parametric robot we will understand the map $\gamma_n : \mathbb{R}^n \rightarrow E(3)$, see (Karger, 1988), where the robot γ_n is viewed as an immersed submanifold γ_n of the Lie group $E(3)$. We classify 3-parametric robots into four classes. The classification criterion is the spherical rank of the robot, which is the number of independent directions of revolute joints axes. Robots of the spherical rank 1 are robots whose axes of revolute joints are mutually parallel and different.

The main aim of the paper is to introduce asymptotic robot motions. The notion of asymptotic motions is connected with the theory of connections. On a pseudo-Riemannian manifold $E(3)$ has pseudo-Riemannian structure, there is a canonical connection called the Levi-Civita connection. As a connection on the tangent bundle, it provides a well defined method for differentiating all kinds of tensors. The Levi-Civita connection is a torsion-free connection on the tangent bundle and it can be used to describe many intrinsic geometric objects. For instance, a geodesic path, a parallel transport for vector fields, a curvature and so on.

On the Lie group $E(3)$ there is the Levi-Civita connection ∇ induced by the Klein form KL. If the restriction $KL|_{\gamma_n}$ is regular then there is the Levi-Civita connection $\tilde{\nabla}$ on γ_n such that $\tilde{\nabla}\dot{\gamma} = \tilde{\nabla}\dot{\gamma} + V$, where V lies in KL-orthogonal complement to the tangent bundle $T\gamma_n$. If $V = \tilde{0}$ then motions on γ_n is asymptotic, see (Karger 1993). We will introduce asymptotic robot motions without explicit use of the Levi-Civita connection. A robot motion is asymptotic, if the Coriolis acceleration is tangential to $T\gamma_n$. Obviously, robot motions with zero Coriolis accelerations are asymptotic. The simple examples of the asymptotic motions are motions when only one joint work. The properties of the acceleration operator are important for the dynamic of the robot especially in singular positions where they can affect the behaviour of the robot expressively. We will introduce the notion of the Coriolis
and Klein subspaces and show that they are closely associated with asymptotic motions. In this paper we describe all asymptotic motions by systems of differential equations for all 3-parametric robot manipulators with parallel rotational axes. Future research: to describe all asymptotic motions for all 3-, 4-, 5-parametric robot manipulators with revolute and prismatic joints only, practical purposes of the asymptotic motions.

2. Basic notions of robot manipulators

Common commercial industrial robots are serial robot-manipulators consisting of a sequence of links connected by joints, see Fig. 1. Each joint has one degree of freedom, either prismatic or revolute. For a robot with \(n \) joints, numbered from 1 to \(n \), there are \(n + 1 \) links, numbered from 0 to \(n \). The link 0 or \(n \) will be called respectively the base or the effector of the robot. The base will be fixed (non movable). Joint \(i \) connects links \(i \) and \(i + 1 \). We view a link as a rigid body defining the relationship between two neighbouring joints. In the concept of the Denavit-Hartenberg conventions (Denavit & Hartenberg, 1955) the base coordinate system \(S_0 \) is firmly connected with the base. The base axis \(z_0 \) is the axis \(o_1 \) of 1st joint. The effector begins in \(n \) th joint and is firmly connected to the coordinate system \(S_n \).

![Figure 1. \(n \)-parametric robot, \(n = 4 \)](image-url)

A congruence in the Euclidean space \(E_3 \) is determined by the base coordinate system \(S_0 \) and by the effector coordinate system \(S_n \) in each position of the robot (i.e., at time \(t \)). Therefore a motion of the effector determines a curve on the Lie group \(E(3) \). We assume a fixed choice of the base orthonormal coordinate system \(S_0 = \{O; i_0, j_0, k_0\} \) with respect to which we will relate all elements.

Let us recall basic facts about the Lie group \(E(3) \) and its Lie algebra \(e(3) \). Elements of the Lie group \(E(3) \) will be considered in the matrix form \(4 \times 4 \), which will be written in the form

\[
\begin{pmatrix}
A & P \\
0 & 1
\end{pmatrix}
\]

where \(A \) is an orthogonal matrix of the form \(3 \times 3 \), \(\det A = 1 \) and \(P \) is a column matrix of the form \(3 \times 1 \) (a translation vector).

Let \(V_t \) be the vector space associated with the Euclidean space \(E_3 \) and let \(\gamma(t) = H(t) \) be a curve on \(E(3) \) which is going through the unit element \(I \) of the group \(E(3) \); i.e., \(H(t_0) = I \),
where \(I \) is the unit matrix. Then the motion of the effector point \(L \) determined by the curve \(\gamma(t) \) can be expressed by

\[
\begin{bmatrix}
 x(t) \\
y(t) \\
z(t)
\end{bmatrix} = \begin{bmatrix}
 A(t) & P(t) \\
 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix},
\]

where \((x, y, z, 1)^T\) are the homogeneous coordinates of the point \(L \) at \(t_0 \) and \((x(t), y(t), z(t), 1)^T\) are the homogeneous coordinates of the point \(L \) at any \(t \). The coordinates of the point \(L \) are related to the base coordinate system \(S_o \). \(A(t) \) is an orthogonal matrix; i.e., \(A(t)A^T(t) = I \), where \(A^T(t) \) is the transposed matrix to the matrix \(A(t) \). The inverse matrix to the matrix \(H(t) \) is

\[
H^{-1}(t) = \begin{bmatrix}
 A^T(t) & -A^T(t)P(t) \\
 0 & 1
\end{bmatrix}.
\]

We suppose \(A(t_0) = I \). The derivative of the equation \(A(t)A^T(t) = I \) at \(t = t_0 \) is \(\dot{A}(t_0) = -A^T(t_0) \); i.e., \(\dot{A}(t_0) \) is a skew-symmetric matrix. All skew-symmetric matrices have the form

\[
\dot{A}(t_0) = \begin{bmatrix}
 0 & -\omega_3 & \omega_2 \\
 \omega_3 & 0 & -\omega_1 \\
-\omega_2 & \omega_1 & 0
\end{bmatrix}
\]

and we can associate them with vectors \(\overrightarrow{\omega}(= (\omega_1, \omega_2, \omega_3)) \in V_3 \). If we denote \(\dot{\gamma}(t_0) := \overrightarrow{\beta} = (\beta_1, \beta_2, \beta_3) \), then the tangent vector

\[
\dot{\gamma}(t_0) = H(t_0) = \begin{bmatrix}
 \dot{A}(t_0) & \dot{\gamma}(t_0) \\
 0 & 0
\end{bmatrix} = \begin{bmatrix}
 0 & -\omega_3 & \omega_2 & \beta_1 \\
 \omega_3 & 0 & -\omega_1 & \beta_2 \\
-\omega_2 & \omega_1 & 0 & \beta_3 \\
 0 & 0 & 0 & 0
\end{bmatrix}
\]

of the curve \(\gamma(t) \) at \(t = t_0 \) can be associated with the element \((\overrightarrow{\omega}, \overrightarrow{\beta}) = X \in V_3 \times V_3 \) and we call it the twist. Hence the Lie algebra \(e(3) \) can be represented in the matrix form (1) or by twists in \(V_3 \times V_3 \), where addition and the Lie bracket are defined as follows:

\[
k_l(\overrightarrow{\omega}, \overrightarrow{\beta}) + k_s(\overrightarrow{\omega}, \overrightarrow{\beta}) = (k_1\overrightarrow{\omega} + k_2\overrightarrow{\beta}, k_2\overrightarrow{\omega} + k_1\overrightarrow{\beta}),
\]

\[
[(\overrightarrow{\omega}_1, \overrightarrow{\beta}_1), (\overrightarrow{\omega}_2, \overrightarrow{\beta}_2)] = (\overrightarrow{\omega}_1 \times \overrightarrow{\omega}_2, \overrightarrow{\beta}_1 \times \overrightarrow{\omega}_2 - \overrightarrow{\omega}_1 \times \overrightarrow{\beta}_2),
\]

where \((\overrightarrow{\omega}_i, \overrightarrow{\beta}_i) \in V_3 \times V_3 \), \(k_i \in R \), \(i = 1,2 \) and \(\times \) denotes the vector product in \(V_3 \). The line \(p \) determined by the point \(C \), \(\overrightarrow{OC} = (1/\overrightarrow{\omega}) \overrightarrow{\omega} \times \overrightarrow{\beta} \) and by the direction \(\overrightarrow{\omega} \) will be called the axis of the twist \(X = (\overrightarrow{\omega}, \overrightarrow{\beta}) \). The axis \(\overrightarrow{\omega} \) will be called the direction of the twist axis \(X = (\overrightarrow{\omega}, \overrightarrow{\beta}) \) is the line at infinity of the plane in the projective space \(P_3 \) (\(P_3 \) is \(E_3 \) together with the points at infinity) which is perpendicular to the vector \(\overrightarrow{\beta} \).
In the algebra $V_3 \times V_3$ we have the Klein form given by

$$KL(X_1, X_2) := \eta \cdot \vec{b}_1 + \eta \cdot \vec{b}_1$$

where $X_1 = (\vec{a}_1, \vec{b}_1), X_2 = (\vec{a}_2, \vec{b}_2)$ are twists from $V_3 \times V_3$ and the dot · denotes the scalar product in V_3. If $KL(X_1, X_2) = 0$, then the twists X_1, X_2 will be called KL-orthogonal. The Klein form is a symmetric regular bilinear form.

A subspace $A \subset V_3 \times V_3$ is called KL-orthogonal to a subspace $B \subset V_3 \times V_3$, if $KL(X, Y) = 0$ for every $X \in A$ and every $Y \in B$. There is a unique subspace $A^K \subset V_3 \times V_3$ which is KL-orthogonal to the subspace $A \subset V_3 \times V_3$; i.e., if any arbitrary vector subspace B is KL-orthogonal to A, then $B \subset A^K$.

Definition 1. Let $A \subset V_3 \times V_3$. The subspace $K := A \cap A^K$ will be called the Klein subspace of the space A. If $K = A$, then A is isotropic.

Let us recall that the matrix form of the exponential map from the Lie algebra $e(3)$ to the Lie group $E(3)$, $\exp : e(3) \to E(3)$, is given by $\exp(S) = \sum_{n=0}^{\infty} \frac{1}{n!} S^n$, where $S \in e(3)$ is the matrix of the form (1) and S^n is nth power of the matrix S. The matrix $\exp(S)$ is a regular matrix, $(\exp(S))^{-1} = \exp(-S)$, for further properties see (Helgason, 1962). For the motion determined by the curve $\gamma(t) = \exp(t(\vec{a}, \vec{b}))$, where $(\vec{a}, \vec{b}) \in e(3)$ and \exp is exponential map, we have:

1. If $\vec{a} = \vec{0}$ then the curve $\gamma(t) = \exp(t(\vec{0}, \vec{b}))$ determines a translation with velocity \vec{b}.
2. If $\vec{a} \neq \vec{0}$ then the curve $\gamma(t) = \exp(t(\vec{a}, \vec{b}))$ determines a uniform screw motion in E_3 with the axis p of the twist (\vec{a}, \vec{b}), the angular velocity \vec{a} and with the translation $h\vec{a}$, where $h = (\vec{a} \cdot \vec{b})/\vec{a}^2$, see Fig. 2.

Figure 2. Screw motion determined by $\exp(t(\vec{a}, \vec{b}))$

If $h = 0$ (i.e., $\vec{a} \cdot \vec{b} = 0$) then it is a rotational motion.

From the mathematical point of view, we can define a robot by the exponential map which is applied to the elements of the Lie algebra $e(3)$, see (Karger, 1988), as follows:

Definition 2. Let $X_i \in e(3), i = 1, 2, \ldots, n$. Then a robot with n degrees of freedom is a map $Y_{X_1, \ldots, X_n} : \mathbb{R}^n \to E(3)$ given by
Let us deal with the velocity and the acceleration of an effector point \(L \). Let \(Y_{x_1, x_2, x_n} \) be any \(n \)-parametric robot given by twists \(x_1, x_2, \ldots, x_n \), respectively. Let the motion of the effector be given by a curve \(\gamma(t) = \exp \bar{u}_1(t)X_1 \exp \bar{u}_2(t)X_2 \ldots \exp \bar{u}_n(t)X_n = H(t) \) and let \(L(t) \) be the homogeneous coordinates of the effector point \(L \) at \(t_i \). Then the homogeneous coordinates \(L(t) \) of the point \(L \) at any \(t \) are given by \(L(t) = H(t)L(t_i) \). So its velocity is given by \(\dot{L}(t) = \dot{H}(t)H^{-1}(t)L(t) \). The element \(\dot{H}(t) \) determines the tangent vector at \(H(t) \) and \(\dot{H}(t)H^{-1}(t) = \dot{H}(t)/H(t) \) belongs to the Lie algebra \(e(3) \). The velocity of the motion \(L(t) = H(t)L(t_i) \) determined by \(H(t) \) at \(t_i \) and the velocity of the motion \(L(s) = \exp(sY(t_i))L(t_i) \) determined by \(\exp(sY(t_i)) \) at \(s = 0 \) are the same. The twist \(Y(t) \) is called the velocity operator or shortly the velocity twist.

Remark 1. For simplicity we will use \(u \) instead \(\bar{u}(t) \).

As \(H = \exp \bar{u}_1X_1 \ldots \exp \bar{u}_nX_n \) we get
\[
Y = HH^{-1} = \dot{\bar{u}}Y_1 + \dot{\bar{u}}Y_2 + \cdots + \dot{\bar{u}}Y_n
\]

(2)

see (Karger, 1989), where \(Y_i = X_1, Y_i = g_{i1}X_i g_{i-1}^{-1}, g_{i-1} = \exp \bar{u}_1 \ldots \exp \bar{u}_{i-1}X_{i-1} \) and \(g_{i-1}^{-1} \) is the inverse element of \(g_{i-1} \), \(i = 2, \ldots, n \). Elements \(Y_i \) belong to the Lie algebra \(e(3) \). The space
\[
A_n(u) := \text{span}(Y_1, Y_2, \ldots, Y_n)
\]

will be called the space of velocity twists, where \((u) = (u_1, u_2, \ldots, u_n) \).

If \(\dim A_n(u) = n \) then we call the point \((u) \) regular or we say that the robot is in a regular position. If \(\dim A_n(u) < n \) then we call the point \((u) \) singular or we say that the robot is in a singular position. If every point of the curve \(\gamma(t) = H(t) \in Y_{x_1, x_2, \ldots, x_n} \) is singular then this motion of the robot determined by the curve \(\gamma(t) = H(t) \) will by called singular. A robot \(Y_{x_1, x_2, \ldots, x_n} \) is of rank \(m \) if \(m \) is the maximal dimension of the velocity twists spaces; i.e., \(m = \max\{\dim A_n(u)\} \).

Remark 2. In what follows we confine ourselves to \(n = m \). Without loss of generality we will assume that \(A_n := \text{span}(X_1, X_2, \ldots, X_n) \) and \(\dim A_n = n = m \) is the rank of the robot. Then there is a neighborhood \(\Omega_n \subset R^n \) of the point \(O = (0, 0, \ldots, 0) \in R^n \) that \(Y_{x_1, x_2, \ldots, x_n} \mid_{\Omega_n} =: Y_{\Omega_n} \) is an immersed submanifold of the Lie group \(E(3) \) and \((u_1, u_2, \ldots, u_n) \) is a local coordinate system of \(Y_{\Omega_n} \).

Let us consider the acceleration of any effector point \(L \). The velocity of the point \(L \) at a time \(t \) is determined by \(\dot{L}(t) = \dot{H}(t)H^{-1}(t)L(t) = Y(t)L(t) \). Let us differentiate the last equation. We get the relation for the acceleration of the effector point \(L \) at the time \(t \):
\[
\ddot{L}(t) = \ddot{Y}(t)L(t) + Y(t)\dot{L}(t) = \dot{Y}(t) + Y(t)\dot{Y}(t)L(t).
\]

The derivative of the equation (2) is
\[
\dot{Y}(t) = \sum_{i=1}^{n} \dot{u}_i Y_i + \sum_{i=1}^{n} \dot{Y}_i, \quad \dot{Y}_i = \sum_{k=1}^{n-1} \frac{\partial Y_i}{\partial u_k} \dot{u}_k.
\]

All elements \(Y_i \) are in the matrix form,
therefore we can use the Lie bracket in the matrix form: \([A,B] = AB - BA\). Then we get
\[
\ddot{Y}_i = \vec{0}, \quad \dot{Y}_i = \left[Y_{i-1}, Y_i \right] \ddot{\gamma}_i + \cdots + \left[Y_{i+1}, Y_i \right] \dddot{\gamma}_i, \quad i = 2, \ldots, n.
\]
The acceleration of the point \(L\) at any \(t\) is of the form
\[
\ddot{L}(t) = \left(\sum_{i=1}^{n} \dddot{\gamma}_i [Y_{i-1}, Y_i] + \sum_{i=1}^{n} \dddot{\gamma}_i Y_i + YY \right) L(t), \quad k, i = 1, \ldots, n.
\]
The expression \(\sum_{i=1}^{n} \dddot{\gamma}_i [Y_{i-1}, Y_i]\) represents the acceleration caused by joint accelerations \(\dddot{\gamma}_i\), the expression \(YY\) represents centrifugal or centripetal components of acceleration and the expression \(\sum_{i=1}^{n} \dddot{\gamma}_i Y_i\) stands for the so-called Coriolis acceleration.

Definition 3. The subspace \(CA_{\{n\}} := \text{span}([Y_{1}, Y_{j}],[Y_{i}, Y_{1}], \ldots, [Y_{n}, Y_{i}])\) of the space \(e(3)\) will be called the Coriolis subspace.

Definition 4.
1. If \(CA \subset A_{\{n\}}(u)\) then the point \((u)\) of the robot \(Y_{1}, \ldots, Y_{n}\) will be called flat.
2. If every point of the robot is flat then the robot will be called flat.
3. If \(\dot{Y}_i(u(t)) \in A_{\{n\}}(u(t_0))\) for a point \(u(t_0)\) then the motion of the robot determined by the curve \(\gamma(t) = H(t)\) will by called asymptotic at the point \(u(t_0)\).
4. If \(\dot{Y}_i(t) \in A_{\{n\}}(u)\) for every \(t\) then this motion of the robot determined by the curve \(\gamma(t) = H(t)\) will by called asymptotic.

Examples.
I. Robot motions with the zero Coriolis acceleration are asymptotic. Then:
 a) If only prismatic joints work then the robot motion is asymptotic.
 b) If only one joint works then the robot motion is asymptotic.

II. If \(A_{\{n\}}(u)\) is a subalgebra; i.e., iff \(CA \subset A_{\{n\}}(u)\) then \((u)\) is flat and thus every motion is asymptotic at \((u)\).

If \(A_{\{n\}}(u)\) is a subalgebra or only translational joints work or just one joint works then these motions will be called trivial asymptotic motions. In the next part we will deal only with nontrivial asymptotic motions.

The base coordinate system \(S_{0}\) is connected with the 1st joint. Its axis \(z_0\) is the axis \(o_1\) of the first joint of the robot. The axis of the twist \(Y = (\vec{m}, \vec{b})\) is the axis \(o_1\) of the \(i\) th joint. If the \(i\) th joint is revolute or helical then its axis is the axis of \(Y_i\). If it is prismatic then the direction of its axis is \(\vec{b}_i\), \(Y_i = (\vec{0}, \vec{b}_i)\).

Remark 3. If \(X = (\vec{0}, \vec{b})\) is translational then \(\vec{b}\) is orthogonal to the plane \((O,o)\) where \(O\) is the origin of the coordinate system \(S_{0}\) and \(o\) is the axis of \(X\).

We will deal with robots which have no helical joints. The capital letter \(R\) will indicate a revolute joint, \(T\) a translational (prismatic) joint. Then, for example, RRT denotes a 3-parametric robot the first and second joints of which are revolute and the third is prismatic.

Definition 5. A robot \(Y_{\{n\}}\) is the robot of spherical rank \(r\) if \(r\) is the maximal number of linearly independent directions of revolute joint axes.
It is obvious that 3-parametric robots have spherical rank 0, 1, 2 or 3. In the next part we will deal with 3-parametric robots of spherical rank 1.

Remark 4. It is interesting to deal with the problem whether 3-parametric robots \(\mathcal{A}_3 \) of spherical rank 1 lie within any subgroups of the Lie group \(E(3) \) the dimension of which is less than 6. Common knowledge is that there is only one connected 4-dimensional Lie subgroup \(H_4 \) of \(E(3) \) (up to conjugacy), see (Karger 1990), (Selig, 1996). The subgroup \(H_4 \) is the group generated by a one parametric rotation around straight line \((SO(2))\) and all translations \((R^3)\), (i.e., \(H_4 = SO(2) \times R^3 \)). Hence 3-parametric robot manipulators of spherical rank 1 belong to 4-dimensional Lie subgroups. This fact does not affect our own work except that we know that all Coriolis space elements of the 3-parametric robots of spherical rank 1 belong to the Lie algebra \(h_4 \) of the Lie group \(H_4 \).

3. Three parametric robots of spherical rank 1

Now \(\dim \mathcal{A}_3 = 3 \) and the revolute joint axes are parallel at any position \(u \). Therefore \(\mathcal{A}_3 \) is of the form \(\mathcal{A}_3 = (k, \vec{a}, \vec{m}) \) where at least one of the \(k_i \) is not zero. We assume \(\| \vec{a} \| = 1 \) and \(k_i \in \{0,1\} \). We can always choose twists \(B_i = (\vec{a}, \vec{b}_i) \), \(B_1 = (0, \vec{b}_1) \), \(B_3 = (0, \vec{b}_3) \), \(\vec{a} \cdot \vec{b}_1 = 0 \) in the space \(A_3(u) = \text{span}(Y_1, Y_2, Y_3) \) such that \(A_3(u) = \text{span}(B_1, B_2, B_3) \).

Remark 5. The robot \(\mathcal{A}_3 \) is in a singular position iff \(\dim \mathcal{A}_3(u) < 3 \) and this occurs if and only if \(t_1 t_2 t_3 = 0 \). Let us determine conditions for an arbitrary twist \(B = t_1 B_1 + t_2 B_2 + t_3 B_3 \) of the space \(A_3(u) \), \(t_1, t_2, t_3 \in R \) to be a rotational or translational twist. A twist \(B \) is rotational or translational iff \(KL(B, B) = 0 \) and this is equivalent to \(t_1(t_1(\vec{a} \cdot \vec{b}_1) + t_3(\vec{a} \cdot \vec{b}_3)) = 0 \).

A twist \(B \) is translational iff \(t_1 = 0 \); i.e., iff \(B \in \text{span}(B_2, B_3) \). Therefore \(\dim \tau = 2 \). In singular positions, \(\dim \tau = 1 \).

A twist \(B \) is rotational if and only if \(t_1(\vec{a} \cdot \vec{b}_2) + t_1(\vec{a} \cdot \vec{b}_3) = 0 \). If \(\vec{a} \cdot \vec{b}_2 = 0 \), \(\vec{a} \cdot \vec{b}_3 = 0 \) then there are no screw elements in \(A_3(u) \); i.e., \(A_3(u) - \tau \) is the space of all rotational twists.

If at least one number of \(\vec{a} \cdot \vec{b}_2 \), \(\vec{a} \cdot \vec{b}_3 \) is not equal to 0 then there is a two-dimensional space of rotational twists. For example, if \(\vec{a} \cdot \vec{b}_2 \neq 0 \) then \(B = (t_1 \vec{a}, t_1 \vec{b}_1 + (\vec{b}_3 \cdot (\vec{a} \cdot \vec{b}_2)/\vec{a} \cdot \vec{b}_3) \vec{b}_3) \). The axes of rotational twists generate a bundle of parallel lines with the direction \(\vec{b}_3 \).

The matrix of the Klein form has the form

\[
KL_{A_3(u)} = \begin{pmatrix}
0 & \vec{a} \cdot \vec{b}_2 & \vec{a} \cdot \vec{b}_3 \\
\vec{a} \cdot \vec{b}_2 & 0 & 0 \\
\vec{a} \cdot \vec{b}_3 & 0 & 0
\end{pmatrix}
\]

in the basis \(B_1, B_2, B_3 \). The rank of the Klein form is 0 or 2; i.e., \(KL_{A_3(u)} \) is singular.
The rank is 0 if and only if \(\overline{v} \cdot \overline{b}_2 = 0, \overline{v} \cdot \overline{b}_3 = 0 \); i.e., if the vector \(\overline{v} \) is perpendicular to \(\tau_z \triangleq \text{span}(\overline{b}_2, \overline{b}_3) \); i.e., if there are no screw elements in \(A_3(u) \). In this case the Klein space is \(K = A_3(u) \); i.e., \(A_3(u) \) is isotropic and the robot is planar.

The rank is 2 if the direction of the revolute joints axes is not perpendicular to \(\tau_z \); i.e., at least one number \(\overline{v} \cdot \overline{b}_2, \overline{v} \cdot \overline{b}_3 \) is not equal to 0. Let us determine the Klein subspace \(K \).

The twist \(\mathbf{B} = t_1 \mathbf{B}_1 + t_2 \mathbf{B}_2 + t_3 \mathbf{B}_4, t_1, t_2, t_3 \in \mathbb{R} \) is \(K \)-orthogonal to \(A_3(u) \) if and only if \(KL(B, A_3(u)) = 0 \) and this is equivalent to \(t_1 = 0, t_2 = k(\overline{v} \cdot \overline{b}_2), t_3 = -k(\overline{v} \cdot \overline{b}_3), k \in \mathbb{R} \).

Therefore the Klein subspace is determined by the element \(\mathbf{Y} = (\overline{v}, (\overline{v} \cdot \overline{b}_2) \overline{b}_2 - (\overline{v} \cdot \overline{b}_3) \overline{b}_3) \) (i.e., \(K = \text{span}(\mathbf{Y}) \subset \tau \)), its direction is perpendicular to \(\overline{v} \) and it belongs to \(\tau_z \).

Let us summarize previous considerations.

Proposition 1. Let \(\mathbf{Y}_{A_3} \) be a robot of spherical rank 1. Then

a) if the direction \(\overline{v} \) of revolute joints is perpendicular to the space \(\tau_z \) of translational elements directions then the rank of \(KL|_{A_3(u)} \) is 0, the Klein space \(K \) is \(K = A_3(u) \); i.e., \(A_3(u) \) is isotropic and the robot is planar;

b) if \(\overline{v} \) is not perpendicular to the space \(\tau_z \), then the rank of \(KL|_{A_3(u)} \) is 2 and the Klein space \(K \) is \(K = \text{span}(\overline{v}, (\overline{v} \cdot \overline{b}_2) \overline{b}_2 - (\overline{v} \cdot \overline{b}_3) \overline{b}_3), K \subset \tau \) and its direction is perpendicular to \(\overline{v} \).

The Coriolis subspace is \(CA = \text{span}([B_1, B_2], [B_1, B_3], [B_2, B_3]) \), where \([B_1, B_2] = (\overline{v}, \overline{v} \cdot \overline{b}_2) \overline{b}_2, [B_1, B_3] = (\overline{v}, \overline{v} \cdot \overline{b}_3) \overline{b}_3 \). It means that elements of \(CA \) are translational and their directions are perpendicular to \(\overline{v} \) and \(\dim CA \leq 2 \). The following cases are possible:

1. \(\dim CA \leq 1 \) if and only if \(\overline{v} \times \overline{b}_2 \times (\overline{v} \times \overline{b}_3) = (\overline{v} \times \overline{b}_2) \times (\overline{v} \times \overline{b}_3) = 0 \) and this is equivalent to \(\overline{v} \cdot (\overline{b}_2 \times \overline{b}_3) = 0 \). We have the following cases:

 a) \(\overline{b}_2 \times \overline{b}_3 = \overline{0} \); i.e., the robot is in a singular position, \(\dim \tau = 1 \). Let \(\overline{b}_3 = k \overline{b}_2, k \in \mathbb{R} \).

 Then \(A_3(u) \cap CA \neq \overline{0} \) if and only if \(\overline{v} \times \overline{b}_2 = c \overline{b}_2 \) and \(\overline{v} \times \overline{b}_3 \neq \overline{0}, c \in \mathbb{R} \). It is impossible. Therefore \(A_3(u) \cap CA = \overline{0} \).

 b) \(\overline{b}_2 \times \overline{b}_3 \neq \overline{0} \) and \(\overline{v} \in \text{span}(\overline{b}_2, \overline{b}_3) \); i.e., the robot is in a regular position and the vectors \(\overline{v}, \overline{b}_2, \overline{b}_3 \) are linearly dependent. We can write \(\overline{v} = c_2 \overline{b}_2 + c_3 \overline{b}_3, c_2, c_3 \in \mathbb{R} \). Then \(CA = \text{span}(\overline{b}_2, \overline{b}_3, \overline{v}) \). The vector \(\overline{b}_2 \times \overline{b}_3 \) does not belong to \(\tau_z \), therefore \(CA = A_3(u) \neq \overline{0} \) and \(\dim CA = 1 \).

2. \(\dim CA = 2 \) if and only if the position of the robot is regular (i.e., \(\overline{v}, \overline{v} \times \overline{b}_3 \neq \overline{0} \)) and the direction \(\overline{v} \) of the revolute joints axes is not complanar with the space \(\tau_z \). It means that the vectors \(\overline{v}, \overline{v} \times \overline{b}_2, \overline{v} \times \overline{b}_3 \) are linearly independent. The twists \([B_1, B_2], [B_1, B_3]\) determine the basis of the Coriolis space \(CA \). This basis will be called the canonical basis of the space \(CA \).

In this case the space \(CA \) is the space of all translational elements, whose directions are perpendicular to the direction of the revolute joints \(\overline{v} \). We have following cases:
a) $CA = \tau$. In this case, the vector $\tilde{\omega}$ is perpendicular to the space τ_2; i.e., $\tilde{\omega} \cdot \tilde{b}_2 = 0$, $\tilde{\omega} \cdot \tilde{b}_3 = 0$ and the rank of the Klein form is 0. If $CA = \tau$ then $CA \subset A_3(u)$; i.e., $A_3(u)$ is a Lie subalgebra. A reverse assertion is also valid. If $A_3(u)$ is a subalgebra then $CA \subset A_3(u)$, $\dim CA = 2$ and the elements of CA are translational, therefore $CA = \tau$.

b) $CA \neq \tau$. In this case at least one of the numbers $\tilde{\omega} \cdot \tilde{b}_2$, $\tilde{\omega} \cdot \tilde{b}_3$ is not equal to 0 and the rank of the Klein form is 2. Now $K = \text{span}(\tilde{\omega} \cdot \tilde{b}_2)\tilde{b}_2 - (\tilde{\omega} \cdot \tilde{b}_3)\tilde{b}_3 = CA \cap A_3(u)$.

Let us summarize the above reflections.

Proposition 2. If a robot of spherical rank 1 is in a singular position or the direction of the revolute joint axes is coplanar with the space τ_2 in a regular position then $\dim CA = 1$ and $CA \cap A_3(u) = \tilde{0}$. There are asymptotic motions with zero Coriolis acceleration only in these positions.

If a robot of spherical rank 1 is in a regular position and $\tilde{\omega} \not\in \tau_2$ then $\dim CA = 2$ and there are two cases.

a) If $CA = \tau_2 \subset A_3(u)$; i.e., if $\tilde{\omega}$ is perpendicular to τ_2; i.e., if $A_3(u)$ is a subalgebra of $e(3)$ then all motions are asymptotic in this position. The point (u) is flat.

b) If $CA \neq \tau_2$ then $CA \cap A_3(u) = \text{span}(\tilde{\omega}) = K$ and there are asymptotic motions with non-zero Coriolis acceleration in this regular position.

Revolute joints axes of spherical rank 1 robots are in all positions parallel, therefore perpendicularity of revolute joints axes and prismatic joints is preserved. Therefore if $A_3(u)$ is a subalgebra in one regular position then it is a subalgebra in all regular positions. Then $A_3(u)$ is a subalgebra in a regular position iff $A_3 = \text{span}(X_1, X_2, X_3)$ is a subalgebra.

3.1 Robots with 2 prismatic and 1 revolute joints

There are the following possibilities with respect to the configuration.

a 1) For RTT we have $Y_i = (\tilde{\omega}, \tilde{0})$, $Y_i = (\tilde{0}, \bar{m}_i)$, $Y_3 = (\tilde{0}, \bar{m}_3)$. Now $B_i = Y_i$, $[Y_i, Y_j] = [B_i, B_j]$, $i, j = 1, 2, 3$ and $\tau_2 = \text{span}(\bar{m}_2, \bar{m}_3)$.

a 2) For TRT we have $Y_i = (\tilde{0}, \bar{m}_2)$, $Y_2 = (\tilde{\omega}, \bar{m}_i)$, $Y_3 = (\tilde{0}, \bar{m}_3)$ and $B_i = Y_i$, $B_2 = Y_2$, $Y_3 = Y_3$. Therefore $[Y_i, Y_j] = [-B_i, B_j]$, $[Y_i, Y_j] = [B_i, B_j]$, $[Y_2, Y_3] = [B_2, B_3]$ and $\tau_2 = \text{span}(\bar{m}_2, \bar{m}_3)$.

a 3) For TTR we have $Y_i = (\tilde{0}, \bar{m}_2)$, $Y_2 = (\tilde{0}, \bar{m}_2)$, $Y_3 = (\tilde{\omega}, \bar{m}_3)$ and $B_i = Y_i$, $B_2 = Y_2$, $B_3 = Y_3$. Now $[Y_i, Y_j] = [-B_i, B_j]$, $[Y_i, Y_j] = [B_i, B_j]$, $[Y_2, Y_3] = [-B_2, B_3]$ and $\tau_2 = \text{span}(\bar{m}_2, \bar{m}_3)$.

A singular position exists only in the case TRT provided there is $u_i(t_o) = \bar{u}_i$ such that $\dot{a}_i(t_o)$, $\dot{b}_i(t_o)$, i.e., $\bar{b}_i(t_o) \times \bar{b}_i(t_o) = \tilde{0}$. This is possible iff $\angle(a_i, a_j) = \angle(b_i, b_j)$. $A_3(u)$ is a subalgebra iff $CA = \tau_2$ in a regular position is valid and this is possible iff $\tilde{\omega} \cdot \bar{b}_2 = 0$, $\tilde{\omega} \cdot \bar{b}_3 = 0$ in a regular position, so we have the following statements.

Proposition 3. All positions of robots RTT, TTR are regular.
There are singular positions in the case of RTT iff \(\angle(o_1, o_2) = \angle(o_2, o_3) \).

\(A_3(u) \) is an algebra iff the axis of the revolute joint is perpendicular to the axes of the prismatic joints in a regular position.

Remark 6. Robots RTT, TTR are homogeneous spaces. In the case TRT, this robot is a homogeneous space if \(A_3 \) is a subalgebra (the planar robot).

Let us investigate asymptotic motions of robots RTT, TRT, TTR. In the case when \(A_3(u) \) is a subalgebra then all motions through the point \(u \) are asymptotic. We have the following cases:

(1) In a singular position; i.e., only for RTT, when \(\overline{m_1} = c \overline{m_1}, c \in \mathbb{R} \), the subspace \(CA \) is defined by \([Y_1, Y_2] = (\overline{0}, -\overline{m_2} \times \overline{m_3}), [Y_1, Y_3] = (\overline{0}, 0), [Y_2, Y_3] = (\overline{0}, \overline{m_2} \times \overline{m_3}) \) and the Coriolis acceleration is \(\bar{\omega} = \sum \hat{u}_i \hat{u}_i [Y_i, Y_j] = (\hat{u}_1 \hat{u}_2 + c \hat{u}_3)(\overline{0}, \overline{m_2} \times \overline{m_3}), \) where \(\overline{m_2} \times \overline{m_3} \neq \overline{0} \).

A motion is asymptotic at a singular point \(u(t_0) \) if and only if \(\hat{u}_1(t_0)(-\hat{u}_1(t_0) + c \hat{u}_3(t_0)) = 0 \); i.e., \(\hat{u}_3(t_0) = 0 \) so that the revolute joint is not working at \(t_0 \) or the joint velocities of the prismatic joints satisfy the relationship \(\hat{u}_1(t_0) : \hat{u}_3(t_0) = c \).

If every position of the robot motion is singular (i.e., \(u_c(t) = \hat{u}_c = \text{const}, \hat{u}_3 = 0 \)) then this motion is the trivial asymptotic motion (only prismatic joints work).

Proposition 4. A motion of the robot TRT is nontrivial asymptotic in a singular position \(u(t_0) \) iff all joints work and the joint velocities of the prismatic joints satisfy the relationship \(\hat{u}_1(t_0) : \hat{u}_3(t_0) = c \). The singular motion of the robot TRT is trivial asymptotic.

(2) Let us investigate asymptotic motions of the robot in a regular position when the subspace \(CA \) is one-dimensional. We know that \(\overline{m_2} = c \overline{b_2} + c_3 \overline{b_3} \) and \(CA \cap A_3(u) = \overline{0} \). A motion is asymptotic when the Coriolis acceleration \(\bar{\omega} = \sum \hat{u}_i \hat{u}_i [Y_i, Y_j] = \overline{0} \) and this occurs

\[a_1 \text{ if } \hat{u}_1 \hat{u}_2 (\overline{0}, -c_3 \overline{m_2} \times \overline{m_3}) + \hat{u}_1 \hat{u}_3 (\overline{0}, c_3 \overline{m_2} \times \overline{m_3}) = 0 ; \text{i.e., } \hat{u}_1 (-\hat{u}_1 c_3 + \hat{u}_3 c_2) = 0 \text{ in the case of RTT,} \]

\[a_2 \text{ if } \hat{u}_1 \hat{u}_3 (\overline{0}, c_3 \overline{m_2} \times \overline{m_3}) + \hat{u}_2 \hat{u}_3 (\overline{0}, c_3 \overline{m_2} \times \overline{m_3}) = 0 ; \text{i.e., } \hat{u}_3 (\hat{u}_1 c_2 + \hat{u}_3 c_2) = 0 \text{ in the case of TRT,} \]

\[a_3 \text{ if } \hat{u}_1 \hat{u}_2 (\overline{0}, -c_3 \overline{m_2} \times \overline{m_3}) + \hat{u}_2 \hat{u}_3 (\overline{0}, c_3 \overline{m_2} \times \overline{m_3}) = 0 ; \text{i.e., } \hat{u}_2 (\hat{u}_1 c_3 - \hat{u}_2 c_2) = 0 \text{ in the case of TTR.} \]

In the cases of RTT, TTR, if the equation \(\overline{m_2} = c_2 \overline{b_2} + c_3 \overline{b_3} \) is valid in one position then it is valid for all positions.

In the case TRT, the equation \(\overline{m_2} = c_2 \overline{b_2} \) is valid only if 3 rd axis turns around the axis \(o_3 \) to the position complanar with axes \(o_2, o_2 \) (i.e., the directions of the joint axes are linear dependent). If \(c_2 : c_3 \neq 0 \); i.e., \(o_2 \parallel o_2 \) or \(o_2 \parallel o_2 \) then the equation \(\overline{m_2} = c_2 \overline{b_2} + c_3 \overline{b_3} \) is valid for all positions of the axes.

Let us recall that we are interested only in nontrivial asymptotic motions. Then the Coriolis acceleration is zero in the case RTT if \(-\hat{u}_1 c_3 + \hat{u}_3 c_2 = 0 \), in the case TRT if \(\hat{u}_1 c_3 + \hat{u}_3 c_2 = 0 \) and in the case TTR if \(-\hat{u}_1 c_3 + \hat{u}_3 c_2 = 0 \). We have the following cases:

(a) Let \(c_2 : c_3 \neq 0 \) at \(u \). Then a motion through the point \(u \) is nontrivial asymptotic iff all joints work and the joint velocities of the prismatic joints satisfy the relationship \(c_1 : c_3 \) in the cases RTT, TTR and \(-c_1 : c_3 \) in the case TRT.
b) Let \(c_2 \cdot c_3 = 0 \) at \((u)\). Then a motion through the point \((u)\) is nontrivial asymptotic iff the revolute joint and only the prismatic joint whose axis is parallel to the axis of the revolute joint, work.

Proposition 5. Let \(Y_{s_3} \) be a robot of spherical rank 1 with two prismatic joints and let the directions of the joint axes be linear dependent at \(u(t_0) \); i.e., \(\vec{\omega} = c_2 \vec{b}_2 + c_3 \vec{b}_3 \). Then:

a) The zero Coriolis acceleration is a necessary condition for the motion to be asymptotic at \(u(t_0) \).

b) In the case that no two axes of joints are parallel at \((u)\) : a motion through the point \((u)\) is nontrivial asymptotic iff all joints work and the joint velocities of the prismatic joints satisfy the relationship \(c_2 : c_3 \) in the cases RTT, TTR and \(-c_2 : c_3\) in the case TRT.

c) In the case that the axis of the revolute joint is parallel to one axis of a prismatic joint: a motion is nontrivial asymptotic iff the revolute joint and only the prismatic joint whose axis is parallel to the axis of the revolute joint, work.

(3) Let us investigate asymptotic robot motions in a regular position, when \(\dim CA = 2 \) and \(A_3(u) \) is not a subalgebra. Then \(CA \cap A_3(u) = \ker = \text{span}((\vec{\omega} \cdot \vec{b}_1)\vec{b}_2 - (\vec{\omega} \cdot \vec{b}_2)\vec{b}_1) \); i.e., the equation: \((\vec{\omega} \cdot \vec{b}_1)\vec{b}_2 - (\vec{\omega} \cdot \vec{b}_2)\vec{b}_1 = k_1(\vec{\omega} \times \vec{b}_1) + k_2(\vec{\omega} \times \vec{b}_2) + k_3 = 0 \) is valid.

In this case the motion is asymptotic at the point \((u)\) if and only if

\[
\begin{align*}
a_1 &\text{ for RTT } \quad \dot{u}_1\dot{u}_2(\vec{b}_1 \times \vec{m}_2) + \dot{u}_1\dot{u}_3(\vec{b}_1 \times \vec{m}_3) = \lambda(\vec{b}_1(\vec{\omega} \times \vec{m}_1) + k_1(\vec{\omega} \times \vec{b}_3)), \quad \lambda \in R; \quad \text{i.e.,} \\
\dot{u}_1\dot{u}_2 &= k_2\lambda, \quad \dot{u}_1\dot{u}_3 = k_3\lambda, \\
\end{align*}
\]

\[
\begin{align*}
a_2 &\text{ for TTR } \quad \dot{u}_1\dot{u}_2(\vec{b}_1 \times \vec{m}_2) + \dot{u}_2\dot{u}_3(\vec{b}_1 \times \vec{m}_3) = \lambda(\vec{b}_1(\vec{\omega} \times \vec{m}_1) + k_1(\vec{\omega} \times \vec{b}_3)), \quad \lambda \in R; \quad \text{i.e.,} \\
\dot{u}_1\dot{u}_2 &= k_2\lambda, \quad \dot{u}_2\dot{u}_3 = k_3\lambda, \\
\end{align*}
\]

\[
\begin{align*}
a_3 &\text{ for TTR } \quad \dot{u}_1\dot{u}_2(\vec{b}_1 \times \vec{m}_2) + \dot{u}_2\dot{u}_3(\vec{b}_1 \times \vec{m}_3) = \lambda(\vec{b}_1(\vec{\omega} \times \vec{m}_1) + k_1(\vec{\omega} \times \vec{b}_3)), \quad \lambda \in R; \quad \text{i.e.,} \\
\dot{u}_1\dot{u}_2 &= k_2\lambda, \quad \dot{u}_2\dot{u}_3 = k_3\lambda. \\
\end{align*}
\]

We summarize the previous results.

Proposition 6. Let \(Y_{s_3} \) be a robot of spherical rank 1 with two prismatic joints and let the directions of the joint axes be independent at \(t_0 \); i.e., \(\vec{\omega} \neq c_1\vec{b}_1 + c_2\vec{b}_2 \). Then:

A motion is nontrivial asymptotic at \(t_0 \) iff joint velocities at \(t_0 \) satisfy \(\dot{u}_1\dot{u}_2 = k_2\lambda, \quad \dot{u}_1\dot{u}_3 = k_3\lambda \) for RTT, \(\dot{u}_1\dot{u}_2 = k_2\lambda, \quad \dot{u}_1\dot{u}_3 = k_3\lambda \) for TTR and for RTT \(\dot{u}_1\dot{u}_2 = k_2\lambda, \quad \dot{u}_1\dot{u}_3 = k_3\lambda \), where \(\lambda \in R \) and \(k_2, k_3 \) are the coefficients of the linear combination of \(\vec{\omega} = (\vec{b}_1, (\vec{\omega} \cdot \vec{b}_1)\vec{b}_2 - (\vec{\omega} \cdot \vec{b}_2)\vec{b}_1) \) in the canonical basis of the Coriolis space. If these relations are true for any admissible \(t \) then the motion is asymptotic.

In this case there are nontrivial asymptotic motions with the nonzero Coriolis acceleration.

3.2 Robots with 1 prismatic and 2 revolute joints

Let \(\xi \) be the plane determined by the axes of the revolute joints. There are three possibilities with respect to the configuration.

b) RRT: then \(Y_1 = (\vec{\omega}, \vec{b}_1), \quad Y_2 = (\vec{\omega}, \vec{m}_2), \quad Y_3 = (\vec{b}_1, \vec{m}_1) \), where \(\vec{m}_1 \neq \vec{b}_1 \) and \(\vec{\omega} \cdot \vec{m}_2 = 0 \). Now \(B_1 = Y_1 = (\vec{\omega}, \vec{b}_1), \quad B_2 = Y_2 - Y_1 = (\vec{b}_1, \vec{b}_2), \quad B_3 = Y_3 = (\vec{b}_1, \vec{m}_1) \). We know, see Remark 3 that
the vector \overline{m}_i is perpendicular to the plane ξ. We have $[Y_1,Y_2]=[B_1,B_2]$, $[Y_1,Y_3]=[B_1,B_3]$, $[Y_2,Y_3]=[B_1,B_3]$ and $\tau_2=\text{span}(\overline{m}_2,\overline{m}_3)$.

b) RTR: then $Y_1=(\overline{\sigma},\overline{0})$, $Y_2=(\overline{0},\overline{m}_2)$, $Y_3=(\overline{0},\overline{m}_3)$, where $\overline{m}_2 \neq \overline{0}$ and $\overline{\sigma} \cdot \overline{m}_3=0$. Now $B_1=Y_1=(\overline{0},\overline{0})$, $B_2=Y_2=(\overline{0},\overline{m}_2)$, $B_3=Y_3-Y_1=(\overline{0},\overline{m}_3)$. The vector \overline{m}_3 is perpendicular to the plane ξ. We have $[Y_1,Y_2]=[B_1,B_2]$, $[Y_1,Y_3]=[B_1,B_3]$, $[Y_2,Y_3]=-[B_1,B_3]$ and $\tau_2=\text{span}(\overline{m}_2,\overline{m}_3)$.

c) TRR: then $Y_1=(\overline{0},\overline{m}_1)$, $Y_2=(\overline{0},\overline{m}_2)$, $Y_3=(\overline{0},\overline{m}_3)$, $\overline{m}_2 \neq \overline{0}$, $\overline{\sigma} \cdot \overline{m}_3=0$. Now $B_1=Y_1$, $B_2=Y_2$, $B_3=Y_3-Y_1$. It is easy to show that the vector $\overline{m}_3-\overline{m}_2$ is perpendicular to the plane ξ. We have $[Y_1,Y_2]=-[B_1,B_2]$, $[Y_1,Y_3]=-[B_1,B_3]$, $[Y_2,Y_3]=[B_1,B_3]$ and $\tau_2=\text{span}(\overline{m}_2,\overline{m}_3-\overline{m}_2)$.

So we have

Proposition 7. Let ξ be the plane determined by the axes of the revolute joints. The space τ_2 of the directions of the translational velocity elements is generated by the direction of the prismatic joint and the normal vector of the plane ξ. If the axis of the prismatic joint is perpendicular to the plane ξ then the robot is in the singular position. The robot has a singular position iff A_3 is a subalgebra.

The subspace $A_3(u)$ is a subalgebra iff the axes of the revolute joints are perpendicular to the axis of the prismatic joint in a regular position.

In the next part we will investigate asymptotic robot motions of RRT, RTR, TRR. If $A_3(u)$ is a subalgebra then all motions through the point (u) are asymptotic. Let \overline{m}_i be the normal vector of the plane ξ. By our previous considerations we have the following cases:

(1) Let $u(t_0)$ be a singular position (A_3 is a subalgebra). Then $\tau_2=\text{span}(\overline{m}_2)$ and $A_3(u(t_0))$ is not a subalgebra. We have at t_0: for RRT $\overline{m}_3=c\overline{m}_3, 0 \neq c \in R$, $\dot{Y}_1=(\dot{u}_1\dot{u}_2+c(\dot{u}_1\dot{u}_3+\dot{u}_2\dot{u}_3))(\overline{0},\overline{\sigma} \times \overline{m}_2)$, $\overline{\sigma} \cdot \overline{m}_2=0$, for RTR $\overline{m}_3=c\overline{m}_3, 0 \neq c \in R$, $\dot{Y}_1=(\dot{u}_1\dot{u}_2+c\dot{u}_1\dot{u}_3-\dot{u}_2\dot{u}_3)(\overline{0},\overline{\sigma} \times \overline{m}_2)$, $\overline{\sigma} \cdot \overline{m}_2=0$ and for TRR $\overline{m}_3-\overline{m}_2=c\overline{m}_3, 0 \neq c \in R$, $\dot{Y}_1=(\dot{u}_1\dot{u}_2+\dot{u}_1\dot{u}_3-\dot{c}\dot{u}_1\dot{u}_3)(\overline{0},\overline{\sigma} \times \overline{m}_2)$, $\overline{\sigma} \cdot \overline{m}_2=0$. We know that a motion is asymptotic at a singular position $u(t_0)$ only if the Coriolis acceleration is zero. A singular motion ($u(t)=u(t_0)=\text{const}$) can be only trivial asymptotic when only one joint works.

Thus we get

Proposition 8. Let Y_{ω_3} be a robot of spherical rank 1 with two revolute joints. Then a motion is nontrivial asymptotic at the singular position $u(t_0)$ iff at t_0 all joints work and for RRT, RTR, TRR we have $(\dot{u}_1\dot{u}_2+c(\dot{u}_1\dot{u}_3+\dot{u}_2\dot{u}_3))=0$, $(\dot{u}_1\dot{u}_2+c\dot{u}_1\dot{u}_3-\dot{u}_2\dot{u}_3)=0$, $(\dot{u}_1\dot{u}_2+\dot{u}_1\dot{u}_3-\dot{c}\dot{u}_1\dot{u}_3)=0$ at t_0 respectively. The singular motion is trivial asymptotic.

(2) Let us assume that $u(t_0)$ is a regular position, $\overline{\sigma} \in \tau_2$ and $A_3(u)$ is not a subalgebra. Then $\overline{\sigma}=c_1\overline{m}+c_2\overline{m}_2$, $c_1,c_2 \in R, c_1 \neq 0$, where \overline{m} is the direction of the axis of the prismatic joint.
joint and \(\overline{m} \) is the normal vector of the plane \(\xi \). The axis of the prismatic joint is parallel to the axes of the revolute joints iff \(c_2 = 0 \). This position does not vary to time. If the axis of the prismatic joint is not parallel to the axes of the revolute joints then always \(\mathbf{u}_1 = \mathbf{\tilde{u}}_1 \), when \(\overline{m} = c_1 \overline{m}_1 + c_2 \overline{n} \).

b_1) For RRT: if \(\overline{m} = \overline{m}_1 \) then \(\dot{\mathbf{Y}} = \dot{\mathbf{u}}_1 \dot{\mathbf{u}}_1 (\overline{0}, \overline{m} \times \overline{m}_1) \), \(\overline{m} \cdot \overline{m}_1 = 0 \) for every \((\mathbf{u}) \). If \(\overline{m} \neq \overline{m}_1 \) then there is the position \((\mathbf{u}_1 = \mathbf{\tilde{u}}_1) \) so that the axis \(\mathbf{v}_1 \) turning around the axis \(\mathbf{v}_2 \) gets into the position complanar with the space \(\text{span}(\overline{m}, \overline{m}_1) \); i.e., \(\overline{m}_1 = c_1 \overline{m} + c_2 \overline{m}_1 \). Then \(\dot{\mathbf{Y}} = (\dot{\mathbf{u}}_1 \dot{\mathbf{u}}_1 + c_1 \dot{\mathbf{u}}_1 \dot{\mathbf{u}}_1 + c_2 \dot{\mathbf{u}}_1 \dot{\mathbf{u}}_1) (\overline{0}, \overline{m} \times \overline{m}_1) \).

b_2) For RTR: if \(\overline{m} = \overline{m}_2 \) then \(\dot{\mathbf{Y}} = \dot{\mathbf{u}}_2 \dot{\mathbf{u}}_1 (\overline{0}, \overline{m} \times (\overline{m}_2 - \overline{m}_1)) \), \(\overline{m} \cdot \overline{m}_1 = 0 \) for every \((\mathbf{u}) \). If \(\overline{m} \neq \overline{m}_1 \) then there is the position \((\mathbf{u}_1 = \mathbf{\tilde{u}}_1) \) so that the normal \(\overline{m}_3 \) of the plane \(\xi \) is complanar with the space \(\text{span}(\overline{m}, \overline{m}_1) \); i.e., \(\overline{m}_1 = c_1 \overline{m} + c_2 \overline{m}_3 \). Then \(\dot{\mathbf{Y}} = (\dot{\mathbf{u}}_1 \dot{\mathbf{u}}_1 + c_1 \dot{\mathbf{u}}_1 \dot{\mathbf{u}}_1 - c_2 \dot{\mathbf{u}}_1 \dot{\mathbf{u}}_1) (\overline{0}, \overline{m} \times \overline{m}_1) \).

b_3) For TRR: if \(\overline{m}_1 = \overline{m} \) then \(\dot{\mathbf{Y}} = \dot{\mathbf{u}}_2 \dot{\mathbf{u}}_2 (\overline{0}, \overline{m} \times (\overline{m}_2 - \overline{m}_3)) \), \(\overline{m} \cdot \overline{m}_3 = 0 \) for every \((\mathbf{u}) \). If \(\overline{m} \neq \overline{m}_3 \) then there is the position \((\mathbf{u}_1 = \mathbf{\tilde{u}}_1) \) so that the normal \(\overline{m}_2 \) of the plane \(\xi \) is complanar with the space \(\text{span}(\overline{m}, \overline{m}_3) \); i.e., \(\overline{m}_2 = c_1 \overline{m} + c_2 \overline{m}_2 \). Then \(\dot{\mathbf{Y}} = (\dot{\mathbf{u}}_1 \dot{\mathbf{u}}_1 + \dot{\mathbf{u}}_1 \dot{\mathbf{u}}_1 - c_2 \dot{\mathbf{u}}_1 \dot{\mathbf{u}}_1) (\overline{0}, \overline{m} \times \overline{m}_3) \).

We know, see Proposition 2, that in the case when \(\overline{m} \in \mathbb{R}_2 \) the motion is asymptotic iff \(\dot{\mathbf{Y}} = 0 \). We get

Proposition 9. Let \(\mathbf{Y}_{\alpha_3} \) be a robot of spherical rank 1 with two revolute joints and let the axis of the prismatic joint is complanar with the space \(\text{span}(\overline{m}, \overline{p}) \) at \(t_0 \); i.e. \(\overline{m} = c_1 \overline{m} + c_2 \overline{p} \). Then we have:

a) The zero Coriolis acceleration is a necessary condition for a motion to be asymptotic at \(t_0 \).

b) A motion of the robot \(\mathbf{Y}_{\alpha_3} \) is nontrivial asymptotic at the point \(\mathbf{u}(t_0) \) if and only if in the cases of RRT, RTR, TRR the equalities \((\dot{\mathbf{u}}_1 \dot{\mathbf{u}}_1 + c_1 \dot{\mathbf{u}}_1 \dot{\mathbf{u}}_1 + c_2 \dot{\mathbf{u}}_1 \dot{\mathbf{u}}_1) = 0 \), \((\dot{\mathbf{u}}_1 \dot{\mathbf{u}}_2 + c_1 \dot{\mathbf{u}}_1 \dot{\mathbf{u}}_2) = 0 \), \((\dot{\mathbf{u}}_2 \dot{\mathbf{u}}_3 + c_1 \dot{\mathbf{u}}_2 \dot{\mathbf{u}}_3 - c_2 \dot{\mathbf{u}}_2 \dot{\mathbf{u}}_3) = 0 \) are valid at \(t_0 \), respectively.

c) A motion of the robot \(\mathbf{Y}_{\alpha_3} \), whose all axes are parallel to each other \((c_3 = 0) \), is nontrivial asymptotic iff in only one revolute joint work.

(3) Let \(\dim \text{CA} = 2 \) and \(\text{A}_\alpha(\mathbf{u}) \) be not a subalgebra. Then \(\text{CA} \cap \text{A}_\alpha(\mathbf{u}) = K \) is the Klein subspace, \(K = \text{span}(\dot{\mathbf{Y}}) \), \(\dot{\mathbf{Y}} \in \mathbb{R} \) and the direction of \(\dot{\mathbf{Y}} \) is perpendicular to \(\overline{m} \). A motion is asymptotic at the point \((\mathbf{u}) \), iff \(\dot{\mathbf{u}}_1 \dot{\mathbf{u}}_1 [Y_1, Y_2] + \dot{\mathbf{u}}_1 \dot{\mathbf{u}}_2 [Y_1, Y_3] + \dot{\mathbf{u}}_2 \dot{\mathbf{u}}_3 [Y_1, Y_3] = \lambda \dot{\mathbf{Y}} \), \(\lambda \in \mathbb{R} \). We get

b_1) For RRT: \([Y_2, Y_3] = [Y_1, Y_2] \) and \([Y_1, Y_3], [Y_1, Y_3] \) are the basis elements of the space CA and \(\dot{\mathbf{Y}} = k_1 [Y_1, Y_2] + k_2 [Y_1, Y_3], ~ k_1, k_2 \in \mathbb{R} \). Then the motion is asymptotic iff \(\dot{\mathbf{u}}_1 \dot{\mathbf{u}}_2 [Y_1, Y_2] + (\dot{\mathbf{u}}_1 \dot{\mathbf{u}}_2 + \dot{\mathbf{u}}_1 \dot{\mathbf{u}}_2) [Y_1, Y_3] = \lambda (k_1 [Y_1, Y_2] + k_2 [Y_1, Y_3]) \) and this occurs if and only if \(\dot{\mathbf{u}}_1 \dot{\mathbf{u}}_2 = \lambda k_2 \), \(\dot{\mathbf{u}}_1 + \dot{\mathbf{u}}_2 = \lambda k_1 \).
b_2 \) for RTR: \([Y_2, Y_3] = -[Y_3, Y_2] \) and \([Y_2, Y_3], [Y_3, Y_2] \) are the basis elements of the space CA and \(\dot{Y} = k_2\{Y_1, Y_2\} + k_3\{Y_2, Y_3\}, \; k_2, k_3 \in \mathbb{R} \). Then the motion is asymptotic iff
\(\bar{u}_i\bar{u}_i = \lambda k_2, \; \bar{u}_iar{u}_i = \lambda k_3. \)

b_3 \) for TRR: \([Y_1, Y_3] = [Y_3, Y_1] \) and \([Y_2, Y_3], [Y_3, Y_2] \) are the basis elements of the space CA and \(\dot{Y} = k_2\{Y_1, Y_3\} + k_3\{Y_2, Y_3\}, \; k_2, k_3 \in \mathbb{R} \). Then the motion is asymptotic iff
\(\bar{u}_i\bar{u}_i = \lambda k_2, \; \bar{u}_iar{u}_i = \lambda k_3. \)

Proposition 10. Let \(R_{\alpha_3} \) be a robot of spherical rank 1 with two revolute joints and let the axis of the prismatic joint be not coplanar with the space \(\text{span}(\vec{m}_1, \vec{m}_2) \) at \(t_0 \) i.e. \(\vec{m} = c_1 \vec{m}_1 + c_2 \vec{m}_2 \). Then a motion is asymptotic at \(t_0 \) iff the joint velocities at \(t_0 \) satisfy
\(\bar{u}_i\bar{u}_i = \lambda k_2, \; \bar{u}_i\bar{u}_i = \lambda k_3 \) for RTR, \(\bar{u}_i\bar{u}_i = \lambda k_2, \; \bar{u}_i\bar{u}_i = \lambda k_3 \) for TRR and for TRR:
\(\bar{u}_i\bar{u}_i = \lambda k_2, \; \bar{u}_i\bar{u}_i = \lambda k_3 \), where \(\lambda \in \mathbb{R} \) and \(k_2, k_3 \) are the coefficients of the linear combination of
\(\dot{Y} = (\vec{m} - \vec{m}_3\vec{m}_2 - \vec{m}_2\vec{m}_3) \) in the canonical basis of the Coriolis space CA.

If these relations are true for any admissible \(t \) then the motion is asymptotic.

In this case there are nontrivial asymptotic motions with nonzero Coriolis acceleration.

3.3 Robots with 3 revolute joints

These robots have the axes of the joints parallel and different from each other (the robots are planar). The elements \(Y_i \) satisfy
\(Y_i = (\vec{m}_1, \vec{m}_2), \; Y_i = (\vec{m}_1, \vec{m}_2), \; \vec{m} \cdot \vec{m}_2 = 0, \; \vec{m}_1 \times \vec{m}_2 = 0 \). Let us denote planes \(\xi_1 = (\alpha_1, \alpha_2) \) and \(\xi_2 = (\alpha_1, \alpha_3) \). Then \(\vec{m} \) is the normal vector to the plane \(\xi_1 \) and \(\vec{m}_2 \) is the normal vector to the plane \(\xi_2 \). For the elements \(B_j \) we have
\(B_1 = Y_1, \; B_2 = Y_2 - Y_1 = (\vec{m}_2, \vec{m}_1), \; B_3 = Y_3 - Y_1 = (\vec{m}_2, \vec{m}_1). \)

Because
\(\tau_1 = \text{span}(\vec{m}_1, \vec{m}_3), \; \vec{m} \cdot \tau_1 = 0 \) and
\([Y_i, Y_j] = (\vec{m} \times \vec{m}_1, \vec{m} \times \vec{m}_2) \),
\([Y_i, Y_j] = (\vec{m} \times \vec{m}_1, \vec{m} \times \vec{m}_2) \) we conclude that \(A_1(u) \) is a subalgebra in a regular position. If the plane \(\xi_1 \) turning around the axis \(\alpha_1 \) coincides with the plane \(\xi_2 \) then the motion is in a singular position at \(t_0 \); i.e., \(\vec{m} = c\vec{m}_1, c \in \mathbb{R} \). In regular positions we have \(\text{dim} CA = 2 \) and all motions are asymptotic while \(\text{dim} CA = 1 \) in singular positions and the Coriolis acceleration satisfies:
\(\dot{Y}_c = \bar{u}_i(\bar{u}_i + \bar{u}_3)(\vec{m} \times \vec{m}_1). \)

Proposition 11. Let RRR be a robot the revolute joint axes of which are parallel. Then its position \(u(t_0) \) is singular if all axes of the joints lie in a plane. \(A_1(u) \) is a subalgebra in the regular position and \(K = A_1(u) \). \(A_1(u) \) is not a subalgebra in the singular position. A motion through the singular position \(u_3(t_0) = \dot{u}_3 \) is asymptotic at \(u_3(t_0) = \dot{u}_3 \)

a) if 1st joint does not work or
b) the ratio of the joint velocities of the 2nd and 3rd joints at t_0 is $-c$.

A singular motion ($u_2(t) = \dot{u}_2$) can be only trivial asymptotic.

Let us present a survey of all nontrivial asymptotic motion of the robots of spherical rank one.

1. The robots with one revolute joint (RTT, TRT, TTR).
 a) Let the directions of the joint axes be dependent (i.e., $\omega = c_2\hat{e}_2 + c_3\hat{e}_3$) and $c_2c_3 \neq 0$ in the cases RTT, TTR. Then a robot motion is nontrivial asymptotic if all joints work and the ratio of the joint velocities of the prismatic joints is c_2/c_3.
 b) Let the axis of the revolute joint be parallel to one axis of the prismatic joint (i.e., $c_2c_3 = 0$). Then a robot motion is nontrivial asymptotic if the revolute joint and only the prismatic joint whose axis is parallel to the revolute joint axis work.
 c) Let the directions of the joint axes be independent (i.e., $\omega \neq c_2\hat{e}_2 + c_3\hat{e}_3$). Then a robot motion is nontrivial asymptotic if the joint velocities satisfy for any admissible t:
 \[\lambda_{22} (\dot{u}_2 - \dot{u}_1) = k_2\lambda, \quad \lambda_{33} (\dot{u}_3 - \dot{u}_1) = k_3\lambda \]
 for RTT, $\dot{u}_1 = k_2\lambda$, $\dot{u}_1 = k_3\lambda$ for TTR, $\dot{u}_1 = k_2\lambda$, $\dot{u}_1 = k_3\lambda$ for TRT, where k_2, k_3 are the coefficients of the linear combination of the Klein direction in the canonical basis of the Coriolis space.

2. The robots with two revolute joints (RRT, RTR, TRR).
 a) Let the joint axes be parallel. Then a robot motion is nontrivial asymptotic if one revolute joint does not work.
 b) Let the axis of the prismatic joint be not coplanar with the space $\text{span}(\bar{\omega}, \bar{\pi}_1)$. Then a robot motion is nontrivial asymptotic if for the joint velocities and any admissible t we have:
 \[\dot{u}_1 = k_2\lambda, \quad \dot{u}_3 = k_3\lambda \]
 for RRT, $\dot{u}_1 = k_2\lambda$, $\dot{u}_3 = k_3\lambda$ for TRR.
 c) Let the directions of the joint axes be independent (i.e., $\omega \neq c_2\hat{e}_2 + c_3\hat{e}_3$). Then a robot motion is nontrivial asymptotic if the joint velocities satisfy for any admissible t:
 \[\lambda_{22} (\dot{u}_2 - \dot{u}_1) = k_2\lambda, \quad \lambda_{33} (\dot{u}_3 - \dot{u}_1) = k_3\lambda \]
 for RRT, $\dot{u}_1 = k_2\lambda$, $\dot{u}_1 = k_3\lambda$ for TTR, $\dot{u}_1 = k_2\lambda$, $\dot{u}_1 = k_3\lambda$ for TRR, where k_2, k_3 are coefficients of the linear combination of $Y = (\bar{\omega}, \bar{\pi}_1)\hat{e}_2 - (\bar{\omega}, \bar{\pi}_2)\hat{e}_3$ in the canonical basis of the Coriolis space.

3. The robots with three revolute joints (RRR).
 In this case, there are only trivial asymptotic motions.

4. References

www.intechopen.com

Parallel manipulators are characterized as having closed-loop kinematic chains. Compared to serial manipulators, which have open-ended structure, parallel manipulators have many advantages in terms of accuracy, rigidity and ability to manipulate heavy loads. Therefore, they have been getting many attentions in astronomy to flight simulators and especially in machine-tool industries. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in parallel manipulators. This book mainly introduces advanced kinematic and dynamic analysis methods and cutting edge control technologies for parallel manipulators. Even though this book only contains several samples of research activities on parallel manipulators, I believe this book can give an idea to the reader about what has been done in the field recently, and what kind of open problems are in this area.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
