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Chapter

Deep Learning Enabled 
Nanophotonics
Lujun Huang, Lei Xu and Andrey E. Miroshnichenko

Abstract

Deep learning has become a vital approach to solving a big-data-driven problem. 
It has found tremendous applications in computer vision and natural language 
processing. More recently, deep learning has been widely used in optimising the 
performance of nanophotonic devices, where the conventional computational 
approach may require much computation time and significant computation source. 
In this chapter, we briefly review the recent progress of deep learning in nanopho-
tonics. We overview the applications of the deep learning approach to optimising 
the various nanophotonic devices. It includes multilayer structures, plasmonic/
dielectric metasurfaces and plasmonic chiral metamaterials. Also, nanophotonic 
can directly serve as an ideal platform to mimic optical neural networks based on 
nonlinear optical media, which in turn help to achieve high-performance photonic 
chips that may not be realised based on conventional design method.

Keywords: deep learning, inverse design, plasmonic metasurface, dielectric 
metasurface, chiral metamaterials, all-optical neural network

1. Introduction

In the past several decades, nanophotonics has been demonstrated as an ideal 
platform to manipulate the light-matter interaction and engineer the wavefront of 
the electromagnetic wave at will. The rapid development on nanophotonics has led 
to tremendous applications ranged from lasing, Lidar, biosensor, LED, photodetec-
tor, integrated photonic circuit, invisibility cloak, etc. Nanophotonics covers many 
exciting topics: photonic crystal, plasmonics, metamaterials, and nanophotonics 
based on some novel materials (e.g., two-dimensional materials, perovskite). 
Currently, the building blocks for nanophotonics are made from either metallic or 
dielectric elements with regular shapes, such as rectangular wire, cylinder, cuboids, 
and sphere for plasmonic and dielectric metasurfaces. Usually, limited parameters 
are provided for such a regular structure, and, thus, the optimisation process can be 
done in a reasonable short time. For example, a single dielectric cylinder with only 
two parameters, including diameter and height, are involved. Due to the limited 
freedom, the performance of photonic devices based on the regular pattern is far 
away from the optimal one. Inverse design method has been widely used to tackle 
this problem because the full parameter space can be explored [1]. Conventional 
inverse design methods that include topology optimisation, genetic algorithm, 
steep descent, and particle swarming optimisation shown in Figure 1a, however, 
require the vast computational source and take a long time to find the optimal 
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local structure. As a branch of machine learning, deep learning has received much 
attention worldwide because it can efficiently process and analyse a vast number of 
datasets. It has already found great success in computer vision and speech recogni-
tion. Recently, researchers and scientists have applied it to quantum optics, material 
design and optimisation of nanophotonic devices due to its outstanding capability 
of finding optimal solution from enormous data. At the same time, the computa-
tional cost is much lower compared to other inverse design methods [2, 3]. Several 
neural networks including deep neural network, generative neural network and 
convolutional neural network are frequently used to retrieve the optimal struc-
ture parameters for irregular structure with limited sets of data and shorter time 
when many structure parameters are involved for opmisation. This book chapter 
is organised as follows: In Section 2, we will discuss the inverse design enabled by 
deep learning on four different topics: multilayer structure, plasmonic metasur-
face, dielectric metasurface, chiral metamaterials (See Figure 1b). In Section 3, 
we review the recent progress on all-optical neural networks. Then, concluding 
remarks and outlook are presented in Section 4.

2. Optimisation of nanophotonics design by deep learning

Recently, deep learning using an artificial neural network has emerged as a revo-
lutionary and powerful methodology in nanophotonics field. Applying the deep 
learning algorithms to the nanophotonic inverse design can introduce remarkable 
design flexibility which is very challenging and even impossible to achieve based on 
conventional optimisation approaches [1]. In this section, we will provide a brief 
review of the implementation of deep learning to solve nanophotonic inverse design 
problems.

2.1 Design of multilayer nanostructures by deep learning

Multilayer nanostructures can exhibit unique optical properties including field 
enhancements and distributions, special transmission/reflection spectra, based on 
the interference of different modes supported by different layers in the nanostruc-
tures. Machine learning has emerged as a more and more promising tool to solve 
the inverse design of photonic nanostructures. It will enable effective inverse design 
by simultaneously considering various inter-linked parameters such as geometric 

Figure 1. 
(a) Inverse design methods in nanophotonics. (b) Application of deep learning in nanophotonics.
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parameters, material types, etc., simultaneously (unlike the current regular 
approaches, which optimise one or two parameters only, at a time).

A recent work done by Peurifoy et al. has demonstrated using deep neural 
network (DNN) to relate the geometry of SiO2/TiO2 multilayer spherical core-shell 
nanoparticles with their light-scattering properties (Figure 2a) [4]. The transfer 
matrix method has been used to analytically solve the scatterings to generate 50,000 
different combinations of the shell thickness as the total examples for training, 
validation, and testing. The forward learning model was a fully-connected dense 
feed-forward network with four hidden layers. The inputs were set to be the thick-
ness of each shell of the nanoparticles, and the outputs were the corresponding scat-
tering cross section spectra. During the learning process, the output of the network 
was compared with the target response to provide a loss function against which the 
weights can be trained and updated. After the forward-feeding training process, by 
fixing the weights, and setting the inputs as a trainable variable and fix the output 
to the desired output, they run the neural network backwardly, let the neural 
networks to iterate the inputs and provide the desired geometry to give the target 
spectrum. After training, as can be seen from Figure 2a, for an arbitrarily given 
spectrum (blue curve), the DNN can successfully predict the thickness of each shell 
of the nanoparticles that can generate a similar scattering spectrum as wanted, with 
some minor deviations.

A further improvement of this approach is to take into account the different 
material combinations for the core-shell nanoparticles. In another work done by So 
et al., they have considered a simultaneous inverse design of materials and struc-
tural parameters using the deep learning network (Figure 2b) [5]. Here, they use 
the network to map the extinction spectra of the electric dipole (ED) and magnetic 
dipole (MD) to the core-shell nanoparticles, including the material information and 
shell thicknesses. The DL model consists of two networks: a designed network to 
learn a mapping from optical properties to design parameters, and a spectrum 
network to learn from design parameters to optical properties. Here, in order to 
adapt the network to the different types of input data (materials and thicknesses), 
the loss function has been devised accordingly by the weighted average of material 

Figure 2. 
Application of DL for multilayer nanostructure design: (a) using DNN to retrieve the layer thicknesses of a 
multilayer particle based on its scattering spectrum. Inset: Network architecture. (b) Left: Geometry of 
three-layered core-shell nanoparticles with changeable materials and thicknesses. Right: Network architecture. 
(c) Left: Multilayer thin films of 2SiO  and 3 4Si N . Right: The architecture of the tandem network composed of 
an inverse design network and a forward modelling network. (d) Left: Evolution of the training cost of the 
network. Right: Performance of the network using a Gaussian-shaped spectrum.



Advances and Applications in Deep Learning

4

and structural losses: ( )design structure material1l l lρ ρ= + −  with ρ  the weight of the  

structural error, which is also set as a hyper-parameter to be adjusted during the 

training process. The loss structurel  was evaluated by the mean absolute error 

( ) ( )2

MSE

1
, n nn

l x y x y
n

= −∑ , while the loss function for the materials materiall  was 

evaluated by binary cross-entropy with logits loss 
( ) ( ) ( ) ( )( )BCE , 1 log 1l x y ylog x y xσ σ = − + − −  , 

with x and y being the target and output, respectively, and ( )xσ  is the Sigmoid 

function. After training, the network has demonstrated great ability to realise the 
inverse design for different types of problems, including spectral tuning the electric 
or magnetic resonances, or overlapping them which potentially facilitate the inverse 
design of nanostructures with specific functions, such as zero-forward (first Kerker 
condition) or zero-backwards (second Kerker condition) scatterings [6, 7].

A similar network has also been used to explore the optical transmission spectra 
from multilayer thin films (Figure 2c, d) [8]. Here, Liu et al. combined the forward 
network modelling and inverse design in tandem architecture to overcome the 
data inconsistency which originates from the non-uniqueness in inverse scattering 
problems, i.e., the same optical responses can correspond to different designs. This 
non-uniqueness of the response-to-design mapping will cause conflicting examples 
within the training set and might lead to non-convergence of the neural network. 
The TN architecture consists of an inverse-design network connected to a forward 
model network. The forward network learns the mapping from the structural 
parameters to the optical responses and is trained separately first. After the for-
ward network is trained, it is placed after the inverse-design model network, and 
its network weights remain fixed during the training of the inverse-design model 
network. The inverse-design network learns a mapping from the optical responses 
to the structural parameters. After the training process, such a DNN can efficiently 
predict the geometry of a device which is both promising and much faster as com-
pared with the conventional electromagnetic solvers. As shown in the right diagram 
of Figure 2d, the learning curve of this tandem neural network has demonstrated 
a fast convergence during the training process. The structures designed by the 
network matches the desired transmission spectra with high fidelity.

2.2 Design of plasmonic metasurfaces by deep learning

Plasmonic metasurfaces have become the building blocks for the meta-optics 
field. It allows for manipulating the wavefront of the electromagnetic wave at will. 
In this section, we are going to give a summary of the current status applying deep 
learning approach for inversely designing plasmonic metasurfaces.

In recent years, with the burgeoning field of metasurfaces, deep learning has 
emerged as a powerful tool for realising efficient inverse design of different types 
of plasmonic metasurfaces for different applications including spectral control, 
near-field design [9–11]. In 2018, Malkiel et al. introduced a novel bidirectional 
DNN model which can realise both the design and characterisation of plasmonic 
metasurfaces [12]. The network consists of two standard DNNs: a geometry-
predicting network (GPN) to solve the inverse design and a spectrum-predicting 
network (SPN) to solve the spectra prediction tasks for plasmonic metasurfaces 
of “H”-shaped gold nanostructures. They have shown that by combing these two 
networks and optimise them together, they can co-adapt to each other, which is more 
effective than training them separately, as shown in Figure 3a. The training data 
for the GPN consists of three groups of data: desired spectra for x-polarised pump 
and y-polarised pump, and the materials’ properties. Each group of data is fed into a 
different layer and three DNNs in parallel before they join the fully connected joint 
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layers. This architecture has considered the differences of properties in the inputs’ 
data, thus allows a better performance of the networks suitable for the nanophotonic 
design. After that, they were using the predicted geometry from the GPN to feed the 
SPN and returns the predicted transmission spectra as the outputs. Then the back-
propagation is used to optimise both networks. The networks show excellent agree-
ment between the measurements, predictions and simulations, as demonstrated by 
two examples shown in Figure 3b using the network to realise the inverse design of 
“H”-shaped gold metasurfaces for target spectra.

As the structural complexity grows, the generation of the training data sets takes 
enormous time. Furthermore, the requirement for more degrees of freedom in 
metasurface patterns makes the problems more and more challenging for conven-
tional neural networks. To solve this issue, generative adversarial network (GAN) 
has been employed for metasurface designs recently [13]. A GAN involves placing 
two neural networks (a generator and a critic) in competition with each other and 
trying to reach an optimum, as shown in Figure 3c. Here, the simulator was first 
pretrained using 6500 full-wave finite element method (FEM) simulations for 
metasurfaces with different shapes. After the training, the simulator was used to 
approximate the transmission spectra of any input patterns rather than using the 
full-wave FEM simulations to do it. This has significantly reduced the number of 
datasets for the network. The generator is used to produce the metasurface patterns 
in response to a given input spectra T, and then fed into the simulator to get the 
approximated spectra T′. The critic will compare the original input geometric data 
corresponding to T and the generated patterns from the generator and guide the 
generator to produce patterns that share common features with the geometric input 
data. Figure 3d gives one example demonstrating the excellent performance of this 
network on predicting and identifying the structure to produce the target spectra 
with only minor deviations.

2.3 Design of dielectric metasurface by deep learning

Recently, dielectric metasurface has triggered extensive interests in the past 
decades. Analogous to metallic nanostructures supporting plasmonic resonance, 
high index dielectric nanostructures provide multipole electric and magnetic 

Figure 3. 
Application of DL for plasmonic metasurfaces inverse design: (a) architecture of the DNN composed of xxx. 
(b) Demonstration of the inverse design of “H”-shaped gold metasurfaces. (c) The architecture of a proposed 
GAN model composed of a generator, a simulator, and a critic. (d) Transmission spectra of the original (left) 
and generated (right) patterns from the proposed GAN approach.
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resonance (also called as Mie resonance), which enable 2π phase coverage without 
ease. Besides, the intrinsic material loss is much lower for high index semiconductor 
than the counterpart of noble metals. These two unique properties make it possible 
to develop high-performance photonic devices based on dielectric metasurface. 
Although dielectric metasurfaces with such regular elements have much better 
performance compared to the plasmonic metasurfaces, they still do not reach the 
optimal one with the best efficiency. In order to further improve the performance of 
dielectric metasurface, inverse design approaches, including adjoint-based topology 
optimisation and genetic algorithms, have been widely used. The iterative optimisa-
tion methods lead to the findings of devices with high efficiency with irregular 
patterns which are usually beyond human intuition. However, these methods rely 
on extremely heavy computation, making them hard to apply to sophisticated 
devices featured by a very high dimensional design space. The recently developed 
deep learning approach, which is based on artificial neural networks, is viewed as 
the perfect solution of dealing massive data while reducing the computation cost. 
It has already found great success in computer vision and natural language process-
ing. Recently, researchers have transferred deep learning to the inverse design of 
nanophotonic devices. Up to date, most frequently used neural networks in the 
design of dielectric metasurfaces are DNN, GAN, and convolution neural networks 
(CNN) In the following, we will illustrate them one by one and also discuss their 
unique strengths and drawbacks.

DNN with fully connected layers has been demonstrated as a versatile and effi-
cient way of engineering a high-Q resonance with desired characteristics, including 
linewidth, amplitude, and spectral location [14]. The structure considered here is 
double identical silicon nanobars sitting on the substrate, as shown in Figure 4b. 
The width and length of nanobars are,, respectively, denoted as W and L while the 
centre to centre distance between nanobars is denoted as 2x0. To reduce the struc-
ture complexity, the period of the unit cell and the thickness of silicon bars are fixed 
as p = 900 nm and t = 150 nm, respectively. Previous studies have demonstrated that 

Figure 4. 
(a) The architecture of the tandem network, which consists of inverse-design model network followed by 
the pretrained forward mode network. (b) Schematic drawing of the unit cell made of two identical silicon 
nanobar. Inverse design of metasurface supporting Fano profile spectra (c) λ0 = 1450 nm and 1500 nm, 
Δλ = 15 nm, q = 0.8. (d) λ0 = 1500 nm, Δλ = 10 nm, q = 0.3 and q = 0.5. (e) λ0 = 1500 nm, Δλ = 5 nm and 
Δλ = 15 nm, q = 0.7. (f) Schematic of the conditional GLOnet for metagrating design. (g) Optimised efficiency 
of metagrating from the conditional GLOnet.
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such an array structure support a Fano resonance induced by the quasi bound state 
in the continuum. Since there are three parameters to be tuned, it is very challenging 
to find the desired structure parameters by one by one brute-force searching when 
the spectrum response is predefined. DNN can correctly address this issue in an 
reduced time period. 25,000 sets of the training data are randomly generated with 
rigorous coupled-wave analysis (RCWA). It is worth noting that it is straightforward 
and easy to train the network mapping from structure parameters to reflection/
transmission spectrum because one set of structure parameters can only produce a 
given spectrum. The objective is to search the structure parameter for the desired 
spectra response. It might be challenging to use an only forward neural network to 
find out the required parameters because the non-uniqueness issue arises. In other 
words, different designs may produce the same far-field electromagnetic response 
because the optical resonance is mainly governed by the volume of structure but 
shows weak dependence on the structure shape. To solve this one-to-many issue, 
as shown in Figure 4a, a Tandem neural network consisting of inverse design 
model network and the forward model network is proposed. More specifically, the 
forward network is trained first to learn the mapping from structure parameters 
to the optical response. After the training of the forward network is done, inverse 
design model network is trained while the weight and bias for the forward network 
are fixed. Once the full training process is completed, one can retrieve the structure 
parameters in several milliseconds while the optical spectrum is predefined. In 
order to test the validity of Tandem network, Figure 4c–e compares the predefined 
spectrum and predicted spectrum of Fano resonance with different wavelength, 
linewidth and amplitude. The excellent agreement can be found between two, 
indicating the effectiveness of the deep learning approach in the inverse design of 
nanophotonics. Note that only amplitude of transmission spectrum is considered 
here. In many applications of dielectric metasurface (e.g., metalens), both ampli-
tude and phase should be considered to shape the wavefront of electromagnetic 
wave. Since optical resonance is always accompanied by π phase-shift, which may 
make training difficult for phase spectra because it is better to be differentiated for 
output parameters (i.e., phase or amplitude). Instead of using phase and amplitude, 
researchers adopt both real and imaginary parts of the reflection/transmission 
spectrum as the output of training data.

Moreover, because of the huge mismatch between the dimensions of input and 
output, a revised neural network was applied. The first standard linear neural net-
work was replaced with the bilinear tensor layer that can correlate two entity vectors 
in multiple dimensions. Training results indicated that modified neural network 
converges faster than the standard linear neural network. This is because input 
parameters are interdependent on each other. Taking an array of dielectric nanodisk 
as an example, the structure is fully described by four parameters: refractive index 
of materials, radius and height of disk, the gap between disks. As we mentioned 
previously, the optical resonance is mainly determined by the refractive index and 
volume of structures. In other words, the spectrum response is governed by permit-
tivity (ε = n2) and volume (V = πr2h). Therefore, multiplication of two entities by 
bilinear tensor can better describe the nonlinearity, and thus facilitate the training 
process. However, it is worth pointing out that there are some limitations on deep 
neural network. First, the design solution retrieved from deep learning must fall 
into the boundary of the training data set. Second, it only works for structure 
defined by several simple parameters. When more parameters are involved, tens, 
hundreds of thousands of training data are required to guarantee the prediction 
accuracy. As a consequence, generating such a large amount of data may consume a 
long time and cause a high computational cost. Moreover, it will be challenging to 
train the data for dielectric metasurface with free form geometry via DNN.
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GAN has been found to overcome the above limitations effectively. GAN is 
originally proposed in the computer vision. It is capable of creating artificial images 
that even cannot be distinguished from true images by the computers [15]. GAN has 
been successfully applied to the design of subwavelength scale metallic nanostruc-
tures and multifunctional dielectric metasurface [13, 16]. The operation principles 
of GAN in the design of metasurface are described as follows. The unit cell of the 
metasurface is divided into N*N (i.e., N = 32, 64) pixel images while the thickness 
of structure and period of the unit cell is fixed. There are two neural networks in 
GAN: generator and discriminator. The generator networks try to create the image 
so that it cannot be differentiated to the real image. In contrast, the discriminator 
networks are trained to distinguish the image produced by the generator from the 
real image sets. The competing process between these two networks leads to the 
creation of artificial images that cannot be distinguished from the real one. In fact, 
the topology optimisation method or deep learning approach does not always work 
alone. They can be combined together to build up a new generative network. Such 
a generative network has been proposed to optimise the efficiency of metagrat-
ing at large angle across a broadband wavelength range because it took both the 
advantages of GAN and adjoint-based topology optimisation [17]. Although GAN 
requires less training sets, the training data may be optimised first and thus demand 
more computation source. More recently, global topology optimisation networks 
(GLOnets) was proposed by Jiang et al. from Stanford [18, 19]. It incorporates the 
adjoint-based optimisation into the generative neural networks. Unlike DNN and 
GAN methods, it does not require pre-calculation of training data based on the 
electromagnetic solver. Instead, it adopts the generator networks followed by the 
adjoint-based topology optimiser, allowing for direct learning the physical relation-
ship between geometry parameters of the device and electromagnetic response, as 
shown in Figure 4f. Such a global optimiser does not only reduce the computation 
time but also further improve the efficiency of metagrating at large angles com-
pared to the topology optimisation method (See Figure 4g).

2.4 Design of chiral metamaterials by deep learning

Another example of deep learning’s application in nanophotonics is to design 
plasmonic chiral metamaterials [20, 21]. Chirality corresponds to the structure–
property of an object which cannot superpose to its mirror image by any combina-
tion of rotation and translation. It shows different response under the illumination 
of left circular polarisation (LCP) and right circular polarisation (RCP) incidence. 
This concept is originated from molecules or ions in chemistry. However, the optical 
chirality in nature is extremely weak due to the small interaction volume in the 
visible wavelength. The emergence of metamaterials makes it possible to realise a 
strong optical chiral response. It is well established that a pair of rotating gold split-
ring resonators (SRRs) separated by a dielectric spacer can induce strong chirality. 
The question of how to optimise the chirality at the given frequency still remain 
unanswered because so many parameters involved make it difficult to find out the 
optimal design [20]. The advent of machine learning approach provided the pos-
sibility of processing many parameters at once in a reasonable short time. Ma et al. 
developed a deep learning-based model to design and optimise three-dimensional 
plasmonic chiral metamaterials at the desired wavelength. The structure they 
considered is shown in Figure 5a. The period of the unit cell is fixed as 2.5 μm while 
the thickness and width of gold SRR are set as 200 nm and 50 nm, respectively. 
Other parameters, such as length of top and bottom SRR (l1 and l2), top and bottom 
dielectric space layer (t1 and t2), and the twisted angle α between two SRRs, are set 
as input parameters. For output parameters, 201 points are sampled in the reflection 
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spectrum from 30 to 80 THz. Here, four characteristic reflection spectra that 
include RLL (LCP-input: LCP-output), RLR (LCP-input: LCP-output), RRR (RCP-
input: RCP-output) and chirality spectrum are investigated as output parameters. 
Figure 5b shows the structure of DNN that consists of primary networks (PN) 
and auxiliary network (AN). Both networks have a forward path and an inverse 
path. For the forward path of PN, the huge mismatch of dimension between input 
parameters (1 × 5) and output parameters (3 × 201) makes it hard to converge. This 
is especially obvious around the resonant frequency. To avoid this issue, a neural 
tensor network followed by the unsampled module is used. Instead of using DNN 
with fully connected layers that are formed by simply linear recombination from 
previous neurons, the first hidden layer is replaced as the neural tensor network 
to model second-order relationships because the input parameters are not inde-
pendent with each other. Figure 5c compares the reflection spectra obtained from 
electromagnetic simulation and prediction of PN. The excellent agreement can be 
found for most wavelengths except around resonant wavelengths. This issue is well 
addressed by introducing another AN which learns the relationship between struc-
tural parameters and chirality spectrum. The results are shown in Figure 5d. After 
finishing the training both PN and AN, one can construct any chirality spectrum 
feature by single or double resonances as well as optimise the chirality at predefined 
spectrum. Note that such networks are not the only one which can design and 
optimise the chiral metamaterials. Li et al. developed a self-consistent framework 
termed BoNet (Bayesian optimisation (BO) and CNN) [21], which can conduct self-
learning on the optical properties of nanostructure (i.e., near field and far-field). 
The unit cell of structure, as shown in Figure 5e, is divided into 40 × 40 pixels, 
where the empty area is denoted as 0, and the gold brick area is denoted as 1. Other 
parameters, such as period and thickness, are fixed. DNN used here is composed 
of convolution layers followed by several fully connected layers (see Figure 5f). 
Successful training on the BoNet can help to optimise the chirality at an arbitrary 

Figure 5. 
(a) Schematic drawing of unit cell for chiral metamaterials. (b) Architecture of neural network used for 
the inverse design of chiral metamaterials. (c) Reflection spectra calculated from numerical simulation and 
predicted from DNN. (d) Chirality spectra for both numerical simulation and DNN prediction. (e) Schematic 
drawing of unit cells of structure used for inverse design. (f) Schematic of BoNet for optimisation of the far-
field spectrum. (g) BoNet predicted and experimental verification of far-field circular dichroism spectra at the 
desired wavelength of 650, 700, 750 and 800 nm.
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wavelength in the visible wavelength range. Figure 5g shows the chirality spectra of 
measurement and prediction from BoNet. The discrepancy can be attributed to the 
tolerance of fabrication and measurements.

3. All-optical neural networks

As was discussed above, neural networks have been successfully used to solve 
rather complex problems in nanophotonics in particular. There are two funda-
mentally different alternatives for the implementation of neural networks: a 
software simulation in conventional computers or a particular hardware solution 
capable of dramatically decreasing execution time. Software simulation can be 
useful to develop and debug new algorithms, as well as to benchmark them using 
small networks. However, if large networks are to be used, software simulation is 
not enough. The problem is the time required for the learning process, which can 
increase exponentially with the size of the network.

At the same time, there are ongoing attempts to implement this architecture in a 
hardware form, which should allow for substantial gains for scaling and distributed 
approaches. Digital circuits are usually implemented by using robust CMOS tech-
nology, where the neuron state summation is realised via common multipliers and 
adders. The activation function is more complicated to implement, which require a 
highly nonlinear response. One of the technical difficulties is related to the imple-
mentation of communication channels. In general, the connection scales as a square 
of the number of inputs. One of the solutions to this problem can be provided by 
optical networks, where the communication channels do not need to be hard-wired 
[22, 23]. Also, in free space, light waves can cross each other without affecting the 
carrying information. Other benefits include low energy to transmit the signal 
and high switching time up to 40 GHz. Thus, analogue optical technology allows 
to implement artificial neural networks directly in hardware, with data encoded 
in pulses of light and neurons made from optical elements, such as lenses, prisms, 
beam splitters, waveguides and spatial light modulators (SLMs), see Figure 6a. In 
particular, SLMs are used for algebraic operations, including matrix multiplication 
with a specific phase mask design [24].

Figure 6. 
(a) Schematic of a generic two-layer artificial optical neural network with linear operation realised via 
programmable SLM and nonlinear activation by employing nonlinear media. (b) Optical micrograph and 
highlighted region of the implemented optical neural network of 22-mode on-chip interference unit. The system 
acts as an optical FPGA. Matrix multiplication and amplification are realised fully optically via Mach-
Zehnder interferometer (MZI) phase-shifters.
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Recently, another approach to realise optical neural networks was based on 
Mach-Zehnder interferometers (MZIs) to calculate matrix products [25, 26], see 
Figure 6b. By carefully manipulating a specific phase shift between a coherent pair 
of incoming light pulses allow to multiply a two-element vector, encoded in the 
amplitude of the pulses, by a two-by-two matrix [27, 28]. An array of the interfer-
ometers can then perform arbitrary matrix operations, which is widely used, for 
example, in the boson sampling approach.

One of the main challenges for the successful realisation of the optical neural 
networks is to find a suitable implementation of the activation function. Due to its 
inherent nonlinear response, light pulses are required to interact with a nonlinear 
media. Various nonlinear effects have been proposed for such functionality. To avoid 
optical signal loss, mostly dielectric materials have been considered. It includes 
photorefractive crystals, liquid crystals, and various semiconductors [29]. Most 
promising nonlinear effects are based on harmonics generation, phase conjugation, 
optical limiter, and bistable response. Recently, researchers from The Hong Kong 
University of Science and Technology proposed a new approach based on cold atoms 
exhibiting electromagnetic induced transparency effect to implement the nonlinear 
activation function [24]. Importantly, it requires very weak laser power and is based 
on nonlinear quantum interference. It is also possible to produce different activation 
functions by varying the positions of counterpropagating beams.

The group from the University of Münster has suggested an alternative approach 
by exploiting the wavelength-division multiplexing (WDM) to transport and sum 
multiple pulses at different wavelengths using single waveguides [30]. Importantly, 
they suggest a phase-change material (PCM) for both linear summing and nonlin-
ear firing. In this approach, each neuron is implemented as a ring-shaped resonator 
of varying diameters to tap light signals with corresponding resonant wavelengths 
from a common waveguide. When the total power of all those signals exceeds a 
certain threshold, they then switch another piece of PCM, this time embedded in a 
resonator at the neuron’s output.

Despite recent progress in all-optical implementation of neural networks, various 
groups investigated hybrid optoelectronic systems in which neurons convert signals 
from light into electricity and then back to light. The group from Princeton suggested 
using electro-absorption modulation for the optimal integrated photonics imple-
mentation of the neural networks [31]. One of the essential aspects is the integration 
density. The electro-optical induced nonlinearity is realised by using photodiode cou-
plers. Moreover, it also allows for spiking signal processing, which enables the direct 
implementation of neuromorphic computing. It led to the development of a new and 
quite promising platform of neuromorphic photonics combining the advantages of 
optics and electronics to build systems with high efficiency, high interconnectivity 
and high information density.

4. Conclusion and outlook

Although deep learning was proposed and found great success in the context of 
computer vision and speech/image recognition, it has become a powerful approach 
to solve complex problems in biology, physics and chemistry. As a branch of 
physics, nanophotonics has witnessed huge progress based on deep learning. Deep 
learning allows us to inversely design nanophotonic devices with even less computa-
tion source and time compared to conventional computational approaches, such as 
topology optimisation and genetic algorithm. Currently, the research interests and 
efforts are still fast-growing and expanding in deep learning-enabled nanophoton-
ics. More research opportunities may be brought in this area.
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On the one hand, although deep learning has been successfully applied to 
retrieve the structure parameters for any given spectrum, it remains an opening 
question that whether it is possible to realise narrowband or broadband absorbers 
at the specified wavelength or wavelength range. On the other hand, by combining 
deep learning and topology optimisation, beam steering at relatively large deflec-
tion angle with high efficiency has been demonstrated for single- or bi-operation 
wavelengths. Next step is to utilise deep learning to optimise the metasurface design 
with multi-functionalities further. For example, current broadband achromatic 
metalens has limited focusing efficiency. We believe the deep learning can entirely 
overcome this limitation by providing more irregular combinations of metaatoms 
that cannot be found by regular cylinder metaatoms. Finally, since nanophotonics 
offers a powerful and versatile platform to realise optical neural networks, more 
advanced and fast photonic chips that can bypass the computational capability 
based on traditional electric chips will be developed and paved the way toward the 
photonic computer.
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