We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

6,600
Open access books available

177,000
International authors and editors

195M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter

Investigation of Shielding Effectiveness of M-Type Ba-Co-Ti Hexagonal Ferrite and Composite Materials in Microwave X-Band Systems

Charanjeet Singh, S. Bindra Narang and Ihab A. Abdel-Latif

Abstract

Ferrites are a wide class of materials that are still a very rich field of scientific interest and under the scope of recent research. The polycrystalline Co$^{2+}$-Ti$^{4+}$ substituted Ba hexagonal ferrite has been synthesized by the standard ceramic method. The vector network analyzer has been incorporated to measure different microwave parameters at X-band (8.2–12.4 GHz) frequencies. The microwave shielding effectiveness is evaluated by S-parameters for near field and AC conductivity as well as skin depth for far field. The doping of Co$^{2+}$ and Ti$^{4+}$ ions causes absorption in composite $x = 0.5$ to exhibit good shielding effectiveness and it exhibits large 20-dB bandwidth of 4.70 GHz in the near field and 3.60 GHz for far field respectively. The AC conductivity increases with frequency in composites $x = 0.1, 0.3, \text{and} 0.5$ and skin depth decreases with frequency in all composites. The shielding effectiveness, AC conductivity, and skin depth are correlated to each other.

Keywords: ferrites, hexaferrite, microwave shielding, AC conductivity

1. Introduction

Ferrites are a wide class of materials containing iron. These materials are formed in different crystalline symmetries. A simple form of ferrites is the spinel AB_2O_4 of cubic structure [1–9]. The orthoferrites ABO_3 are another important form with an orthorhombic perovskite crystal system [10–19]. The third class of ferrites are garnets of form $\text{A}_3\text{B}_5\text{O}_{12}$ [20–29]. The fourth class, termed as hexaferrites, may be divided into five main groups: M-type ($\text{AB}_1\text{B}_8\text{O}_{19}$), W-type ($\text{AMe}_2\text{B}_{16}\text{O}_{27}$), X-type $\text{A}_2\text{Me}_2\text{B}_{28}\text{O}_{46}$, Y-type $\text{A}_2\text{Me}_2\text{B}_{2}^{2}\text{O}_{42}$, and Z-type or $\text{A}_3\text{Me}_2\text{B}_{24}\text{O}_{41}$ [30–49]. The preparation of these materials and their characterization are very rich topics because of the wide range of applications and the cheap materials obtained. Ferrites are a very interesting class of materials whose wide range of applications are related to electromagnetic interference suppression as well as their use in radar absorbing material (RAM) coatings [50]. From this point of view, great scientific interests are devoted to use these materials as RAM devices [51–54]. In this work the intensive highlights is devoted to the microwave applications and which class is the best candidate for this application.
The tremendous rise in speed of electronic devices and widespread incorporation of information technology for various technological applications have pumped up electromagnetic pollution to dangerous levels. The high-speed electronic gadgets emit spurious wireless signals rendering the electromagnetic disturbance/interference (EMI) to the electrical and/or electronic circuits in the vicinity.

A microwave absorber reduces unwanted radiation emitted from high-speed electronic devices such as radar, oscillators, and supercomputers. The ferrimagnetic materials ferrites have the potential ability to reduce electromagnetic interference (EMI) in contrast with conventional dielectrics owing to their magneto/dielectric properties [55–60]. Electronic devices constitute integrated circuits (ICs) wherein numerous components are embedded and such components are encapsulated with ferrite films to mitigate EMI. The frequency range of application of extensively used spinel ferrites is limited by Snoek's limit and they are not effective at GHz range. M-type hexagonal ferrites are tailored for EMI diminution in the higher end of microwave region, that is, X-band, Ku-band, K-band, etc. [61–65]: these ferrites allow to tune in the frequency region through doping accompanied by anisotropy field. Both the electric and magnetic properties define the capabilities of these materials to store energy and are described by analyzing the real parts of complex permittivity (ε') and permeability (μ'), respectively. On the other side, imaginary parts (ε'', μ'') are very important parameters that describe the loss of electric and magnetic energy.

Different researches have been devoted to electromagnetic interference (EMI) shielding effectiveness (SE) and EMI shielding mechanisms [66–68] of high structure carbon black (HS-CB)/polypropylene (PP) composites and multiwalled carbon nanotubes-poly(methyl methacrylate) (MWCNT-PMMA) in the X-band frequency range. They studied different thickness of composite plates electrical conductivities. Their results showed that the absorption loss contribution to the overall attenuation is more than the contribution of the reflection loss for HS-CB/PP composites. Moreover, EMI SE up to 40 dB in the frequency range 8.2–12.4 GHz (X-band) was achieved in Ref. [69] by stacking seven layers of 0.3-mm-thick MWCNT-PMMA composite films compared with 30 dB achieved by stacking two layers of 1.1-mm-thick MWCNT-PMMA bulk composite.

Recently, graphene composites have been found to be one of the most promising candidates for high-performance porous microwave absorbers in ref. [70] because of their 3D conductive network and multiple scattering. A qualified frequency bandwidth (reflection loss <-10 dB) reaches 5.28 GHz covering almost the entire Ku band at 2 mm thickness. These results might open the door for a new design of lightweight coating absorber. This may allow us to say that the performance of microwave devices is mainly based on the properties of the used materials. Knowledge of the frequency dependence of such material is a prerequisite to select suitable materials for various microwave applications and vice versa [71–73]. Novel nanocomposite systems are prepared for microwave applications such as para-toluene sulfonic acid (p-TSA)-doped polyaniline (PANI)-graphene nanoplatelet (GRNP) composite films. The addition of GRNPs in the PANI matrix allows to improve the conductivity and dielectric properties of the composites due to the formation of 3D conducting networks. Shielding effectiveness of the PANI-GRNP composite films doped with p-TSA was examined by using S-parameters obtained from vector network analyzer in the X-band microwave frequencies. The efficiency of shielding for these composites depends on GRNP’s content in the PANI matrix [74]. Electrical and mechanical properties of carboxylic (−COOH) functionalized multiwall carbon nanotube (MWNTs)/epoxy composites at low wt.% (0.5, 0.75, and 1 wt.%) are studied in Ref. [75]. Microwave shielding effectiveness (SE) for X-band (8–12 GHz) and the flexural properties showed that the total SE of the nanocomposites was increased with the positive gradient of MWNT contents. Great efforts have been made to improve the requirements for microwave
applications in X-band and new materials are being tested [70, 76–78]. Promising results were found and the search for new materials continues.

In the present chapter, we have explored EMI shielding effectiveness characteristics of M-type Ba-Co-Ti hexagonal ferrites.

2. Experimental details

The M-type BaCo$_{x}$Ti$_{x}$Fe$_{(12-2x)}$O$_{19}$ hexaferrites, with x = 0.1, 0.3, 0.5, and 0.7, were prepared by ceramic method. The powder chemicals were mixed thoroughly, ground, and sintered in an electric furnace at 900°C for 7 h. The pellets were made of the powder with the hydraulic press at uniform pressure of 75 kN/m2 and final sintering was done at 1100°C for 9 h. The crystal structure was measured using Bruker D8Diffractometer of Cu X-ray radiation.

The microwave properties have been studied by the vector network analyzer, Agilent model N5225A. Before performing the measurements, permittivity and permeability of air were measured with an analyzer for calibration purposes. The DC resistivity (ρ_{dc}) was investigated using Keithley Electrometer, model 6514. The selected thickness of composites for optimized characteristics are x = 0.1–3.3 mm, x = 0.3–3.8 mm, x = 0.5–3.4 mm, and x = 0.7–3.2 mm.

3. Results and discussion

Figure 1 shows patterns obtained from X-ray diffraction of BaCo$_{x}$Ti$_{x}$Fe$_{(12-2x)}$O$_{19}$ hexaferrite composites. The observed XRD peaks confirm M-type phase of hexaferrite with space group P6$_3$/mmc. The change of intensity in the peaks shows that the substituted Co$^{2+}$ and Ti$^{4+}$ ions have occupied crystallographic sites.

3.1 Shielding in near field

The shielding effectiveness (SE) is accompanied by reflection or absorption of unwanted microwave signal (EMI) and can be represented as SE = SE$_R$ + SE$_A$ with SE$_R$ due to reflection and SE$_A$ as absorption. When the microwave signal passes
through the material, part of the signal is reflected and remaining transmitted or absorbed. The reflected power (P_r) and transmitted power (P_t) are derived from measured S-parameters: $P_r = |S_{11}|^2$ and $P_t = |S_{22}|^2$. SE_A and SE_R can be calculated as:

$$SE_A = -10 \log \left[\frac{P_r}{(1 - P_r)} \right]$$

(1)

$$SE_R = -10 \log (1 - P_t)$$

(2)

\textbf{Figure 2} shows plots of EMI shielding effectiveness (SE_A) versus frequency for doping of Co$^{2+}$ and Ti$^{4+}$ ions. Composites $x = 0.5$ and 0.7 exhibit highest (38.9 dB) and lowest (7.9 dB) values at 10.26 and 12.03 GHz respectively and these composites stay at maximum and minimum values in the frequency regime.

All composites exhibit nonlinear decrease in SE_A with frequency and composites $x = 0.1$, 0.3, and 0.5 show more dispersion in SE_A with frequency: $x = 0.1$, 0.3, and 0.5 displaying maxima at 9.27 GHz and $x = 0.5$ at 10.26 GHz. All composites stay at $SE_A > 10$ dB or 90% absorption, encompassing the entire frequency region.

\textbf{Figure 3} depicts the response of shielding effectiveness (SE_R) of BaCo$_x$Ti$_x$Fe$_{(12-2x)}$O$_{19}$ ferrite versus frequency for doping of Co$^{2+}$ and Ti$^{4+}$ ions. All composites exhibit: (i) minimum SE_R in comparison to SE_A encompassing the entire frequency region, (ii) nearly the same trend of SE_R in the investigated frequency regime, and (iii) maxima in the mid-frequency region. The shielding effectiveness (SE_R) due to reflection is very small and SE_R owe excursion between 0.2 and 2.5 dB. The low SE_R implies no composite can act as a microwave reflector shield. The composite $x = 0.5$ has largest $SE_R = 2.48$ dB at 10.39 GHz.

3.2 Shielding in far field

Shielding effectiveness for far field can be evaluated by classical electromagnetic field theory with the following relation [79]:

$$SE (dB) = 10 \log \left(\frac{\sigma_m}{16 \omega \varepsilon_0} \right) + 20 \left(\frac{d}{\delta} \right) \log e$$

(3)
where σ_{ac} is the AC conductivity, ω is the angular frequency, ε_0 is the absolute permittivity, d is the thickness of the shield, δ is the skin depth, and μ_r is the relative permeability.

Furthermore, $\sigma_{ac} = \omega \varepsilon_0 \varepsilon''$ and $\delta = (2/\mu_0 \omega \sigma_{ac})^{1/2}$, where μ_0 and ε'' are dielectric loss and absolute permeability respectively. The first term, $10 \log(\sigma_{ac}/16\varepsilon_0\omega)$, in Eq. (3) is the shielding effectiveness due to reflection and second term, $20(d/\delta) \log e$, relates to the absorption of the microwave signal. The second term is effective at high frequencies and Eq. (3) can be rewritten as:

$$SE_d = 20 \frac{d}{\delta} \frac{\mu_0 \sigma_{ac}}{2} \frac{1}{\delta} \log e$$ \hspace{1cm} (4)

Figure 4 depicts the graph of AC conductivity (σ_{ac}) as a function of frequency for doping of Co$^{2+}$ and Ti$^{4+}$. It increases with doping from $x = 0.1$, 0.3 and $x = 0.5$ followed by prevalent fall in $x = 0.7$: composite $x = 0.5$ observes more dispersion with frequency and large value of σ_{ac} in comparison to other composites. The rise
in σ_{ac} is seen with frequency in composite $x = 0.1$, 0.3, and 0.5; however, it remains nearly independent of frequency in $x = 0.7$. This increase in σ_{ac} is ascribed to Koops-Wagner model, which explains ferrite comprising of heterogeneous structure [80]: ferrites owe layers of good conducting grains, effective at high frequencies, are separated by poor conducting grain boundaries that are effective at low frequencies.

The composites $x = 0.1, 0.3, 0.5,$ and 0.7 have DC resistivity (ρ_{dc}) of $693.6 \ \Omega \ cm$, $2.8 \ \kOmega \ cm$, $0.5 \ \kOmega \ cm$, and $33.8 \ \M\Omega \ cm$, respectively. The composite $x = 0.1$ has the highest resistivity but still a large σ_{ac} attributed to the presence of more strength of Fe^{3+}: electron hopping between Fe^{3+}–Fe^{2+} ions is responsible for conduction in ferrites [81]. Among all composites, composite $x = 0.5$ (i) owe maximum σ_{ac} besides with diminution in the number of Fe^{3+} ions and (ii) has the lowest DC resistivity. The competition between these factors altogether increases σ_{ac} in this

Figure 5.
Change in skin depth (δ) with frequency for $BaCo_xTi_{(12-2x)}Fe_{(12-2x)}O_{19}$ ferrite ($x = 0.1, 0.3, 0.5, 0.7$) with frequency in X-band.

Figure 6.
Plots of SE_A versus $(\sigma_{ac})^{0.5}$ for $BaCo_xTi_{(12-2x)}Fe_{(12-2x)}O_{19}$ ferrite ($x = 0.1, 0.3, 0.5, 0.7$).
<table>
<thead>
<tr>
<th>x</th>
<th>Near field</th>
<th>Far field</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Freq. band (GHz)</td>
<td>10 dB bandwidth (GHz)</td>
</tr>
<tr>
<td>0.1</td>
<td>8.26–8.80</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>9.80–12.03</td>
<td>2.23</td>
</tr>
<tr>
<td>0.3</td>
<td>8.26–8.80</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>9.69–12.03</td>
<td>2.34</td>
</tr>
<tr>
<td>0.5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>0.7</td>
<td>8.20–10.32</td>
<td>2.12</td>
</tr>
</tbody>
</table>

Table 1. Microwave shielding effectiveness (SE) for 10- and 20-dB bandwidth (BW) in near and far field in BaCo$_x$Ti$_{12-2x}$Fe$_{19}$O$_{39}$ ($x =$ 0.1, 0.3, 0.5, 0.7).
Composite Materials

composite. Similarly, steep fall of σ_{ac} in $x = 0.7$ is associated with the least number of Fe$^{3+}$ ions available for electron hopping and large DC resistivity.

The dependence of skin depth (δ) on frequency for a different level of substitution is shown in Figure 5. The decrement trend in δ is observed with frequency, and $x = 0.7$ and 0.5 exhibit large and small δ respectively among the composites in the frequency regime. The large conduction loss, as shown in σ_{ac} (Figure 4), causes minimum δ, which attenuates the propagating microwave signal in the composite and vice versa; thus further penetration of signal is not possible inside the thickness of composite: the signal is attenuated more in $x = 0.5$ due to highest σ_{ac} depicted in Figure 4, thereby causing lowest δ.

The dependence of shielding effectiveness (SE_A) on AC conductivity ($\sigma_{ac}^{0.5}$) for different levels of doping is shown in Figure 6: it increases with doping from $x = 0.1$ to $x = 0.5$ and steep decrement is seen thereafter in $x = 0.7$. All composites display a monotonic trend of increase in SE_A with $\sigma_{ac}^{0.5}$, and $x = 0.5$ owe maximum value while $x = 0.7$ stay at lowest one.

Table 1 shows bandwidth (10 dB and 20 dB) of SE_A for both near and far field versus doping: 10 and 20 dB means 90% and 99% absorption respectively. For near field, $x = 0.1$, 0.3, and 0.7 exhibit 10-dB bandwidth of 2.23, 2.34, and 2.12 GHz respectively whereas 20-dB bandwidth of 1.54, 0.89, and 3.60 GHz is observed in $x = 0.1$, 0.3 and 0.5 respectively. For far field, $x = 0.1$, 0.3, and 0.5 show 10 dB-bandwidth of 3.20, 3.70, and 0.50 GHz respectively, and 20-dB bandwidth of 4.70 GHz is seen in $x = 0.5$ only.

4. Conclusions

For near and far field, microwave shielding effectiveness in BaCo$_x$Ti$_x$Fe$_{(12-2x)}$O$_{19}$ ferrite is governed by absorption and doping of Co$^{2+}$ and Ti$^{4+}$ ion increases SE_A from $x = 0.1$, 0.3, and 0.5. Composite $x = 0.5$ owes the highest SE_A of 38.9 dB at 10.26 GHz and 3.4 mm thickness; $\sigma_{ac}^{0.5}$, ρ_{dc}, and δ are the contributing factors and same composite carries with highest SE_A of 44.6 dB at $\sigma_{ac}^{0.5}$ of 4.5 (Ohm.cm)$^{−0.5}$ for far field; s-parameter is the deciding factor. Furthermore, SE_A increases monotonically with frequency and it can be tuned by varying intrinsic and extrinsic parameters. Composite $x = 0.5$ has far field and near field wideband of 4.70 and 3.60 GHz respectively for 20 dB SE_A. The studied composites have the potential for practical absorber applications. The applications of these composite materials or other composite materials are very an important subject and more research is needed to find the optimum properties and optimum materials for X-band microwave applications.

Acknowledgements

The author IA Abdel-Latif, is thankful to the Deanship of Scientific Research in Najran University for their financial support NU/ESCI/16/063 in the frame of the local scientific research program support.
Author details

Charanjeet Singh¹*, S. Bindra Narang² and Ihab A. Abdel-Latif³,⁴,⁵*

1 Department of Electronics and Communication Engineering, Lovely Professional University, Phagwara, Punjab, India

2 Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab, India

3 Physics Department, College of Science and Arts, Najran University, Najran, Kingdom of Saudi Arabia

4 Advanced Materials and Nano-Research Centre, Najran University, Najran, Saudi Arabia

5 Reactor Physics Department, NRC, Atomic Energy Authority, Abou Zabaal, Cairo, Egypt

*Address all correspondence to: rcharanjeet@gmail.com; charanjeet2003@rediffmail.com and ihab_abdellatif@yahoo.co.uk

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. © BY 3.0
References

[14] Abdel-Latif IA et al. Magnetocaloric effect, electric, and dielectric properties of Nd$_{0.6}$Sr$_{0.4}$Mn$_x$Co$_{1-x}$O$_3$ composites. Journal of Magnetism and Magnetic Materials. 2018;457:126

[15] Bouziane KA et al. Electronic and magnetic properties of SmFe$_{1-x}$Mn$_{x}$O$_3$ orthoferrites (x = 0.1, 0.2 and 0.3). Journal of Applied Physics. 2005;97(10A):504

Investigation of Shielding Effectiveness of M-Type Ba-Co-Ti Hexagonal Ferrite and Composite…
DOI: http://dx.doi.org/10.5772/intechopen.91204

[19] Abdel-Latif IA. Study on structure, electrical and dielectric properties of Eu0.65Sr0.35Mn0.7Fe0.3O3. IOP Conference Series: Materials Science and Engineering. 2016;146:012003

[34] Arjunwadkar PR, Salunkhe MY, Dudhe CM. Structural, electrical, and magnetic study of SrNi2+(Li1+Fe3+)0.5Fe16O27 ferrite. Journal of Solid State Physics. 2013. DOI: 10.1155/2013/471472

[40] Gu BX. Magnetic properties of X-type \(Ba_2Me_2Fe_{28}O_{46} \) (\(Me = \) Fe, Co, and Mn) hexagonal ferrites. Journal of Applied Physics. 1992; 71:5103. DOI: 10.1063/1.350613

[41] Gu BX. Magnetic properties of \(Ba_2Me_2Fe_{28}O_{46} \) (\(Me_2-X \), \(Me = \) Ni, Cu, Mg, and Zn) hexaferrites. Journal of Applied Physics. 1991; 70:372. DOI: 10.1063/1.350284

[44] Bayrakdar H. Fabrication, magnetic and microwave absorbing properties of \(Ba_3Co_2CrFe_2O_{12} \) hexagonal ferrites. Journal of Alloys and Compounds. 2016; 675:185-188

[53] Singh P, Babbar VK, Razdan A, Srivastava SL, Puri RK. Complex permeability and permittivity, and microwave absorption studies of \(Ca(CoTi)_3Fe_{12-2x}O_{19} \) hexaferrite composites in X-band microwave frequencies. Materials Science and Engineering. 1999; B67:132-138

[73] Abdel-Latif IA. The particle size effect of Yb0.3R0.3MnO3 (R is
Sm, Nd, and Eu) on some physical properties. Journal of Nanoparticle Research. 2020;22:45. DOI: 10.1007/s11051-020-4759-z

