
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

12

Timed Hierarchical Object-Oriented Petri Net

Hua Xu
State Key Laboratory of Intelligent Technology and Systems

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology,

Tsinghua University, Beijing 100084,
P. R. China

1. Introduction

Petri nets (Murata, 1989) (Peterson, 1991) have been widely used to model various discrete
event systems (Moody & Antsaklis, 1998). Characterized as concurrent, asynchronous,
distributed, parallel, nondeterministic, and/or stochastic (Murata, 1989), Petri nets have
gained more and more applications. However, when they are used to analyze and model
systems of different domains, the shortages of this kind of formal method still exist. Basic
Petri nets lack temporal knowledge description, so they have failed to describe the temporal
constraints in time critical or time dependent systems. The introduction of temporal
knowledge into Petri nets has increased not only the modeling power but also the model
complexity (Wang et al. 2000). The improved models of Petri nets (Wang, 1998) include
Timed Petri Net (Ramchandi, 1974), Stochastic Timed Petri Net (Florin etc al., 1991) and
Time Petri Net (TPNs) (Merlin & Farber, 1976). In TPNs (Merlin & Farber, 1976), each bar
has two times specified. The first time denotes the minimal time that must elapse from the
time that all the input conditions of a bar are enabled until this bar can fire. The other time
denotes the maximum time that the input conditions can be enabled and the bar does not
fire. After this time, the bar must fire. In general, these two times give some measures of
minimal and maximal execution times of the bars.
The reachability (coverability) analysis is one of the main analysis methods for Petri nets
(Murata, 1989), in which the coverability tree is always used. It permits the automatic
translation of behavioral specification models into a state transition graph made up of a set
of states, a set of actions, and a succession relation associating states through actions (Bucci
& Vivario, 1995). That is to say, it involves essentially the enumeration of all reachable
markings or their coverable markings. This representation makes such properties as
deadlock and reachability (Zhou, 1995) explicit, and allows the automatic verification of
ordering relationships among task execution times (Tsai et al., 1995).
Although the reachability analysis method can be used for all nets, it is only limited to
“small” nets due to the complexity of the state-space explosion. The same thing also
happens in the analysis of TPN models. Sloan et al. (Sloan & Buy, 1996) developed several
reduction rules for TPN analysis that work at an individual transition level. These reduction
rules help to reduce the complexity of TPN analysis to some extent. However, it is not a
trivial work to automatically search the preconditions of applying these reduction rules for a

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.in

te
hw

eb
.c

om

Petri Net: Theory and Applications 254

complex TPN. Wang et al. proposed the compositional time Petri nets and the
corresponding component-level reduction rules (Wang et al. 2000). Each of the reduction
rules transforms a TPN component to a small one while maintaining the net’s external
observable timing properties. The application of these rules will dramatically reduce the size
of a TPN. However, all of the methods or models only reduce the complexity after the
model becomes complex. It can not avoid the complexity to the best of its ability according
to the analysis requirements when it is modeled.
These years, the usefulness of the object-oriented concepts has been recognized, because it
allows us to describe systems easily, intuitively and naturally. These years, the object-
oriented formal methods such as object Petri nets (OPN) (Bastide, 1995), VDM++ (Harel &
Gery , 1996), Object-Z (Schuman, 1997), etc are suggested. Among the studies, the research
on OPN has been focused on the extending Petri net formalism to OPN such as HOONet
(Hong & Bae, 2000), OBJSA (Battiston et al. 1988), COOPN/2 (Biberstein & Buchs, 1994) and
LOOPN++ (Lakos & Keen, 1994), which are suggested on the base of colored Petri Net
(CPN) (Jensen, 1992). Object-oriented Petri net (OPN) can model different systems easily,
intuitively and naturally. Abstraction is one of OPN characters compared with basic Petri
nets. OPN can model various systems hierarchically and the models can be analyzed even if
they have not been completed. So the complexity of OPN models can be simplified at the
beginning of modeling stage according to the analysis requirements. Although the results of
such studies have shown promise, these nets do not fully support time critical (time
dependent) system modeling and analysis, which may be complex, midsize or even small.
When time critical systems with any sizes are modeled, it requires formal modeling and
analysis method to support temporal description and object-oriented concepts. That is to
say, TPN and OPN need to be combined.
Firstly, this chapter formally proposes a high-level Petri net called timed hierarchical object-
oriented Petri net (TOPN) (Xu & Jia, 2006) (Xu & Jia, 2005-2), which supports not only
temporal description but also OO concepts. On one hand, TOPN has extended a model of
Object-Oriented Petri Nets to allow modeling and analyzing complex time critical systems.
Modeling features in TOPN support abstracting complex systems, so the corresponding
models can be simplified effectively. In the proposed TOPN, a duration is also attached to
each object accounting for the minimal and maximal amount of time between which that the
behavior of the object can be completed once fired. On the other hand, this chapter also
addresses the problem of the state analysis of TOPN models, what makes it possible to
judge the model consistency at a given moment of time. On the base of Yao’s extended state
graph (ESG) (Yao, 1994), TOPN extended state graph (TESG) is presented for incremental
reachability analysis for temporal behavior analysis. In particular, a new way is investigated
to represent and deal with the objects with temporal knowledge.
 Secondly, in order to extend a model of TOPN to allow modeling and analyzing dynamic

systems with timing effect on system information, fuzzy concept is introduced into TOPN
and fuzzy timed object-oriented Petri net (FTOPN) (Xu & Jia, 2005-1) is proposed. Temporal
fuzzy sets are attached to each transition objects in TOPN accounting for the aging of
information. In particular, a new way is investigated to represent and deal with timing effect
in dynamic systems. FTOPN also supports learning similar to that in fuzzy timed Petri net
(Pedryz & Camargo, 2007). FTOPN is also used to model a real decision making procedure
of one cooperative multiple robot system (CMRS) to demonstrate its following benefits:

Timed Hierarchical Object-Oriented Petri Net 255

independent training for its supporting object abstraction and size reconfiguration for its
object granularity control function.
 Finally, in order to model CMRS, a CMRS modeling method called fuzzy timed agent
based Petri nets (FTAPN) (Xu & Jia, 2007) is proposed on the base of FTOPN, because it can
be regarded as a kind of multi-agent system (MAS) and the agent is also a special kind of
object. FTAPN can be used to model and illustrate both the structural and dynamic aspects
of CMRS. Supervised learning is supported in FTAPN. As a special type of high-level object,
agent is introduced, which is used as a common modeling object in FTAPN models. The
proposed FTAPN can not only be used to model CMRS and represent system aging effect,
but also be refined into the object-oriented implementation easily. At the same time, it can
also be regarded as a conceptual and practical artificial intelligence (AI) tool for multi-agent
system (MAS) into the mainstream practice of software development.
This chapter has just been arranged as the following. Section 1 makes a quick review of the
relative study of Petri Nets. In section 2 of this chapter, it justifies the need for defining
TOPN through interpreting how to combine the time restricting information with HOONet.
An informal and intuitive behavior semantics of TOPN has been introduced in section 3.
Then, in section 4, the constructing algorithm of reachability tree is presented, which can
support most of the property analysis of TOPN. In section 5, FTOPN is proposed on the base
of TOPN, and FTOPN has been used to model and analyze the decision procedure of one
CMRS. Then, FTAPN is presented on the base of FTOPN and it is used to model and
analyze one CMRS to demonstrate its effectiveness in section 6. Section 7 concludes the
work in this chapter and suggests further research issues in the future.

2. The basic concepts of TOPN

In this section, some important basic concepts of Petri nets are firstly reviewed. Then the
definitions of TOPN are presented. At the same time, the enabling rules and the firing rules
of TOPN are presented.

2.1 A brief review of basic Petri nets

In this subsection, we will quickly review some key definitions. A more general discussion
on Petri nets can be found in Peterson’s book (Peterson, 1991) and in the excellent survey
article by Murata (Murata, 1989).
A Petri net is a five-tuple PN= (P, T, F, W, M0) where P and T are the node sets and F is the

edge set of a directed bipartite graph, and M0: P N is called the initial marking (or initial

state) of PN. (We use N to denote the set {0, 1, 2…}.) We call P the set of places of PN and T
the set of transitions of PN. In diagrams, we will show places as circles and transitions as
bars. Formally,)()(PTTPF and F is called the flow relation (or edges) of PN.

W: F {1, 2, 3…} and it is called the weight of a flow. In general, a marking of PN associates

a nonnegative integer number of markers or tokens with each place.
For net PN= (P, T, F, W, M0), we use the following symbols and notations for the sets of

predecessors and successors of a place p P and transition t T.

•t={p| (p, t) F} =the set of input places of t,

t•={p| (t, p) F}=the set of output places of t,

Petri Net: Theory and Applications 256

•p={t| (t, p) F}=the set of input transitions of p,

p•= {t| (p, t) F} =the set of output transitions of p.

A transition is enabled when all its input places have at least one token. When an enabled
transition t is fired, a token is removed from each input place of t and a token is added to
each output place; this gives a new marking. For net PN= (P, T, F, W, M0), the language of

PN, denoted as L (PN), is the set of all legal sequences T* of transition firings starting

from marking M0.

Petri net PN= (P, T, F, W, M0) is safe if M0 : P {0, 1}, and if all markings reachable by legal

sequences of transition firings from the initial marking have either zero or more tokens in
every place.

2.2 High-level Petri nets

There are different definitions and terminology of TPN and OPN. In this chapter, our work
is based on the Merlin’s TPN and Hong’s OPN which is called HOONet (Hong & Bae, 2000).
A time Petri net is also a tuple TPN=(PN, SI). PN is a basic Petri net. And SI is a mapping

called a static interval, SI: T Q* Q*), where Q* is a set of nonnegative rational numbers.

HOONet is a high-level Petri net supporting the representation scheme of object-oriented
concepts. A HOONet model is represented as Petri-net form for an object and has
components to represent a unique name, attributes and its behaviors (methods) of an object.
Definition 1: HOONet is defined with a tuple HOONet= (OIP, ION, DD), where

1. OIP (object identification place) is a special place which is defined as a tuple,

OIP=(oip,pid,M0,status), where

oip is a unique name of a HOONet model.

pid is a unique process identifier that distinguishes the multiple instances of an

object.

M0 is an initial marking function.

status is a flag variable (either pre value or post value) to represent the specific

states of OIP.

2. ION (internal object net) is a variant of CPN (colored Petri nets) that represents the

internal behaviors of an object, which is defined as a tuple ION=(P,T,A,C,N,G,E,F,M0),

where

P, T and A are finite sets of places, transitions and arcs respectively.

C, N, G and E mean the functions of a color set, a node, a guard and an arc
expression, respectively. They are the same as defined in (Jensen, 1992).

F is a special arc from transitions to OIP, and depicted as those a rim of ION,
and

M0 is a function giving initial marking to specific places.
3. DD (data dictionary) contains the declarations of variable, token types, and functions

per a HOONet model using standard CPN ML (Jensen, 1992).

Definition 2: A set of place types in HOONet, P=(Pi,Pa), where
1. Primitive place Pi is a basic type of places that represent the local states of a system, the

same as in general CPN (Jensen, 1992).

Timed Hierarchical Object-Oriented Petri Net 257

2. Abstract place Pa= (pn, refine_state, action) is a place type which represents abstract
states, where

pn is the name of an abstract place.

refine_state is a flag variable denoting the refinement of an abstract place.

action is a static reaction that imitates the internal behaviors of an abstract

place.

Definition 3: A set of transition types in HOONet, T={Ti, Ta, Tc},where
1. Primitive transition Ti is a basic transition type in general CPN
2. Abstract transition Ta = (tn, refine_state, action), where

tn is the name of an abstract transition.

refine_sate and action have the same meanings as in the definition of the
abstract place.

3. Communicative transition Tc =(tn, target, ctype, action) is a transition type that represents
calling a method, where

tn is the name of a communicative transition.

target is a flag variable denoting whether the method called from Tc, is
modeled (a “yes” value) or not (a “no” value).

ctype is also a flag variable denoting whether the interaction of Tc is
synchronous (a “SYNC” value) or asynshronous (an “ASYN” value).

action is the static reaction that reflects the execution results of the called
method.

The variable ctype with its “SYNC” value denotes that the caller waits for the result from the
called method. With “ASYN” value, the token is duplicated. Each of the duplicated tokens is
transferred to the called object and the next place in its net, respectively.

2.3 Timed hierarchical object-oriented Petri net

The purpose of designing timed hierarchical object-oriented Petri net (TOPN) is to aid in the
modeling and analysis of real time systems and bridge the gap between the formal
treatment of object-oriented Petri nets and temporal reduction approach for the modeling,
analysis, and prototyping of complex time critical systems.
A TOPN model is a variant HOONet representation that corresponds to the class with
temporal property in object-oriented paradigm. Like the HOONet, TOPN is composed of
four parts: object identification place (OIP) is a unique identifier of a class; internal timed
object net (ION) is a net to depict the behaviors (methods) of a class; data dictionary (DD)
declares the attributes of a class in TOPN; and static time interval function (SI) binds the
temporal knowledge of a class in TOPN.
Definition 4: TOPN is a four-tuple: TOPN= P (OIP, ION, DD, SI), where:
1. OIP=(oip, pid, M0, status), oip, pid, M0 and status are the same as those in HOONet.

oip is a variable for the unique name of a TOPN.

pid is a unique process identifier to distinguish multiple instances of a class,
which contains return address.

M0 is the function that gives initial token distributions of this specific value to
OIP.

status is a flag variable to specify the state of OIP.

Petri Net: Theory and Applications 258

2. ION is the internal net structure of TOPN to be defined in the following. It is a variant
CPN that describes the changes in the values of attributes and the behaviors of methods
in TOPN.

3. DD formally defines the variables, token types and functions (methods) just like those
in HOONet (Hong & Bae, 2000).

4. SI is a static time interval binding function, SI: {OIP} Q*, where Q* is a set of time
intervals.

According to the definition 4, the general structure of TOPN is shown in Fig.1. In time critical
systems, time relates to events. While in Petri net, events occur and originate from system
behaviors. And system behaviors stem from the behavior properties of objects in TOPN.
These objects include transitions, abstract places and other TOPN objects. So not only
transitions, but also all TOPN objects including abstract places, etc need to be restricted by
time condition.

Fig. 1. The General Structure of TOPN

An event in a time critical system can be thought of as an interval [s, t] on the time line

where s is its starting endpoint and t is its terminating endpoint, having a duration given by

t-s 0. The special case of time interval where t=s is a point event. Otherwise, it is an interval

event. In the corresponding time interval [s, t] of event firing, s is the earliest firing time

(EFT) and t is the latest firing time (LFT). In the changes of TOPN behavior, events are

regarded as interval events. The temporal knowledge in TOPN is represented as time

intervals.

Similar to HOONet, TOPN is also a kind of hierarchical net. In TOPN, the whole TOPN

model is also an object, and it is always regarded as an abstract place object. Its realizing

details are depicted in ION. Inside the ION, abstract objects may also be included. The

realizing details of these objects can also be depicted as a TOPN. The definition of ION is

just like the following.

Definition 5: An internal object net structure of TOPN, ION = (P,T,A,K,N,G,E,F,M0)
1. P and T are finite sets of places and transitions with time restricting conditions attached

respectively.
2. A is a finite set of arcs such that P T=P A=T A= .
3. K is a function mapping from P to a set of token types declared in DD.

Timed Hierarchical Object-Oriented Petri Net 259

4. N, G, and E mean the functions of nodes, guards, and arc expressions, respectively. The
results of these functions are the additional condition to restrict the firing of transitions.
So they are also called additional restricting conditions.

5. F is a special arc from any transitions to OIP, and notated as a body frame of ION.
6. M0 is a function giving an initial marking to any place the same as those in HOONet

(Hong & Bae, 2000).
Similar to common OPNs, basic OPN components and additional restricting conditions are
included in the detailed ION structure. The basic OPN components may include common
components (transition and place) and abstract components. If the model needs to be
analyzed in details, the abstract components in ION should be refined. At the same time, the
ION is unfolded. The following definitions of abstract components in TOPN are the base of
refining abstract component. The abstract components in TOPN include timed abstract
transitions, timed abstract communication transitions and timed abstract places.

Definition 6: A set of places in TOPN is defined as P=PIP TABP, where

1. PIP is the set of primitive places similar to those in PNs (Murata, 1989) (Peterson, 1991).
2. Timed abstract place (TABP) is a four-tuple: TABP= TABP(pnTABP, refine stateTABP,

actionTABP, SITABP), where

pnTABP is the identifier of the abstract timed place.

refine stateTABP is a flag variable denoting whether this abstract place has been
refined or not.

actionTABP is the static reaction imitating the internal behavior of this abstract
place.

SITABP is also a static time interval binding function from a set of TABPs to a set
of static time intervals.

There are two kinds of places in TOPN. They are common places (represented as circles
with thin prim) and abstract places (represented as circles with bold prim) described in
Fig.2. Abstract places are also associated with a static time interval. Because at this situation,
abstract places represent not only firing conditions, but also the objects with their own
behaviors. So, abstract places in TOPN also need to be associated with time intervals.
Generally, the abstract place—TABP is always represented as a kind of abstract form in
higher layers in TOPN models. At this time, “refine state” dedicates that it is in abstract
form. However, if “refine state” denotes that it is in the refined state, TABP will have been
refined into the corresponding TOPN which is defined in lower layers.

Fig. 2. Places and Transitions in TOPN

Definition 7: A set of transitions in TOPN can be defined as T= TPIT TABT TCOT, where

1. Timed primitive transition TPIT = TPIT (BAT, SITPIT), where

BAT is the set of common transitions.

Petri Net: Theory and Applications 260

SITPIT is a static time interval binding function, SI: {TPIT} Q*, where Q* is a set
of time intervals.

4. Timed abstract transition TABT= TABT (tnTABT, refine stateTABT, actionTABT, SITABT),
where

tnTABT is the name of this TABT.

refine stateTABT is a flag variable denotes whether this TABT has been refined or
not.

actionTABT is the static reaction imitating the internal behavior of the TABT.

SITABT is a static time interval binding function, SI: {TABT} Q*, where Q* is a set
of time intervals.

5. Timed communication transition TCOT=TCOT (TnTCOT, targetTCOT, comm typeTCOT,
actionTCOT, SITCOT).

TnTCOT is the name of TCOT.

targetTCOT is a flag variable denoting whether the behavior of this TCOT has
been modeled or not. If targetTCOT =”Yes”, it has been modeled. Otherwise, if
targetTCOT =”No”, it has not been modeled yet.

comm typeTCOT is a flag variable denoting the communication type. If comm
typeTCOT =”SYNC”, then the communication transition is synchronous one.
Otherwise, if comm typeTCOT =”ASYN”, it is an asynchronous communication
transition.

actionTCOT is the static reaction imitating the internal behavior of this TCOT.

SITCOT is a static time interval binding function, SI: {TCOT} Q*, where Q* is a set
of time intervals.

Just like those in HOONet, there are three kinds of transitions in TOPN. The timed primitive
transition (represented as rectangles with thin prim), timed abstract transition (represented
as rectangles with bold prim) and timed communication transition (represented as
rectangles with double thin prim). They are depicted in Fig.2. Different transitions represent
different system behaviors. So, temporal intervals are associated with all of these transitions
in TOPN. Abstract transitions are also TOPN objects. They can be refined in lower layers.
The definition of abstract transitions mentioned above is also a kind of abstract form in
higher layers of TOPN models, when “refine state” indicates it is in the abstract form. While,
if “refine state” denotes it is in refined state, the corresponding abstract transition should be
refined into the corresponding TOPN which is defined in lower layers.
From the definitions mentioned above, TOPN are hierarchical just like the structure of object
models. In the higher levels of the model, its components may be in abstract form and the
model is simple. In the unfolded model where the abstract components are refined, the
TOPN model may be complex, but the realizing details are clear. So, according to the
analysis requirements, users can analyze the TOPN models in different layers, even if the
detailed realization in lower layers have not been completed yet.

3. Behavior semantics of TOPN

3.1 Execution paths

State changes relate to the events in TOPN. However, events may stem from transition firing
or TABP behaviors. The state changes in TOPN relate to the schedule and the associated

Timed Hierarchical Object-Oriented Petri Net 261

temporal interval tightly. In order to analyze the dynamics of TOPN, the definition of
schedule and path is given in the following.
Definition 8: In Petri net N, if the state Mn is reachable from the initial state M0, then there
exists a sequence of fired transitions from M0 to Mn. This sequence is called a path or a

schedule from M0 to Mn. It can be represented as:

Path = {M0,t1,M1,…,tn,Mn} or = {M0,t1,M1,…,tn,Mn}

ti N.T; 1 i n

And the schedule set of Petri net N with initial marking M0 is represented as L(N,M0).

Just like those in TPN (Merlin & Farber, 1976) (Harel & Gery, 1996), if the number of solid
tokens residing in the input place equals or exceeds the weight of the input arc, the forward
transition is enabled. However, when one TABP is marked by enough hollow tokens
compared with the weight of internal arcs in its refined TOPN, it is also enabled at this time.
After its internal behaviors have completed, the color of tokens residing in it become from
hollow to solid, which are similar to those in common places. So TABPs also manifest
actions in TOPN. An extended definition of path in TOPN is given in the following, in
which TABP is extended into the schedule.
Definition 9: If the state Mn is reachable from the initial state M0, then there exists a sequence
of marked abstract places and fired transitions from M0 to Mn. This sequence is called a path

or a schedule from M0 to Mn. It can be represented as:

Path = {PA1, PA2, … , PAn} or = {PA1, PA2, … , PAn}

where PAi T TABP and 1 i n.

Definition 10: Let t be a TOPN transition and let {PA1, PA2, … ,PAn} be a path, add ti into the
path is expressed as {PA1, PA2, … ,PAn} + t = { PA1, PA2, … ,PAn, t}.
Let p be an abstract place and let { PA1, PA2, … ,PAn} be a path, add p into the path is

expressed as { PA1, PA2, … , PAn} + p = { PA1, PA2, … , PAn, p}, where PAi T TABP and

1 i n .

Definition 11: For a TOPN N with schedule , we denote the state reached by starting in N’s

initial state and firing each transition in at its associated time (N,). The time of (N,)

is the global firing time of the last transition in .

When the relative time belongs to the time interval attached to the transition or the TABP
and the corresponding object is also enabled, then it can be fired. If a transition has been
fired, the marking may change like that in PN (Wang, 1998). If a TABP is fired, then the
hollow token(s) change into solid token(s), and the tokens still reside in the primary place.
At this time, the new relative time intervals of every object are calculated like those in (Harel
& Gery, 1996).

3.2 Enabling rules and firing rules

State changes in TOPN stem from the behavior executions in TOPN. The execution of a
TOPN depends on two main factors. Firstly, it is the number and distribution of tokens in

Petri Net: Theory and Applications 262

the TOPN. Tokens reside in the places and control the execution of the transition. Secondly,
its execution depends on the definition of execution time represented as time intervals. A
TOPN executes by firing transitions.
The dynamic behavior can be studied by analyzing the distribution of tokens (markings) in
TOPN. So the enabling rule and firing rule of a transition in TOPN are introduced in the
following, which govern the flow of tokens.
Enabling Rule:
1. A transition t in TOPN is said to be enabled if each input place p of t contains at

least the number of solid tokens equal to the weight of the directed arcs connecting
p to t:
M(p) I(t, p) for any p in P, the same as in ordinary Petri nets, where M(p) is the
marking of the place p and I(t, p) is the weight of the input arc from the place p to
the transition t.

2. If the place is TABP, it will be marked with a hollow token and TABP is enabled. At
this time, the ION of the TABP is enabled. After the ION is executed, the tokens in
TABP are changed into solid ones.

Firing Rule:
1. For a transition:

a. An enabled transition in TOPN may or may not fire depending on the additional

interpretation (Merlin & Farber, 1976) (Bucci & Vivario, 1995) (Harel & Gery,

1996), and

b. The relative time , relative to the absolute enabling time , is not smaller than

the earliest firing time (EFT) of transition ti, and not greater than the smallest of

the latest firing time (LFT) of all the transitions enabled by marking M (Hong &

Bae, 2000):

 EFT of ti min (LFT of tk)

 where k ranges over the set of transitions enabled by M, the same as (Hong &

Bae, 2000).

c. After a transition ti (common one or abstract one) in TOPN is fired at a time ,

TOPN changes to a new state. The new states can be computed as the following:

The new marking M’ (token distributions) can be computed as the following:

 If the output place of ti is TABP,

 then M’(p)= attach (*, (M(p)-I(ti,p)+O(ti,p)));

 else M’(p)=M(p)-I(ti,p)+O(ti,p);

 The symbol “*” attached to the markings of TABP represents as hollow tokens

in TABP.

The computation of the new firing interval I’ is the same as those in (Harel & Gery,

1996), (Yao, 1994), as

I’=(max(0,EFTk- k) , (LFTk- k))

 where EFTk and LFTk represents the lower and upper bound of interval in I

corresponding to tk in TOPN, respectively.

The new path can be computed as path’ = path + ti .

2. For a TABP
a. The relative time should satisfy the following conditions:
 EFT of ti min (LFT of tk)

Timed Hierarchical Object-Oriented Petri Net 263

 where tk belongs to the set of the places and transitions which have been
enabled by M.

b. After a TABP p in TOPN is executed at a time , TOPN states change. The new
marking can be computed as the following.

The new markings are changed for the corresponding TABP p, as
 M’(p)= remove_attach (*, M(p))

 The symbol “*” is removed from the marking of TABP. Then the marking is the
same as those of common places. The change represents that the internal actions of
TABP have been finished. Tokens of TABP have been changed into solid ones.
To compute the new time intervals is the same as that mentioned above.

The new path can be decided by path’ = path + p.
When the number of tokens satisfies the conditions of enabling rule, the corresponding
transitions or TABPs are enabled. Only if the corresponding objects are enabled and the
relative time is in the time interval, can the objects be fired. The relative firing time may
be stochastic, but it is after EFT and before LFT. In TOPN, the firing procedures are
considered to be instantaneous and their execution delay can be considered in the time
interval of execution conditions.

4. Reachability analysis

4.1 Analysis algorithm

The purpose of TOPN is to aid in modeling and analysis of complex time critical systems.
From the point of TOPN definition, TOPN can describe the temporal constraints in time
critical systems. Then the model analysis method especially reachability analysis, need to be
discussed. In order to analyze TPN (Yao, 1994) models, Yao has presented extended state
graph (ESG) to analyze TPN models. On the base of ESG, an extended TOPN state graph has
been presented in this section, into which temporal reasoning has also been introduced.
In a TOPN model, an extended state representation “ES” is 3-tuple, where ES=(M, I, path)
consisting of a marking M, a firing interval vector I and an execution path. According to the
initial marking M0 and the firing rules mentioned above, the following marking at any time
can be calculated. The vector--“I” is composed of the temporal intervals of enabled
transitions and TABPs, which are to be fired in the following state. The dimension of I
equals to the number of enabled transitions and TABPs at the current state. The firing
interval of every enabled transition or TABP can be got according to the formula of I’.
Definition 12: A TOPN extended state graph (TESG) is a directed graph. In TESG, nodes
represent TOPN model states. In TESG, there is an initial node, which represents the TOPN
model initial state. Arcs denote the events, which make model state change. There are two
kinds of arcs from one state ES to another one ES’ in TESG.
1. The state change from ES to ES’ stems from the firing of the transition ti.

Correspondingly, there is a directed arc from ES to ES’, which is marked by ti.
2. If the internal behavior of the TABP—“pi” makes the TOPN model state change from ES

to ES’, then in TESG there is also a directed arc from ES to ES’. It is marked by pi.
On the base of Petri net analysis method (PN and TPN) and the definition of TESG, the
TESG of one TOPN model can be constructed by the following step:
 Step 1) Use the initial state ES1 as the beginning node of TESG, where ES1=(M0,
 [0,0],).

Step 2) Mark the initial state “New”.

Petri Net: Theory and Applications 264

Step 3) While (there exist nodes marked with “new”) do
 Step 3.1) Choose a state marked with “new”.
 Step 3.2) According to the enabling rule, find the enabled TOPN objects at the
current state and mark them “enabled”.
 Step 3.3) While (there exist objects marked with “enabled”) do
 Step 3.3.1) Choose an object marked with “enabled”.
 Step 3.3.2) Fire this object and get the new state ES2.
 Step 3.3.3) Mark the fired object “fired” and mark the new state ES2 “new”.
 Step 3.3.4) Draw a directed arc from the current state ES1 to the new state ES2 and
mark the arc with the name of the fired object and relative firing temporal
constraint.
 // The internal “while” cycle ends.
 Step 3.4) Mark the state ES1 with “old”.
 // The external “while” cycle ends.

TESG describes state changes in TOPN models. In TESG, not only state changing sequence,

but also dynamic temporal constraints and execution paths related to state changes have all

been described in TESG. TESG constructing procedure is also a TOPN model reachability

analysis procedure. So if the TESG of one TOPN model has been depicted, the

corresponding reachability has also been analyzed.

Similar to the state analysis in TPN, when the TESG of one TOPN model has been

completed, the TPN consistency determination theorem can be used to judge the consistency

of TOPN models. So the consistency of time critical system can be checked. The theorem can

be referenced to Yao’s paper (Yao, 1994).

4.2 A modeling and analysis example

Fig. 3. The TOPN Model

Var +CT = boolean; /* Transferring Tag */
/*CT is set to “T” in the transition--
“DataFusion” */
Var +Time=Integer; /* Current Relative
Time*/
TT C = with hollow | solid;
TCOT (ComTransf)={

Fun(CT= =F � (a Time b)):
 ComTransf () � CT=F � Mark(p1,C);
};

/* Mark(P,C): Mark the place P with C */
TABT (StateCol)={

Fun(CT= = F � (a Time b)):
 OwnStateCol()� M(p5,C);

 };
/* M(P,C): Mark the place P with C */
Mark(Place,C)={
 Fun(Place is a TABP � (p Time p)):
 OIP(Place) � M(Place,C);
 Fun(Place is not in N.TABP): M(Place,C);
};/*mark different places*/

 t1 [0,0]

 p2

 t2 [a,b] t5

 p3 [0,0]

 t3 [a,b]

 p4

 t4 [a,b]

P1

Timed Hierarchical Object-Oriented Petri Net 265

t4: =[0,50]

t5: =[0,50]

t3: =[0,50]

t1: =[0,0]

t2: =[0,50]

M1:P1
l1:t1[0,0]
path1

M2:P2
l2:t2[0,50]
Path2:p1

M3:P3
l3:t3[0,50]
Path3:p1,p2

M4:P4
l4:t4[0,50], t5[0,50]
Path4:p1,p2,p3

M5:P1
l5:[0,0]
Path5:p1,p2,p3,p4

Fig. 4. The TESG of the Decision Model

In distributed cooperative multiple robot systems (CMRS), every robot makes control and
schedule decisions according to different system information such as other robot states, its
own states and task assignment. The decision making procedure can be divided into 3 main
phases. In the first phase, the decision making module collects the above information. For
the information mentioned above, every kind of information may include different detailed
information. For example, velocity, movement direction and location need to be considered
in its and other robot’s states. The task to be completed in the future is considered in the task
assignment. As the information may not be available from all sensors or sources at the same
time moment, the temporal constraint about the information collection is needed. This
collection procedure should be completed in 50 unit time. In the second phase, information
fusion based method is used to make control and schedule decisions of every robot. To
complete the information fusion aim, every kind of information is required simultaneously.
It may last for about 50 unit time. Finally, the decision results are transformed to other
system modules. The transferring procedure will last for about 50 unit times. In this control
procedure, the decision conditions and temporal constraints need to be considered
simultaneously, so TOPN is chosen to model this decision making module. Fig.3 has shown
the TOPN model of CMRS decision model and its data dictionary respectively. Then Fig.4
has given the state analysis by means of TESG. From the TESG, the design logical errors can
be excluded. According to the Yao’s consistency judging theorem and the TESG, the TOPN
model in Fig.3 is consistent.

5. Fuzzy timed object-oriented Petri net

Although Petri nets can be used to model and analyze different systems, they fail to model
the timing effects in dynamic systems. Fuzzy timed Petri net (FTPN) (Pedrycz & Camargo,
2003) has been presented and it has solved this modeling problem, which is on the base of
temporal fuzzy sets and Petri nets. However, similar to the general Petri Nets, FTPN may
also meet with the complexity problem, when it is used to model complex dynamic systems.
In this section, fuzzy timed object-oriented Petri net (FTOPN) is proposed on the base of

Petri Net: Theory and Applications 266

TOPN and FTPN, whose aim is to solve the timing effects and other modeling problems of
dynamic systems.

5.1 Basic Concept
Similar to FTPN (Pedrycz & Camargo, 2003), fuzzy set concepts are introduced into TOPN
(Xu & Jia, 2005-2) (Xu & Jia, 2006). Then FTOPN is proposed, which can describe fuzzy
timing effect in dynamic systems.
Definition 13: FTOPN is a six-tuple, FTOPN= (OIP, ION, DD, SI, R, I) where
1. Suppose OIP=(oip, pid, M0, status), where oip, pid, M0 and status are the same as those

in HOONet (Hong & Bae, 2000) and TOPN (Xu & Jia, 2006).

oip is a variable for the unique name of a FTOPN.

pid is a unique process identifier to distinguish multiple instances of a class,
which contains return address.

M0 is the function that gives initial token distributions of this specific value to
OIP.

status is a flag variable to specify the state of OIP.
2. ION is the internal net structure of FTOPN to be defined in the following. It is a variant

CPN that describes the changes in the values of attributes and the behaviors of methods
in FTOPN.

3. DD formally defines the variables, token types and functions (methods) just like those
in HOONet (Hong & Bae, 2000) and TOPN (Xu & Jia, 2006).

4. SI is a static time interval binding function, SI: {OIP} Q*, where Q* is a set of time
intervals.

5. R: {OIP} r, where r is a specific threshold.
6. I is a function of the time v. It evaluates the resulting degree of the abstract object firing.
Definition 13: An internal object net structure of TOPN, ION = (P,T,A,K,N,G,E,F,M0)
1. P and T are finite sets of places and transitions with time restricting conditions attached

respectively.

2. A is a finite set of arcs such that P T=P A=T A= .

3. K is a function mapping from P to a set of token types declared in DD.

4. N, G, and E mean the functions of nodes, guards and arc expressions, respectively. The

results of these functions are the additional conditions to restrict the firing of

transitions. So they are also called additional restricting conditions.

5. F is a special arc from any transitions to OIP, and notated as a body frame of ION.

6. M0 is a function giving an initial marking to any place the same as those in HOONet

(Hong & Bae, 2000) and TOPN (Xu & Jia, 2006).

Definition 14: A set of places in TOPN is defined as P=PIP TABP, where

1. Primary place PIP is a three-tuple: PIP =(P,R,I), where

P is the set of common places similar to those in PN (Murata, 1989) (Peterson,

1991).

2. Timed abstract place (TABP) is a six-tuple: TABP= TABP(pn, refine state, action, SI, R, I),
where

pn is the identifier of the abstract timed place.

Timed Hierarchical Object-Oriented Petri Net 267

refine state is a flag variable denoting whether this abstract place has been
refined or not.

action is the static reaction imitating the internal behavior of this abstract
place.

3. SI, R and I are the same as those in Definition 1.

Definition 15: A set of transitions in TOPN can be defined as T= TPIT TABT TCOT, where

1. Timed primitive transition TPIT = TPIT (BAT, SI), where

BAT is the set of common transitions.
2. Timed abstract transition TABT= TABT (tn, refine state, action, SI), where

tn is the name of this TABT.
3. Timed communication transition TCOT=TCOT (tn, target, comm type, action, SI).

tn is the name of TCOT.

target is a flag variable denoting whether the behavior of this TCOT has been
modeled or not. If target = ”Yes”, it has been modeled. Otherwise, if target =
”No”, it has not been modeled yet.

comm type is a flag variable denoting the communication type. If comm type
=”SYNC”, then the communication transition is a synchronous one.
Otherwise, if comm type=”ASYN”, it is an asynchronous communication
transition.

4. SI is the same as that in Definition 1.
5. refine state and action are the same as those in Definition 3.
Similar to those in FTPN (Pedrycz & Camargo, 2003), the object t fires if the foregoing

objects come with a nonzero marking of the tokens; the level of firing is inherently

continuous. The level of firing (z(v)) assuming values in the unit interval is governed by the

following expression:

)()))((()(
1

vtswvxrTvz iii

n

i

 (1)

where T (or t) denotes a t-norm while “s” stands for any s-norm. “v” is the time instant

immediately following v’. More specifically, xi(v) denotes a level of marking of the ith place.

The weight wi is used to quantify an input coming from the ith place. The threshold ri

expresses an extent to which the corresponding place’s marking contributes to the firing of

the transition. The implication operator () expresses a requirement that a transition fires if

the level of tokens exceeds a specific threshold (quantified here by ri).

Once the transition has been fired, the input places involved in this firing modify their

markings that is governed by the expression

 xi(v)=xi(v’)t(1-z(v)) (2)

(Note that the reduction in the level of marking depends upon the intensity of the firing of

the corresponding transition, z(v).) Owing to the t-norm being used in the above expression,

the marking of the input place gets lowered. The output place increases its level of tokens

following the expression:

 y(v)=y(v’)sz(v) (3)

Petri Net: Theory and Applications 268

The s-norm is used to aggregate the level of firing of the transition with the actual level of

tokens at this output place. This way of aggregation makes the marking of the output place

increase.

The FTOPN model directly generalizes the Boolean case of TOPN and OPN. In other words,

if xi(v) and wi assume values in {0, 1} then the rules governing the behavior of the net are the

same as those encountered in TOPN.

5.2 Learning in FTOPN

The parameters of FTOPN are always given beforehand. In general, however, these

parameters may not be available and need to be estimated just like those in FTPN(Pedrycz &

Camargo, 2003). The estimation is conducted on the base of some experimental data

concerning marking of input and output places. The marking of the places is provided as a

discrete time series. More specifically we consider that the marking of the output place(s) is

treated as a collection of target values to be followed during the training process. As a

matter of fact, the learning is carried in a supervised mode returning to these target data.

The connections of the FTOPN (namely weights wi and thresholds ri) as well as the time

decay factors i are optimized (or trained) so that a given performance index Q becomes

minimized. The training data set consists of (a) initial marking of the input places

xi(0),…,xn(0) and (b) target values—markings of the output place that are given in a

sequence of discrete time moments, that is target(0), target(1),…, target(K).

In our FTOPN, the performance index Q under discussion assumes the form of the

following sum:

 Q=
K

k

kykett
1

2))()(arg((4)

where the summation is taken over all time instants (k =1, 2,… , K).
The crux of the training in FTOPN models follows the general update formula being applied

to the parameters:

 param(iter+1)=param(iter)- paramQ (5)

where is a learning rate and paramQ denotes a gradient of the performance index taken

with respect to all parameters of the net (here we use a notation param to embrace all

parameters in FTOPN to be trained).

In the training of FTOPN models, marking of the input places is updated according to the

following form:

)()0(~ kTxx iii
 (6)

where Ti(k) is the temporal decay. And Ti(k) complies with the following form. In what

follows, the temporal decay is modeled by an exponential function,

others

kkifkk
kT

iii

i
0

,))(exp(
)((7)

Timed Hierarchical Object-Oriented Petri Net 269

The level of firing of the place can be computed as the following:

)))(((~

1
iii

n

i
swxrTz (8)

The successive level of tokens at the output places and input places can be calculated as:

 y(k) = y(k-1)sz, xi(k) = xi(k-1)t(1-z) (9)

We assume that the initial marking of the output place y(0) is equal to zero, y(0)=0. The

derivatives of the weights wi are computed as follows:

)
)(

)()(arg(2))()(arg(2

ii w

ky
kykettkykett

w
 (10)

where i=1,2,…, n. Note that y(k+1)=y(k)sz(k).

5.3 A modeling example

In cooperative multiple robot systems (CMRS), every robot is controlled according to

different system information such as other robot states, its own states and task assignment.

As the information may not be available from all sensors or sources at the same time

moment, the one that occurs earlier needs to be discounted over time as becoming less

relevant. That is to say, information timing effects exist in this kind of dynamic systems.

However, in the control of every robot system, every kind of information is required

simultaneously. As the information readings could come at different time instants and be

collected at different sampling frequency, we encounter an inevitable timing effect of

information collected by the system and sensors. It becomes apparent that its relevance is

the highest at the time moment when the system sensor captures it but then its relevance has

to be discounted over the passage of time. This is an effect of aging that has to be viewed as

an integral part of the model. So FTOPN is used to model our CMRS. At the same time,

FTOPN can reduce the model complexity and can model complex decision making

processes in different levels, because of the OO abstraction concept supported in FTOPN. It

triggers interest in the class of the FTOPN.

5.3.1 CMRS example

In our experiment, there are two cooperative robots. FTOPN is used to model the

information fusion process in the decision making of scheduling robot in every robot.

Because the model is hierarchical, only the highest level of the model is depicted in Fig.5.

In the model of Fig.5, 3 place objects are used to represent 3 kinds of information to be

fused. Each kind of information may include different detailed contents. For example,

“other robot state” may include other robots’ working state, location, speed, movement

direction, etc al. So every kind of information is also an abstract object. On the other hand,

the relative firing temporal interval is [a, b] of the object. The information should be

sampled and processed in this relative interval. So does command sending. If the relative

time exceeds it, the information should be sampled again and task should be reassigned. In

the model, one transaction object represents the information fusion process. The timing

Petri Net: Theory and Applications 270

effect on the fusion is depicted in Fig.6. The information “other robot state” and “own state”

complies with the rule in Fig.6 (1). The other information complies with Fig.6 (2). After the

fusion, a new command will be sent in this relative interval. The command to be sent is also

a place object, which includes robot schedule and control commands.

Info

Fusion

1

r1

1 r2
Command

Task Info

Own State

Other

Robot State

[a,b][a,b]

[a,b]

[a,b]

[a,b]

Fig. 5. The FTOPN Model

Fig. 6. The Relevance

What’s more, all the objects in Fig.5 can also be depicted in details by FTOPN. For example,

the object—“Other Robot State” in Fig.5 can also be modeled concretely with FTOPN. The

detailed model of the object is depicted in Fig.7. It is also an independent fuzzy reduction

process. According to the modeling and analysis requirements, the detailed model can be

unfolded directly in the model of Fig.5. At the same time, its training can be conducted

independently. It can also be reduced independently and the reduction results will be used

Timed Hierarchical Object-Oriented Petri Net 271

as the believing effect of the corresponding object in the higher level of the FTOPN model in

Fig.5.

After completing the FTOPN model, the learning algorithm of FTOPN can be used to train

the model and adjust it to fulfill the practical requirements.

Fig. 7. The Object-“Other Robot State” Model

5.3.2 Application analysis

From the view of the former FTOPN modeling example, objects in FTOPN model can be

abstracted. They can be modeled and represented in other levels independently. At the same

time, the training and fuzzy reduction can also be conducted independently. So for the

abstraction concepts supported, the model complexity has been reduced effectively because

of the abstraction concepts in FTOPN. And the fuzzy reduction procedures have been

simplified. Essentially, hierarchical modeling idea in FTOPN is to the control model size by

abstracting objects in FTOPN model. In nature, OO abstraction concepts are used to control

fuzzy knowledge granularity in FTOPN. Because OO concepts are supported in FTOPN, the

abstract objects can be unfolded or abstracted in FTOPN model flexibly. Our modeling focus

can also be paid upon the important parts.

A comparative analysis between FPN, PN and neural network is conducted in (Pedrycz,

1999). Table.1 summarizes the main features of the fuzzy timed Object-oriented Petri nets

and contrasts these with the structures with which the proposed constructs have a lot in

common, namely FPN and TFPN. It becomes apparent that FTOPN combine the advantages

of both FPN in terms of their learning abilities and the glass-style of processing (and

architectures) of Petri nets with the abstraction of OO concepts.

Petri Net: Theory and Applications 272

Characteristics
Object Petri

nets
Fuzzy Petri Nets

Fuzzy Timed Object
Oriented Petri nets

Learning Aspects

From non-
existent to

significantly
limited (the

same as those
of common
Petri nets).

Significant learning
abilities parametric
optimization of the

connections of the net.
Structural

optimization can be
exercised through a
variable number of

the transitions
utilized in the

network.

Significant learning
abilities as well as
FPN. Distributed

learning (training)
abilities are supported

in different
independent objects
on various system

model levels.

Knowledge
Representation

Aspects

Glass Box or
black box style

knowledge
representation
supporting as a

result of
abstracting a

given problem
(problem

specification)
onto the

structure of the
net in different

levels. Well-
defined

semantics of
places and
transitions

Transparent
knowledge

representation (glass
box processing style)

the problem (its
specification) is

mapped directly onto
the topology of the

fuzzy Petri net.
Additionally, fuzzy

sets deliver an
essential feature of

continuity required to
cope with continuous

phenomena
encountered in a vast

array of problems
(including

classification tasks)

Glass Box Style
(Transparent
Knowledge

Representation) and
Black Box Processing
are supported at the

same time. The
problem (its

specification) is
mapped directly onto

the topology of
FTOPN. Knowledge

representation
granularity

reconfiguration reacts
on the reduction of

model size and
complexity.

Table.1 Object Petri nets, Fuzzy Petri nets and Fuzzy Time Object-oriented Petri nets: a
comparative analysis

6. Fuzzy timed agent based Petri net

As a typical multi-agent system (MAS) in distributed artificial intelligence (Jennings et al.,

1998), when CMRS is modeled, some difficulties are met with. For modeling this kind of

MAS, object-oriented methodology has been tried and some typical agent objects have been

proposed, such as active object, etc (Guessoum & Briot, 1999). However, agent based object

models still can not depict its structure and dynamic aspects, such as cooperation, learning,

temporal constraints, etc(Jennings et al., 1998). This section proposes a high level PN called

fuzzy timed agent based Petri net (FTAPN) on the base of FTOPN (Xu & Jia, 2005-1)

Timed Hierarchical Object-Oriented Petri Net 273

6.1 Agent object and FTAPN

The active object concept (Guessoum & Briot, 1999) has been proposed to describe a set of

entities that cooperate and communicate through message passing. To facilitate

implementing active object systems, several frameworks have been proposed. ACTALK is

one of the typical examples. ACTALK is a framework for implementing and computing

various active object models into one object-oriented language realization. ACTALK

implements asynchronism, a basic principle of active object languages, by queuing the

received messages into a mailbox, thus dissociating message reception from interpretation.

In ACTALK, an active object is composed of three component classes: address, activity and

activeObject (Guessoum & Briot, 1999).

Fig. 8. The FTOPN Model of ACTALK

ACTALK model is the base of constructing active object models. However, active object model

is the base of constructing multi-agent system model or agent system model. So, as the

modeling basis, ACTALK has been extended to different kinds of high-level agent models.

Because of this, ACTALK is modeled in Fig.8 by FTOPN.

In Fig.8, OIP is the describer of the ACTALK model and also represents as the

communication address. One communication transition is used to represent as the behavior

of message reception. According to the communication requirements, it may be

synchronous or asynchronous. If the message has been received, it will be stored in the

corresponding mail box, which is one first in and first out queue. If the message has been

received, the next transition will be enabled immediately. So mail box is modeled as abstract

place object in FTAPN. If there are messages in the mail box, the following transition will be

enabled and fired. After the following responding activity completes, some active behavior

will be conducted according to the message.

Fig.8 has described the ACTALK model based on FTOPN on the macroscopical level. The

detailed definition or realization of the object “Activity” and “Behavior” can be defined by

FTOPN in its parent objects in the lower level. The FTOPN model of ACTALK can be used

as the basic agent object to model agent based systems. That is to say, if the agent based

model—ACTALK model is used in the usual FTOPN modeling procedure, FTOPN has been

Petri Net: Theory and Applications 274

extended to agent based modeling methodology. So it is called fuzzy timed agent based Petri net

(FTAPN).

6.2 Learning in FTAPN

The parameters of FTAPN are always given beforehand. In general, however, these

parameters may not be available and need to be estimated just like those in FTPN (Pedrycz

& Camargo, 2003). The estimation is conducted on the base of some experimental data

concerning marking of input and output places. The marking of the places is provided as a

discrete time series. More specifically we consider that the marking of the output place(s) is

treated as a collection of target values to be followed during the training process. As a

matter of fact, the learning is carried out in a supervised mode returning to these target

data.

The connections of the FTOPN (namely weights wi and thresholds ri) as well as the time

decay factors i are optimized (or trained) so that a given performance index Q becomes

minimized. The training data set consists of (a) initial marking of the input places

xi(0),…,xn(0) and (b) target values—markings of the output place that are given in a

sequence of discrete time moments, that is target(0), target(1),…, target(K).

In FTAPN, the performance index Q under discussion assumes the following form.

 Q=
K

k

kykett
1

2))()(arg((11)

where the summation is taken over all time instants (k =1, 2,… , K).
The crux of the training in FTOPN models follows the general update formula in the
following equation being applied to the parameters:

 param(iter+1)=param(iter)- paramQ (12)

where is a learning rate and paramQ denotes a gradient of the performance index taken
with respect to all parameters of the net (here we use a notation param to embrace all
parameters in FTOPN to be trained).
In the training of FTOPN models, marking of the input places is updated according to the
following equation:

)()0(~ kTxx iii
 (13)

where Ti(k) is the temporal decay. And Ti(k) complies with the form in the following
equation. In what follows, the temporal decay is modeled by an exponential function,

others

kkifkk
kT

iii

i
0

,))(exp(
)((14)

The level of firing of the place can be computed as the following equation:

)))(((~

1
iii

n

i
swxrTz (15)

The successive level of tokens at the output place and input places can be calculated as that
in the following equation:

Timed Hierarchical Object-Oriented Petri Net 275

 y(k) = y(k-1)sz, xi(k) = xi(k-1)t(1-z) (16)

We assume that the initial marking of the output place y(0) is equal to zero, y(0)=0. The
derivatives of the weights wi are computed as the form in the following equation:

)
)(

)()(arg(2))()(arg(2

ii w

ky
kykettkykett

w

 (17)

where i=1,2,…, n. Note that y(k+1)=y(k)sz(k).

6.3 A Modeling example
In manufacturing integrated circuits, usually there is a Brooks Marathon Express (MX)
CMRS platform made up of two transferring robots. These two cooperative robots are up to
complete transferring one unprocessed wafer from the input lock to the chamber and fetch
the processed wafer to the output lock. Any robot can be used to complete the transferring
task at any time. If one robot is up to transfer one new wafer, the other will conduct the
other fetching task. They will not conflict with each other. Fig. 9 depicts this CMRS FTAPN
model, where two agent objects (ACTALK) is used to represent these two cooperative
robots.

(a) The Agent Based FTAPN Model (b) The Behavior Model in Every Agent

Fig. 9. The FTAPN Model

Fig. 10. The Relevance

Petri Net: Theory and Applications 276

Fig. 9 (a) has depicted the whole FTAPN model. The agent object—“ACTALK” is used to

represent every robot model. Different thresholds are used to represent the firing level of the

behavior conducted by the corresponding robot (agent). They also satisfy the unitary

requirements and change according to the fuzzy decision in the behavior of every agent in

Fig. 9 (b). In the model of Fig. 9 (b), three communication transition objects are used to

represent the behavior for getting different kinds of system states. These states include the

state of the other robot, its own goal and its current state, which can be required by the

conductions of the communication transitions tA1, tA2 and tA3. When one condition has been

got, the following place will be marked. In order to make control decisions (transition object

tA4) in time, all of these state parameters are required in the prescriptive time interval.

However, the parameters of the arrival times comply with the rule in Fig. 10 (a). The other

two kinds of information comply with that in Fig. 10 (b). After the decision, a new decision

command with the conduction probability will be sent in this relative interval and it also

affects which behavior will be conducted by updating the threshold in Fig. 10 (a).

6.4 Application aspects of FTAPN

Owing to the nature of the facet of temporal knowledge, fuzzy sets and object-oriented

concepts in this extension of PN, they become viable models in a wide range of engineering

problem augmenting the already existing high level Petri nets, cf. (Hong & Bae, 2000)

(Wang, 1998). Two main and commonly categories of models are worth elaborating here.

6.4.1 Models of multi-agent systems

The multi-agent paradigm and subsequently a variety of models are omnipresent in a

number of areas. In a nutshell, in spite of the existing variety of improved models, it still

lacks a powerful modeling method, which can bridge the gap between model and practical

implementations. Petri nets come with objects, temporal knowledge and fuzzy sets can use

active objects to model generic agents with situatedness, autonomy and flexible. This helps

us to use the object to reduce the complexity of MAS systems and the dynamic learning and

decision to support the autonomy of agents.

6.4.2 Models of complex real-time systems

In models of complex real-time systems as usually encountered in industrial practice, the

scale of the system module may be too complicated to be analyzed and the readings of

different system state or sensors may be available at different time. The former may lead to

the state explosion, while the latter needs adjustment of relevance of the information

gathered at different time scales. The object models with temporal information degradation

(aging) help to abstract complicated model and quantify the confidence of the inferred

results.

7. Conclusion

Firstly, a high-level Petri net called timed hierarchical object-oriented Petri net (TOPN) is

studied deeply in this chapter.

Timed Hierarchical Object-Oriented Petri Net 277

For modeling complex time critical systems and analyzing states, TOPN is proposed firstly.

The work is based on the following work: Hong’s hierarchical object-oriented Petri net

(HOONet) (Hong & Bae, 2000), Marlin’s timed Petri net (Merlin & Farber, 1976)) and Yao’s

extended state graph (Yao, 1994).With the introduction of temporal knowledge in TOPN, the

temporal constraints need to be considered in state analysis. A state analysis method—“TOPN

extended state graph (TESG)” for TOPN has also been presented in this chapter. Not only state

analysis, but also consistency can be analyzed by means of TESG. On the other hand, TOPN can

model complex time critical systems hierarchically. So analysis of properties and state

change becomes much easier. A decision making example modeled by TOPN has been used

to illustrate the usefulness of TOPN.

In the future research of TOPN, temporal reasoning and TOPN reduction rules will be

studied, which can be used to refine and abstract TOPN models with preserving timing

property.

Secondly, fuzzy timed object-oriented Petri net (FTOPN) is presented on the base of TOPN.
Timing effect is also a usual phenomenon in dynamic systems especially in time critical

systems. In order to model, analyze and simulate this kind of systems, this paper proposes

fuzzy timed object-oriented Petri net (FTOPN) on the base of TOPN (Xu & Jia, 2006) and

FTPN (Pedrycz & Camargo, 2003). Temporal fuzzy sets are used in FTOPN to describe the

timing effect and evaluation levels can be got according to the information arriving time and

specific fuzzy relevance function. What’s more, compared with FTPN (or FPN) models, the

model size and reduction complexity of FTOPN models can be reduced by controlling object

granularity because of supporting OO concept in FTOPN. Every abstract object in FTOPN

can be trained and reduced independently according to the modeling and analysis

requirements for OO concepts supported in FTOPN. The validity of this modeling method

has been demonstrated by using it in the simulation of the decision information fusion

process in our CMRS.

State analysis which can analyze the FTOPN and FTAPN models, needs to be studied in the

future research. With the temporal fuzzy sets introduced into TOPN, the certainty factor

about object firing (state changing) needs to be considered in the state analysis.

Finally, agent concepts are introduced into FTOPN and fuzzy timed agent based Petri net

(FTAPN) is proposed in this chapter.

Cooperative multi robot system is a kind of usual manufacturing equipments in

manufacturing industries. In order to model, analyze and simulate this kind of systems, this

paper proposes fuzzy timed agent based Petri net (FTAPN) on the base of FTOPN (Xu & Jia,

2005-1) and FTPN (Pedrycz & Camargo, 2003). In FTAPN, one of the active objects—

ACTALK is introduced and used as the basic agent object to model CMRS, which is a typical

multi-agent system. Every abstract object in FTOPN can be trained and reduced

independently according to the modeling and analysis requirements for OO concepts

supported in FTOPN. The validity of this modeling method has been used to model Brooks

CMRS platform in manufacturing IC. The FTAPN can not only model complex MAS, but

also be refined into the object-oriented implementation easily. It has provided a

methodology to overcome the development problems in agent-oriented software

engineering. At the same time, it can also be regarded as a conceptual and practical artificial

Petri Net: Theory and Applications 278

intelligence (AI) tool for integrating MAS into the mainstream practice of software

development.

State analysis needs to be studied in the future. An extended State Graph (Xu & Jia, 2006)

has been proposed to analyze the state change of TOPN models. With the temporal fuzzy

sets introduced into FTAPN, the certainty factor about object firing (state changing) needs to

be considered in the state analysis.

8. Acknowledgement

This work is jointly supported by the National Nature Science Foundation (Grant No:

60405011, 60575057) and the China Postdoctoral Foundation for China Postdoctoral Science

Fund (Grant No: 20040350078) in China.

9. References

Bastide, R.(1995). Approaches in unifying Petri nets and the object-oriented approach,

Proceedings of the 1st International Workshop on Object-oriented

Programming and Models of Concurrency,

http://wrcm.dsi.unimi.it/PetriLab/ws95/home.html, Turin, Italy, June, 1995

Battiston, E., Cindio, F.D., Mauri, G.(1988). OBJSA Nets: a class of high-level nets having

objects as domains, Proceedings of APN’88, Lecture Notes in Computer Science,

Vol.340, pp.20-43

Biberstein, O., Buchs, D.(1994). An object-oriented specification language based on

hierarchical algebraic Petri nets, Proceedings of the IS-CORE Workshop,

Amsterdam, Holland, September 1994

Bucci, G., Vivario, E.(1995). Compositional validation of time-critical systems using

communicating time Petri nets, IEEE Transactions on Software Engineering,

Vol.21, No.12, pp.969-992

Florin, G., Fraize, C., Natkin, S.(1991). Stochastic Petri nets: Properties, applications and

tools, Microelectron. Reliab., Vol. 31, No. 4, pp. 669–697

Guessoum, Z., Briot, J.P.(1999). From active objects to autonomous agents, IEEE

Concurrency, Vol.7, No.3, pp. 68 – 76

Harel, D., Gery, E.(1996). Executable object modeling with statechart, Proceedings of the

18th International Conference on Software Engineering, Germany, March 1996,

pp. 246±257.

Hong, J.E., Bae, D.H.(2000). Software Modeling And Analysis Using a Hierarchical Object-

oriented Petri net, Information Sciences, Vol.130, pp.133-164

Jennings, N.R., Sycara, K., Wooldridge, M.(1998). A Roadmap of Agent Research and

Development, Autonomous Agents and Multi-Agent Systems, Vol.1, pp.7–38

Jensen, K.(1992). Coloured Petri Nets: Basic Concepts, Analysis methods and Practical Use,

Springer, ISBN : 3-540-60943-1, Berlin, German

Lakos, C., Keen, C.(1994). LOOPN++: a new language for object-oriented Perti nets,

Technical Report R94-4, Networking Research Group, Univesity of Tasmania,

Australia, April 1994

Timed Hierarchical Object-Oriented Petri Net 279

Merlin, P., Farber, D.(1976). Recoverability of communication protocols—Implication of a

theoretical study IEEE Transactions on Communications, Vol.COM-24, pp.1036-

1043

Moody, J.O., Antsaklis, P.J. (1998). Supervisory Control of Discrete Event Systems Using

Petri Nets, Kluwer Academic Publishers, ISBN-10: 0792381998, MA, USA

Murata, T.(1989). Petri Nets: Properties, Analysis and Applications. Proceedings of IEEE,

Vol.77, No.4, (April 1989) pp.541-580

Pedrycz, W.(1999). Generalized fuzzy Petri nets as pattern classifiers, Pattern Recognition

Letters, Vol.20 pp.1489-1498

Pedrycz, W., Camargo, H.(2003). Fuzzy timed Petri nets, Fuzzy Sets and Systems, Vol.140,

No. 2, pp. 301-330

Peterson, J.L.(1991). Petri Net Theory and the Modeling of Systems, Prentice-Hall, ISBN:0-

13-661983-5, N.J., USA

Ramchandani, C.(1974). Analysis of Asynchronous Concurrent Systems by Timed Petri nets,

Massachusetts Institute of Technology, Project MAC, Technology Report 120,

1974

Schuman, S.A.(1997). Formal Object-oriented Development, Springer, ISBN-10: 3540199780,

Berlin, German.

Sloan, R., Buy, U.(1996). Reduction Rules for Time Petri Nets, Acta Inform, Vol.33, pp.687-

706

Tsai, J., Yang, S., Chang, Y.(1995). Timing constraint Petri nets and their application to

schedulability analysis of real-time system specifications, IEEE Transactions On

Software Engineering, Vol.21, No.1, pp.32-49

Wang, J.(1998). Timed Petri Nets—Theory and Application, Kluwer Academic Publishers,

ISBN : 0-7923-8270-6, Boston , USA

Wang, J. ; Deng, Y., Zhou, M.(2000). Compositional time Petri nets and reduction rules, IEEE

Transactions on Systems, Man and Cybernetics (Part B), Vol. 30, No.4, (Aug.

2000) pp. 562 -572

Xu, H., Jia, P.F.(2005-1). Fuzzy Timed Object-Oriented Petri Net, Artificial Intelligence

Applications and Innovations (Proceedings of AIAI2005), Springer, pp.148-160,

N.Y., USA

Xu, H., Jia, P.F.(2005-2). Timed Hierarchical Object-oriented Petri Net, GESTS International

Transaction on Computer Science and Engineering, Vol.24, No.1, pp.65-76

Xu, H., Jia, P.F.(2006). Timed Hierarchical Object-Oriented Petri Net-Part I: Basic Concepts

and Reachability Analysis, Lecture Notes In Artificial Intelligence (Proceedings of

RSKT2006), Vol. 4062, pp.727-734

Xu, H., Jia, P.F.(2007). A Novel Modeling Method for Cooperative Multi-Robot Systems Using

Fuzzy Timed Agent Based Petri Nets, LNCS (Proceedings of ICCS2007), Vol.4488,

pp.956-959

Yao, Y.L.(1994). A Petri Net Model for Temporal Knowledge Representation and Reasoning,

IEEE Transactions On Systems, Man and Cybernetics, Vol.24, pp.1374-1382

Petri Net: Theory and Applications 280

Zhou, M.C.(1995). Petri Nets in Flexible and Agile Automation, Kluwer Academic

Publishers, ISBN : 0792395573 , MA, USA

Petri Net, Theory and Applications

Edited by Vedran Kordic

ISBN 978-3-902613-12-7

Hard cover, 534 pages

Publisher I-Tech Education and Publishing

Published online 01, February, 2008

Published in print edition February, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Although many other models of concurrent and distributed systems have been de- veloped since the

introduction in 1964 Petri nets are still an essential model for concurrent systems with respect to both the

theory and the applications. The main attraction of Petri nets is the way in which the basic aspects of

concurrent systems are captured both conceptually and mathematically. The intuitively appealing graphical

notation makes Petri nets the model of choice in many applications. The natural way in which Petri nets allow

one to formally capture many of the basic notions and issues of concurrent systems has contributed greatly to

the development of a rich theory of concurrent systems based on Petri nets. This book brings together

reputable researchers from all over the world in order to provide a comprehensive coverage of advanced and

modern topics not yet reflected by other books. The book consists of 23 chapters written by 53 authors from

12 different countries.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Hua Xu (2008). Timed Hierarchical Object-Oriented Petri Net, Petri Net, Theory and Applications, Vedran

Kordic (Ed.), ISBN: 978-3-902613-12-7, InTech, Available from:

http://www.intechopen.com/books/petri_net_theory_and_applications/timed_hierarchical_object-

oriented_petri_net

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

