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1. Introduction 

Petri nets (Murata, 1989) (Peterson, 1991) have been widely used to model various discrete 
event systems (Moody & Antsaklis, 1998). Characterized as concurrent, asynchronous, 
distributed, parallel, nondeterministic, and/or stochastic (Murata, 1989), Petri nets have 
gained more and more applications. However, when they are used to analyze and model 
systems of different domains, the shortages of this kind of formal method still exist. Basic 
Petri nets lack temporal knowledge description, so they have failed to describe the temporal 
constraints in time critical or time dependent systems. The introduction of temporal 
knowledge into Petri nets has increased not only the modeling power but also the model 
complexity (Wang et al. 2000). The improved models of Petri nets (Wang, 1998) include 
Timed Petri Net (Ramchandi, 1974), Stochastic Timed Petri Net (Florin etc al., 1991) and 
Time Petri Net (TPNs) (Merlin & Farber, 1976). In TPNs (Merlin & Farber, 1976), each bar 
has two times specified. The first time denotes the minimal time that must elapse from the 
time that all the input conditions of a bar are enabled until this bar can fire. The other time 
denotes the maximum time that the input conditions can be enabled and the bar does not 
fire. After this time, the bar must fire. In general, these two times give some measures of 
minimal and maximal execution times of the bars. 
The reachability (coverability) analysis is one of the main analysis methods for Petri nets   
(Murata, 1989), in which the coverability tree is always used. It permits the automatic 
translation of behavioral specification models into a state transition graph made up of a set 
of states, a set of actions, and a succession relation associating states through actions (Bucci 
& Vivario, 1995). That is to say, it involves essentially the enumeration of all reachable 
markings or their coverable markings. This representation makes such properties as 
deadlock and reachability (Zhou, 1995) explicit, and allows the automatic verification of 
ordering relationships among task execution times (Tsai et al., 1995).  
Although the reachability analysis method can be used for all nets, it is only limited to 
“small” nets due to the complexity of the state-space explosion. The same thing also 
happens in the analysis of TPN models. Sloan et al. (Sloan & Buy, 1996) developed several 
reduction rules for TPN analysis that work at an individual transition level. These reduction 
rules help to reduce the complexity of TPN analysis to some extent. However, it is not a 
trivial work to automatically search the preconditions of applying these reduction rules for a 

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria
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complex TPN. Wang et al. proposed the compositional time Petri nets and the 
corresponding component-level reduction rules (Wang et al. 2000). Each of the reduction 
rules transforms a TPN component to a small one while maintaining the net’s external 
observable timing properties. The application of these rules will dramatically reduce the size 
of a TPN. However, all of the methods or models only reduce the complexity after the 
model becomes complex. It can not avoid the complexity to the best of its ability according 
to the analysis requirements when it is modeled.  
These years, the usefulness of the object-oriented concepts has been recognized, because it 
allows us to describe systems easily, intuitively and naturally. These years, the object-
oriented formal methods such as object Petri nets (OPN) (Bastide, 1995), VDM++  (Harel & 
Gery , 1996), Object-Z (Schuman, 1997), etc are suggested. Among the studies, the research 
on OPN has been focused on the extending Petri net formalism to OPN such as HOONet 
(Hong & Bae, 2000), OBJSA (Battiston et al. 1988), COOPN/2 (Biberstein & Buchs, 1994) and 
LOOPN++ (Lakos & Keen, 1994), which are suggested on the base of colored Petri Net 
(CPN) (Jensen, 1992). Object-oriented Petri net (OPN) can model different systems easily, 
intuitively and naturally. Abstraction is one of OPN characters compared with basic Petri 
nets. OPN can model various systems hierarchically and the models can be analyzed even if 
they have not been completed. So the complexity of OPN models can be simplified at the 
beginning of modeling stage according to the analysis requirements. Although the results of 
such studies have shown promise, these nets do not fully support time critical (time 
dependent) system modeling and analysis, which may be complex, midsize or even small. 
When time critical systems with any sizes are modeled, it requires formal modeling and 
analysis method to support temporal description and object-oriented concepts. That is to 
say, TPN and OPN need to be combined.  
Firstly, this chapter formally proposes a high-level Petri net called timed hierarchical object-
oriented Petri net (TOPN) (Xu & Jia, 2006) (Xu & Jia, 2005-2), which supports not only 
temporal description but also OO concepts. On one hand, TOPN has extended a model of 
Object-Oriented Petri Nets to allow modeling and analyzing complex time critical systems. 
Modeling features in TOPN support abstracting complex systems, so the corresponding 
models can be simplified effectively. In the proposed TOPN, a duration is also attached to 
each object accounting for the minimal and maximal amount of time between which that the 
behavior of the object can be completed once fired. On the other hand, this chapter also 
addresses the problem of the state analysis of TOPN models, what makes it possible to 
judge the model consistency at a given moment of time. On the base of Yao’s extended state 
graph (ESG) (Yao, 1994), TOPN extended state graph (TESG) is presented for incremental 
reachability analysis for temporal behavior analysis. In particular, a new way is investigated 
to represent and deal with the objects with temporal knowledge. 
 Secondly, in order to extend a model of TOPN to allow modeling and analyzing dynamic 

systems with timing effect on system information, fuzzy concept is introduced into TOPN 
and fuzzy timed object-oriented Petri net (FTOPN) (Xu & Jia, 2005-1) is proposed. Temporal 
fuzzy sets are attached to each transition objects in TOPN accounting for the aging of 
information. In particular, a new way is investigated to represent and deal with timing effect 
in dynamic systems. FTOPN also supports learning similar to that in fuzzy timed Petri net 
(Pedryz & Camargo, 2007). FTOPN is also used to model a real decision making procedure 
of one cooperative multiple robot system (CMRS) to demonstrate its following benefits: 
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independent training for its supporting object abstraction and size reconfiguration for its 
object granularity control function. 
  Finally, in order to model CMRS, a CMRS modeling method called fuzzy timed agent 
based Petri nets (FTAPN) (Xu & Jia, 2007) is proposed on the base of FTOPN, because it can 
be regarded as a kind of multi-agent system (MAS) and the agent is also a special kind of 
object. FTAPN can be used to model and illustrate both the structural and dynamic aspects 
of CMRS. Supervised learning is supported in FTAPN. As a special type of high-level object, 
agent is introduced, which is used as a common modeling object in FTAPN models. The 
proposed FTAPN can not only be used to model CMRS and represent system aging effect, 
but also be refined into the object-oriented implementation easily. At the same time, it can 
also be regarded as a conceptual and practical artificial intelligence (AI) tool for multi-agent 
system (MAS) into the mainstream practice of software development. 
This chapter has just been arranged as the following. Section 1 makes a quick review of the 
relative study of Petri Nets. In section 2 of this chapter, it justifies the need for defining 
TOPN through interpreting how to combine the time restricting information with HOONet. 
An informal and intuitive behavior semantics of TOPN has been introduced in section 3. 
Then, in section 4, the constructing algorithm of reachability tree is presented, which can 
support most of the property analysis of TOPN. In section 5, FTOPN is proposed on the base 
of TOPN, and FTOPN has been used to model and analyze the decision procedure of one 
CMRS. Then, FTAPN is presented on the base of FTOPN and it is used to model and 
analyze one CMRS to demonstrate its effectiveness in section 6. Section 7 concludes the 
work in this chapter and suggests further research issues in the future. 

2. The basic concepts of TOPN 

In this section, some important basic concepts of Petri nets are firstly reviewed. Then the 
definitions of TOPN are presented. At the same time, the enabling rules and the firing rules 
of TOPN are presented. 

2.1 A brief review of basic Petri nets 

In this subsection, we will quickly review some key definitions. A more general discussion 
on Petri nets can be found in Peterson’s book (Peterson, 1991) and in the excellent survey 
article by Murata (Murata, 1989).  
A Petri net is a five-tuple PN= (P, T, F, W, M0) where P and T are the node sets and F is the 

edge set of a directed bipartite graph, and M0: P N is called the initial marking (or initial 

state) of PN.  (We use N to denote the set {0, 1, 2…}.) We call P the set of places of PN and T 
the set of transitions of PN. In diagrams, we will show places as circles and transitions as 
bars. Formally, )()( PTTPF  and F is called the flow relation (or edges) of PN. 

W: F  {1, 2, 3…} and it is called the weight of a flow. In general, a marking of PN associates 

a nonnegative integer number of markers or tokens with each place.  
For net PN= (P, T, F, W, M0), we use the following symbols and notations for the sets of 

predecessors and successors of a place p P and transition t T.

•t={p| (p, t) F} =the set of input places of t, 

t•={p| (t, p) F}=the set of output places of t, 
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•p={t| (t, p) F}=the set of input transitions of p, 

p•= {t| (p, t) F} =the set of output transitions of p. 

A transition is enabled when all its input places have at least one token. When an enabled 
transition t is fired, a token is removed from each input place of t and a token is added to 
each output place; this gives a new marking. For net PN= (P, T, F, W, M0), the language of 

PN, denoted as L (PN), is the set of all legal sequences T* of transition firings starting 

from marking M0.

Petri net PN= (P, T, F, W, M0) is safe if M0 : P {0, 1}, and if all markings reachable by legal 

sequences of transition firings from the initial marking have either zero or more tokens in 
every place. 

2.2 High-level Petri nets 

There are different definitions and terminology of TPN and OPN. In this chapter, our work 
is based on the Merlin’s TPN and Hong’s OPN which is called HOONet (Hong & Bae, 2000).
A time Petri net is also a tuple TPN=(PN, SI). PN is a basic Petri net. And SI is a mapping 

called a static interval, SI: T Q* Q* ), where Q* is a set of nonnegative rational numbers.

HOONet is a high-level Petri net supporting the representation scheme of object-oriented 
concepts. A HOONet model is represented as Petri-net form for an object and has 
components to represent a unique name, attributes and its behaviors (methods) of an object. 
Definition 1: HOONet is defined with a tuple HOONet= (OIP, ION, DD), where  

1. OIP (object identification place) is a special place which is defined as a tuple, 

OIP=(oip,pid,M0,status), where 

oip is a unique name of a HOONet model. 

pid is a unique process identifier that distinguishes the multiple instances of an 

object.

M0 is an initial marking function. 

status is a flag variable (either pre value or post value) to represent the specific 

states of OIP. 

2. ION (internal object net) is a variant of CPN (colored Petri nets) that represents the 

internal behaviors of an object, which is defined as a tuple ION=(P,T,A,C,N,G,E,F,M0),

where

P, T and A are finite sets of places, transitions and arcs respectively. 

C, N, G and E mean the functions of a color set, a node, a guard and an arc 
expression, respectively. They are the same as defined in (Jensen, 1992). 

F is a special arc from transitions to OIP, and depicted as those a rim of ION, 
and

M0 is a function giving initial marking to specific places. 
3. DD (data dictionary) contains the declarations of variable, token types, and functions 

per a HOONet model using standard CPN ML (Jensen, 1992).  

Definition 2: A set of place types in HOONet, P=(Pi,Pa), where 
1. Primitive place Pi is a basic type of places that represent the local states of a system, the 

same as in general CPN (Jensen, 1992). 
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2. Abstract place Pa= (pn, refine_state, action) is a place type which represents abstract 
states, where 

pn is the name of an abstract place. 

refine_state is a flag variable denoting the refinement of an abstract place. 

action is a static reaction that imitates the internal behaviors of an abstract 

place.

Definition 3: A set of transition types in HOONet, T={Ti, Ta, Tc},where
1. Primitive transition Ti is a basic transition type in general CPN 
2. Abstract transition Ta = (tn, refine_state, action), where 

tn is the name of an abstract transition. 

refine_sate and action have the same meanings as in the definition of the 
abstract place. 

3. Communicative transition Tc =(tn, target, ctype, action) is a transition type that represents 
calling a method, where 

tn is the name of a communicative transition. 

target is a flag variable denoting whether the method called from Tc, is 
modeled (a “yes” value) or not (a “no” value). 

ctype is also a flag variable denoting whether the interaction of Tc is 
synchronous (a “SYNC” value) or asynshronous (an “ASYN” value). 

action is the static reaction that reflects the execution results of the called 
method.  

The variable ctype with its “SYNC” value denotes that the caller waits for the result from the 
called method. With “ASYN” value, the token is duplicated. Each of the duplicated tokens is 
transferred to the called object and the next place in its net, respectively. 

2.3 Timed hierarchical object-oriented Petri net 

The purpose of designing timed hierarchical object-oriented Petri net (TOPN) is to aid in the 
modeling and analysis of real time systems and bridge the gap between the formal 
treatment of object-oriented Petri nets and temporal reduction approach for the modeling, 
analysis, and prototyping of complex time critical systems. 
A TOPN model is a variant HOONet representation that corresponds to the class with 
temporal property in object-oriented paradigm. Like the HOONet, TOPN is composed of 
four parts: object identification place (OIP) is a unique identifier of a class; internal timed 
object net (ION) is a net to depict the behaviors (methods) of a class; data dictionary (DD) 
declares the attributes of a class in TOPN; and static time interval function (SI) binds the 
temporal knowledge of a class in TOPN. 
Definition 4: TOPN is a four-tuple: TOPN= P (OIP, ION, DD, SI), where: 
1. OIP=(oip, pid, M0, status), oip, pid, M0 and status are the same as those in HOONet. 

oip is a variable for the unique name of a TOPN. 

pid is a unique process identifier to distinguish multiple instances of a class, 
which contains return address. 

M0 is the function that gives initial token distributions of this specific value to 
OIP.

status is a flag variable to specify the state of OIP. 



Petri Net: Theory and Applications 258

2. ION is the internal net structure of TOPN to be defined in the following. It is a variant 
CPN that describes the changes in the values of attributes and the behaviors of methods 
in TOPN. 

3. DD formally defines the variables, token types and functions (methods) just like those 
in HOONet (Hong & Bae, 2000).  

4. SI is a static time interval binding function, SI: {OIP} Q*, where Q* is a set of time 
intervals.

According to the definition 4, the general structure of TOPN is shown in Fig.1. In time critical 
systems, time relates to events. While in Petri net, events occur and originate from system 
behaviors. And system behaviors stem from the behavior properties of objects in TOPN. 
These objects include transitions, abstract places and other TOPN objects. So not only 
transitions, but also all TOPN objects including abstract places, etc need to be restricted by 
time condition.  

Fig. 1. The General Structure of TOPN 

An event in a time critical system can be thought of as an interval [s, t] on the time line 

where s is its starting endpoint and t is its terminating endpoint, having a duration given by 

t-s 0. The special case of time interval where t=s is a point event. Otherwise, it is an interval 

event. In the corresponding time interval [s, t] of event firing, s is the earliest firing time 

(EFT) and t is the latest firing time (LFT). In the changes of TOPN behavior, events are 

regarded as interval events. The temporal knowledge in TOPN is represented as time 

intervals.

Similar to HOONet, TOPN is also a kind of hierarchical net. In TOPN, the whole TOPN 

model is also an object, and it is always regarded as an abstract place object. Its realizing 

details are depicted in ION. Inside the ION, abstract objects may also be included. The 

realizing details of these objects can also be depicted as a TOPN. The definition of ION is 

just like the following. 

Definition 5: An internal object net structure of TOPN, ION = (P,T,A,K,N,G,E,F,M0)
1. P and T are finite sets of places and transitions with time restricting conditions attached 

respectively.
2. A is a finite set of arcs such that P T=P A=T A= .
3. K is a function mapping from P to a set of token types declared in DD. 
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4. N, G, and E mean the functions of nodes, guards, and arc expressions, respectively. The 
results of these functions are the additional condition to restrict the firing of transitions. 
So they are also called additional restricting conditions.  

5. F is a special arc from any transitions to OIP, and notated as a body frame of ION. 
6. M0 is a function giving an initial marking to any place the same as those in HOONet 

(Hong & Bae, 2000).  
Similar to common OPNs, basic OPN components and additional restricting conditions are 
included in the detailed ION structure. The basic OPN components may include common 
components (transition and place) and abstract components. If the model needs to be 
analyzed in details, the abstract components in ION should be refined. At the same time, the 
ION is unfolded. The following definitions of abstract components in TOPN are the base of 
refining abstract component. The abstract components in TOPN include timed abstract 
transitions, timed abstract communication transitions and timed abstract places. 

Definition 6: A set of places in TOPN is defined as P=PIP TABP, where 

1. PIP is the set of primitive places similar to those in PNs (Murata, 1989) (Peterson, 1991). 
2. Timed abstract place (TABP) is a four-tuple: TABP= TABP(pnTABP, refine stateTABP,

actionTABP, SITABP), where 

pnTABP is the identifier of the abstract timed place. 

refine stateTABP is a flag variable denoting whether this abstract place has been 
refined or not. 

actionTABP is the static reaction imitating the internal behavior of this abstract 
place.

SITABP is also a static time interval binding function from a set of TABPs to a set 
of static time intervals. 

There are two kinds of places in TOPN. They are common places (represented as circles 
with thin prim) and abstract places (represented as circles with bold prim) described in 
Fig.2. Abstract places are also associated with a static time interval. Because at this situation, 
abstract places represent not only firing conditions, but also the objects with their own 
behaviors. So, abstract places in TOPN also need to be associated with time intervals. 
Generally, the abstract place—TABP is always represented as a kind of abstract form in 
higher layers in TOPN models. At this time, “refine state” dedicates that it is in abstract 
form. However, if “refine state” denotes that it is in the refined state, TABP will have been 
refined into the corresponding TOPN which is defined in lower layers.  

Fig. 2. Places and Transitions in TOPN 

Definition 7: A set of transitions in TOPN can be defined as T= TPIT TABT TCOT, where 

1. Timed primitive transition TPIT = TPIT (BAT, SITPIT), where 

BAT is the set of common transitions. 
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SITPIT is a static time interval binding function, SI: {TPIT} Q*, where Q* is a set 
of time intervals. 

4. Timed abstract transition TABT= TABT (tnTABT, refine stateTABT, actionTABT, SITABT),
where

tnTABT is the name of this TABT. 

refine stateTABT  is a flag variable denotes whether this TABT has been refined or 
not. 

actionTABT is the static reaction imitating the internal behavior of the TABT. 

SITABT is a static time interval binding function, SI: {TABT} Q*, where Q* is a set 
of time intervals. 

5. Timed communication transition TCOT=TCOT (TnTCOT, targetTCOT, comm typeTCOT,
actionTCOT, SITCOT).

TnTCOT is the name of TCOT.  

targetTCOT is a flag variable denoting whether the behavior of this TCOT has 
been modeled or not. If targetTCOT =”Yes”, it has been modeled. Otherwise, if 
targetTCOT =”No”, it has not been modeled yet. 

comm typeTCOT is a flag variable denoting the communication type. If comm 
typeTCOT =”SYNC”, then the communication transition is synchronous one. 
Otherwise, if comm typeTCOT =”ASYN”, it is an asynchronous communication 
transition. 

actionTCOT is the static reaction imitating the internal behavior of this TCOT. 

SITCOT is a static time interval binding function, SI: {TCOT} Q*, where Q* is a set 
of time intervals. 

Just like those in HOONet, there are three kinds of transitions in TOPN. The timed primitive 
transition (represented as rectangles with thin prim), timed abstract transition (represented 
as rectangles with bold prim) and timed communication transition (represented as 
rectangles with double thin prim). They are depicted in Fig.2. Different transitions represent 
different system behaviors. So, temporal intervals are associated with all of these transitions 
in TOPN. Abstract transitions are also TOPN objects. They can be refined in lower layers.  
The definition of abstract transitions mentioned above is also a kind of abstract form in 
higher layers of TOPN models, when “refine state” indicates it is in the abstract form. While, 
if “refine state” denotes it is in refined state, the corresponding abstract transition should be 
refined into the corresponding TOPN which is defined in lower layers.  
From the definitions mentioned above, TOPN are hierarchical just like the structure of object 
models. In the higher levels of the model, its components may be in abstract form and the 
model is simple. In the unfolded model where the abstract components are refined, the 
TOPN model may be complex, but the realizing details are clear. So, according to the 
analysis requirements, users can analyze the TOPN models in different layers, even if the 
detailed realization in lower layers have not been completed yet. 

3. Behavior semantics of TOPN 

3.1 Execution paths 

State changes relate to the events in TOPN. However, events may stem from transition firing 
or TABP behaviors. The state changes in TOPN relate to the schedule and the associated 
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temporal interval tightly. In order to analyze the dynamics of TOPN, the definition of 
schedule and path is given in the following. 
Definition 8: In Petri net N, if the state Mn is reachable from the initial state M0, then there 
exists a sequence of fired transitions from M0 to Mn. This sequence is called a path or a 

schedule  from M0 to Mn. It can be represented as: 

Path = {M0,t1,M1,…,tn,Mn}  or = {M0,t1,M1,…,tn,Mn}

ti N.T;  1 i n

And the schedule set of Petri net N with initial marking M0 is represented as L(N,M0). 

Just like those in TPN (Merlin & Farber, 1976) (Harel & Gery, 1996), if the number of solid 
tokens residing in the input place equals or exceeds the weight of the input arc, the forward 
transition is enabled. However, when one TABP is marked by enough hollow tokens 
compared with the weight of internal arcs in its refined TOPN, it is also enabled at this time. 
After its internal behaviors have completed, the color of tokens residing in it become from 
hollow to solid, which are similar to those in common places. So TABPs also manifest 
actions in TOPN. An extended definition of path in TOPN is given in the following, in 
which TABP is extended into the schedule. 
Definition 9: If the state Mn is reachable from the initial state M0, then there exists a sequence 
of marked abstract places and fired transitions from M0 to Mn. This sequence is called a path 

or a schedule  from M0 to Mn. It can be represented as: 

Path = {PA1, PA2, … , PAn}  or = {PA1, PA2, … , PAn}

where PAi T TABP and 1 i n.   

Definition 10: Let t be a TOPN transition and let {PA1, PA2, … ,PAn} be a path, add ti into the 
path is expressed as {PA1, PA2, … ,PAn} + t = { PA1, PA2, … ,PAn, t}. 
Let p be an abstract place and let { PA1, PA2, … ,PAn} be a path, add p into the path is 

expressed as { PA1, PA2, … , PAn} + p = { PA1, PA2, … , PAn, p}, where  PAi T TABP and  

1 i n .   

Definition 11: For a TOPN N with schedule , we denote the state reached by starting in N’s 

initial state and firing each transition in at its associated time (N, ). The time of (N, )

is the global firing time of the last transition in .

When the relative time belongs to the time interval attached to the transition or the TABP 
and the corresponding object is also enabled, then it can be fired. If a transition has been 
fired, the marking may change like that in PN (Wang, 1998). If a TABP is fired, then the 
hollow token(s) change into solid token(s), and the tokens still reside in the primary place. 
At this time, the new relative time intervals of every object are calculated like those in (Harel 
& Gery, 1996). 

3.2 Enabling rules and firing rules 

State changes in TOPN stem from the behavior executions in TOPN. The execution of a 
TOPN depends on two main factors. Firstly, it is the number and distribution of tokens in 
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the TOPN. Tokens reside in the places and control the execution of the transition. Secondly, 
its execution depends on the definition of execution time represented as time intervals. A 
TOPN executes by firing transitions. 
The dynamic behavior can be studied by analyzing the distribution of tokens (markings) in 
TOPN. So the enabling rule and firing rule of a transition in TOPN are introduced in the 
following, which govern the flow of tokens. 
Enabling Rule:  
1. A transition t in TOPN is said to be enabled if each input place p of t contains at 

least the number of solid tokens equal to the weight of the directed arcs connecting 
p to t:
M(p)  I(t, p) for any p in P, the same as in ordinary Petri nets, where M(p) is the 
marking of the place p and I(t, p) is the weight of the input arc from the place p to 
the transition t. 

2. If the place is TABP, it will be marked with a hollow token and TABP is enabled. At 
this time, the ION of the TABP is enabled. After the ION is executed, the tokens in 
TABP are changed into solid ones. 

Firing Rule:  
1. For a transition: 

a. An enabled transition in TOPN may or may not fire depending on the additional 

interpretation (Merlin & Farber, 1976) (Bucci & Vivario, 1995) (Harel & Gery, 

1996), and  

b. The relative time , relative to the absolute enabling time , is not smaller than 

the earliest firing time (EFT) of transition ti, and not greater than the smallest of 

the latest firing time  (LFT) of all the transitions enabled by marking M (Hong & 

Bae, 2000):  

                 EFT of ti  min (LFT of tk)

    where k ranges over the set of transitions enabled by M, the same as (Hong & 

Bae, 2000). 

c. After a transition ti (common one or abstract one) in TOPN is fired at a time ,

TOPN changes to a new state. The new states can be computed as the following: 

The new marking M’ (token distributions) can be computed as the following: 

   If the output place of ti is TABP,

        then   M’(p)= attach (*, (M(p)-I(ti,p)+O(ti,p))); 

        else   M’(p)=M(p)-I(ti,p)+O(ti,p); 

        The symbol “*” attached to the markings of TABP represents as hollow tokens 

in  TABP.  

The computation of the new firing interval I’ is the same as those in  (Harel & Gery, 

1996), (Yao, 1994), as 

I’=(max(0,EFTk- k) , (LFTk- k))

        where EFTk and LFTk represents the lower and upper bound of interval in I 

corresponding to tk in TOPN, respectively. 

The new path can be computed as path’ = path + ti . 

2. For a TABP 
a. The relative time  should satisfy the following conditions: 
          EFT of ti  min (LFT of tk)
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     where tk belongs to the set of the places and transitions which have been 
enabled by M. 

b. After a TABP p in TOPN is executed at a time , TOPN states change. The new 
marking can be computed as the following. 

The new markings are changed for the corresponding TABP p, as 
           M’(p)= remove_attach (*, M(p)) 

     The symbol “*” is removed from the marking of TABP. Then the marking is the 
same as those of common places. The change represents that the internal actions of 
TABP have been finished. Tokens of TABP have been changed into solid ones. 
To compute the new time intervals is the same as that mentioned above. 

The new path can be decided by path’ = path + p.     
When the number of tokens satisfies the conditions of enabling rule, the corresponding 
transitions or TABPs are enabled. Only if the corresponding objects are enabled and the 
relative time is in the time interval, can the objects be fired. The relative firing time may 
be stochastic, but it is after EFT and before LFT. In TOPN, the firing procedures are 
considered to be instantaneous and their execution delay can be considered in the time 
interval of execution conditions. 

4. Reachability analysis 

4.1 Analysis algorithm 

The purpose of TOPN is to aid in modeling and analysis of complex time critical systems. 
From the point of TOPN definition, TOPN can describe the temporal constraints in time 
critical systems. Then the model analysis method especially reachability analysis, need to be 
discussed. In order to analyze TPN (Yao, 1994) models, Yao has presented extended state 
graph (ESG) to analyze TPN models. On the base of ESG, an extended TOPN state graph has 
been presented in this section, into which temporal reasoning has also been introduced. 
In a TOPN model, an extended state representation “ES” is 3-tuple, where ES=(M, I, path) 
consisting of a marking M, a firing interval vector I and an execution path. According to the 
initial marking M0 and the firing rules mentioned above, the following marking at any time 
can be calculated. The vector--“I” is composed of the temporal intervals of enabled 
transitions and TABPs, which are to be fired in the following state. The dimension of I 
equals to the number of enabled transitions and TABPs at the current state. The firing 
interval of every enabled transition or TABP can be got according to the formula of I’. 
Definition 12:  A TOPN extended state graph (TESG) is a directed graph. In TESG, nodes 
represent TOPN model states. In TESG, there is an initial node, which represents the TOPN 
model initial state. Arcs denote the events, which make model state change. There are two 
kinds of arcs from one state ES to another one ES’ in TESG.  
1. The state change from ES to ES’ stems from the firing of the transition ti.

Correspondingly, there is a directed arc from ES to ES’, which is marked by ti.
2. If the internal behavior of the TABP—“pi” makes the TOPN model state change from ES 

to ES’, then in TESG there is also a directed arc from ES to ES’. It is marked by pi.
On the base of Petri net analysis method (PN and TPN) and the definition of TESG, the 
TESG of one TOPN model can be constructed by the following step: 
 Step 1) Use the initial state ES1 as the beginning node of TESG, where ES1=(M0,
 [0,0], ).

Step 2) Mark the initial state “New”. 
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Step 3) While (there exist nodes marked with “new”) do 
   Step 3.1) Choose a state marked with “new”. 
   Step 3.2) According to the enabling rule, find the enabled TOPN objects at the 
current state and mark them “enabled”. 
   Step 3.3) While (there exist objects marked with “enabled”) do 
    Step 3.3.1) Choose an object marked with “enabled”. 
    Step 3.3.2) Fire this object and get the new state ES2.
    Step 3.3.3) Mark the fired object “fired” and mark the new state ES2 “new”. 
    Step 3.3.4) Draw a directed arc from the current state ES1 to the new state ES2 and 
mark the arc with the name of the fired object and relative firing temporal 
constraint. 
    // The internal “while” cycle ends. 
  Step 3.4) Mark the state ES1 with “old”. 
   // The external “while” cycle ends.    

TESG describes state changes in TOPN models. In TESG, not only state changing sequence, 

but also dynamic temporal constraints and execution paths related to state changes have all 

been described in TESG. TESG constructing procedure is also a TOPN model reachability 

analysis procedure. So if the TESG of one TOPN model has been depicted, the 

corresponding reachability has also been analyzed. 

Similar to the state analysis in TPN, when the TESG of one TOPN model has been 

completed, the TPN consistency determination theorem can be used to judge the consistency 

of TOPN models. So the consistency of time critical system can be checked. The theorem can 

be referenced to Yao’s paper (Yao, 1994). 

4.2 A modeling and analysis example 

Fig. 3. The TOPN Model 

Var +CT = boolean; /* Transferring Tag */
/*CT is set to “T” in the transition--
“DataFusion” */ 
Var +Time=Integer; /* Current Relative 
Time*/
TT C = with hollow | solid; 
TCOT (ComTransf)={ 

Fun(CT= =F � (a Time b) ): 
   ComTransf () � CT=F � Mark(p1,C);
};

/* Mark(P,C): Mark the place P with C */
TABT (StateCol)={ 

Fun(CT= = F � (a Time b)):
  OwnStateCol()� M(p5,C);

   }; 
/* M(P,C): Mark the place P with C */
Mark(Place,C)={
   Fun(Place is a TABP � ( p Time p)):
       OIP(Place) � M(Place,C); 
   Fun(Place is not in N.TABP): M(Place,C); 
};/*mark different places*/                         

        t1                         [0,0] 

        p2 

        t2               [a,b]    t5 
                                  
        p3                         [0,0] 
        
        t3               [a,b] 

        p4 

        t4                [a,b] 

P1
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t4: =[0,50]

t5: =[0,50]

t3: =[0,50]

t1: =[0,0]

t2: =[0,50]

M1:P1
l1:t1[0,0] 
path1

M2:P2
l2:t2[0,50] 
Path2:p1

M3:P3
l3:t3[0,50] 
Path3:p1,p2

M4:P4
l4:t4[0,50], t5[0,50] 
Path4:p1,p2,p3

M5:P1
l5:[0,0] 
Path5:p1,p2,p3,p4

Fig. 4. The TESG of the Decision Model 

In distributed cooperative multiple robot systems (CMRS), every robot makes control and 
schedule decisions according to different system information such as other robot states, its 
own states and task assignment. The decision making procedure can be divided into 3 main 
phases. In the first phase, the decision making module collects the above information. For 
the information mentioned above, every kind of information may include different detailed 
information. For example, velocity, movement direction and location need to be considered 
in its and other robot’s states. The task to be completed in the future is considered in the task 
assignment. As the information may not be available from all sensors or sources at the same 
time moment, the temporal constraint about the information collection is needed. This 
collection procedure should be completed in 50 unit time. In the second phase, information 
fusion based method is used to make control and schedule decisions of every robot. To 
complete the information fusion aim, every kind of information is required simultaneously. 
It may last for about 50 unit time. Finally, the decision results are transformed to other 
system modules. The transferring procedure will last for about 50 unit times. In this control 
procedure, the decision conditions and temporal constraints need to be considered 
simultaneously, so TOPN is chosen to model this decision making module. Fig.3 has shown 
the TOPN model of CMRS decision model and its data dictionary respectively. Then Fig.4 
has given the state analysis by means of TESG. From the TESG, the design logical errors can 
be excluded. According to the Yao’s consistency judging theorem and the TESG, the TOPN 
model in Fig.3 is consistent. 

5. Fuzzy timed object-oriented Petri net 

Although Petri nets can be used to model and analyze different systems, they fail to model 
the timing effects in dynamic systems. Fuzzy timed Petri net (FTPN) (Pedrycz & Camargo, 
2003) has been presented and it has solved this modeling problem, which is on the base of 
temporal fuzzy sets and Petri nets. However, similar to the general Petri Nets, FTPN may 
also meet with the complexity problem, when it is used to model complex dynamic systems. 
In this section, fuzzy timed object-oriented Petri net (FTOPN) is proposed on the base of 
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TOPN and FTPN, whose aim is to solve the timing effects and other modeling problems of 
dynamic systems. 

5.1 Basic Concept 
Similar to FTPN (Pedrycz & Camargo, 2003), fuzzy set concepts are introduced into TOPN 
(Xu & Jia, 2005-2) (Xu & Jia, 2006). Then FTOPN is proposed, which can describe fuzzy 
timing effect in dynamic systems. 
Definition 13: FTOPN is a six-tuple, FTOPN= (OIP, ION, DD, SI, R, I) where 
1. Suppose OIP=(oip, pid, M0, status), where oip, pid, M0 and status are the same as those 

in HOONet (Hong & Bae, 2000) and TOPN (Xu & Jia, 2006). 

oip is a variable for the unique name of a FTOPN. 

pid is a unique process identifier to distinguish multiple instances of a class, 
which contains return address. 

M0 is the function that gives initial token distributions of this specific value to 
OIP.

status is a flag variable to specify the state of OIP. 
2. ION is the internal net structure of FTOPN to be defined in the following. It is a variant 

CPN that describes the changes in the values of attributes and the behaviors of methods 
in FTOPN. 

3. DD formally defines the variables, token types and functions (methods) just like those 
in HOONet (Hong & Bae, 2000) and TOPN (Xu & Jia, 2006).  

4. SI is a static time interval binding function, SI: {OIP} Q*, where Q* is a set of time 
intervals.

5. R: {OIP}  r, where r is a specific threshold. 
6. I is a function of the time v. It evaluates the resulting degree of the abstract object firing.  
Definition 13: An internal object net structure of TOPN, ION = (P,T,A,K,N,G,E,F,M0)
1. P and T are finite sets of places and transitions with time restricting conditions attached 

respectively.

2. A is a finite set of arcs such that P T=P A=T A= .

3. K is a function mapping from P to a set of token types declared in DD. 

4. N, G, and E mean the functions of nodes, guards and arc expressions, respectively. The 

results of these functions are the additional conditions to restrict the firing of 

transitions. So they are also called additional restricting conditions.  

5. F is a special arc from any transitions to OIP, and notated as a body frame of ION. 

6. M0 is a function giving an initial marking to any place the same as those in HOONet  

(Hong & Bae, 2000) and TOPN (Xu & Jia, 2006). 

Definition 14: A set of places in TOPN is defined as P=PIP TABP, where 

1. Primary place PIP is a three-tuple: PIP =(P,R,I), where 

P is the set of common places similar to those in PN (Murata, 1989) (Peterson, 

1991).

2. Timed abstract place (TABP) is a six-tuple: TABP= TABP(pn, refine state, action, SI, R, I), 
where

pn is the identifier of the abstract timed place. 
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refine state is a flag variable denoting whether this abstract place has been 
refined or not. 

action is the static reaction imitating the internal behavior of this abstract 
place.

3. SI, R and I are the same as those in Definition 1.

Definition 15: A set of transitions in TOPN can be defined as T= TPIT TABT TCOT, where 

1. Timed primitive transition TPIT = TPIT (BAT, SI), where 

BAT is the set of common transitions. 
2. Timed abstract transition TABT= TABT (tn, refine state, action, SI), where  

tn is the name of  this TABT. 
3. Timed communication transition TCOT=TCOT (tn, target, comm type, action, SI). 

tn is the name of  TCOT.  

target is a flag variable denoting whether the behavior of this TCOT has been 
modeled or not. If target = ”Yes”, it has been modeled. Otherwise, if target = 
”No”, it has not been modeled yet. 

comm type is a flag variable denoting the communication type. If comm type 
=”SYNC”, then the communication transition is a synchronous one. 
Otherwise, if comm type=”ASYN”, it is an asynchronous communication 
transition.

4. SI  is  the same as that in Definition 1.
5. refine state and action are the same as those in Definition 3.
Similar to those in FTPN (Pedrycz & Camargo, 2003), the object t fires if the foregoing 

objects come with a nonzero marking of the tokens; the level of firing is inherently 

continuous. The level of firing (z(v)) assuming values in the unit interval is governed by the 

following expression:

)()))((()(
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n
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 (1) 

where T (or t) denotes a t-norm while “s” stands for any s-norm. “v” is the time instant 

immediately following v’. More specifically, xi(v) denotes a level of marking of the ith place. 

The weight wi is used to quantify an input coming from the ith place. The threshold ri

expresses an extent to which the corresponding place’s marking contributes to the firing of 

the transition. The implication operator ( ) expresses a requirement that a transition fires if 

the level of tokens exceeds a specific threshold (quantified here by ri).

Once the transition has been fired, the input places involved in this firing modify their 

markings that is governed by the expression 

 xi(v)=xi(v’)t(1-z(v)) (2) 

(Note that the reduction in the level of marking depends upon the intensity of the firing of 

the corresponding transition, z(v).) Owing to the t-norm being used in the above expression, 

the marking of the input place gets lowered. The output place increases its level of tokens 

following the expression: 

 y(v)=y(v’)sz(v) (3) 
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The s-norm is used to aggregate the level of firing of the transition with the actual level of 

tokens at this output place. This way of aggregation makes the marking of the output place 

increase.

The FTOPN model directly generalizes the Boolean case of TOPN and OPN. In other words, 

if xi(v) and wi assume values in {0, 1} then the rules governing the behavior of the net are the 

same as those encountered in TOPN. 

5.2 Learning in FTOPN 

The parameters of FTOPN are always given beforehand. In general, however, these 

parameters may not be available and need to be estimated just like those in FTPN(Pedrycz & 

Camargo, 2003). The estimation is conducted on the base of some experimental data 

concerning marking of input and output places. The marking of the places is provided as a 

discrete time series. More specifically we consider that the marking of the output place(s) is 

treated as a collection of target values to be followed during the training process. As a 

matter of fact, the learning is carried in a supervised mode returning to these target data. 

The connections of the FTOPN (namely weights wi and thresholds ri) as well as the time 

decay factors i are optimized (or trained) so that a given performance index Q becomes 

minimized. The training data set consists of (a) initial marking of the input places 

xi(0),…,xn(0) and (b) target values—markings of the output place that are given in a 

sequence of discrete time moments, that is target(0), target(1),…, target(K).  

In our FTOPN, the performance index Q under discussion assumes the form of the 

following sum: 

 Q=
K

k
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where the summation is taken over all time instants (k =1, 2,… , K). 
The crux of the training in FTOPN models follows the general update formula being applied 

to the parameters: 

 param(iter+1)=param(iter)- paramQ (5) 

where  is a learning rate and paramQ denotes a gradient of the performance index taken 

with respect to all parameters of the net (here we use a notation param to embrace all 

parameters in FTOPN to be trained).  

In the training of FTOPN models, marking of the input places is updated according to the 

following form: 

)()0(~ kTxx iii
 (6) 

where Ti(k) is the temporal decay. And Ti(k) complies with the following form. In what 

follows, the temporal decay is modeled by an exponential function, 

others
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The level of firing of the place can be computed as the following: 
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The successive level of tokens at the output places and input places can be calculated as: 

 y(k) = y(k-1)sz, xi(k) = xi(k-1)t(1-z) (9)

We assume that the initial marking of the output place y(0) is equal to zero, y(0)=0. The 

derivatives of the weights wi are computed as follows: 

)
)(

)()(arg(2))()(arg( 2

ii w

ky
kykettkykett

w
 (10) 

where i=1,2,…, n. Note that y(k+1)=y(k)sz(k).

5.3 A modeling example 

In cooperative multiple robot systems (CMRS), every robot is controlled according to 

different system information such as other robot states, its own states and task assignment. 

As the information may not be available from all sensors or sources at the same time 

moment, the one that occurs earlier needs to be discounted over time as becoming less 

relevant. That is to say, information timing effects exist in this kind of dynamic systems. 

However, in the control of every robot system, every kind of information is required 

simultaneously. As the information readings could come at different time instants and be 

collected at different sampling frequency, we encounter an inevitable timing effect of 

information collected by the system and sensors. It becomes apparent that its relevance is 

the highest at the time moment when the system sensor captures it but then its relevance has 

to be discounted over the passage of time. This is an effect of aging that has to be viewed as 

an integral part of the model. So FTOPN is used to model our CMRS. At the same time, 

FTOPN can reduce the model complexity and can model complex decision making 

processes in different levels, because of the OO abstraction concept supported in FTOPN. It 

triggers interest in the class of the FTOPN. 

5.3.1 CMRS example 

In our experiment, there are two cooperative robots. FTOPN is used to model the 

information fusion process in the decision making of scheduling robot in every robot. 

Because the model is hierarchical, only the highest level of the model is depicted in Fig.5.  

In the model of Fig.5, 3 place objects are used to represent 3 kinds of information to be 

fused. Each kind of information may include different detailed contents. For example, 

“other robot state” may include other robots’ working state, location, speed, movement 

direction, etc al. So every kind of information is also an abstract object. On the other hand, 

the relative firing temporal interval is [a, b] of the object. The information should be 

sampled and processed in this relative interval. So does command sending. If the relative 

time exceeds it, the information should be sampled again and task should be reassigned. In 

the model, one transaction object represents the information fusion process. The timing 
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effect on the fusion is depicted in Fig.6. The information “other robot state” and “own state” 

complies with the rule in Fig.6 (1). The other information complies with Fig.6 (2). After the 

fusion, a new command will be sent in this relative interval. The command to be sent is also 

a place object, which includes robot schedule and control commands. 

Info 

Fusion

1

r1

1     r2
Command

Task Info

Own State

Other 

Robot State

[a,b][a,b]

[a,b]

[a,b]

[a,b]

Fig. 5. The FTOPN Model 

Fig. 6. The Relevance 

What’s more, all the objects in Fig.5 can also be depicted in details by FTOPN. For example, 

the object—“Other Robot State” in Fig.5 can also be modeled concretely with FTOPN. The 

detailed model of the object is depicted in Fig.7. It is also an independent fuzzy reduction 

process. According to the modeling and analysis requirements, the detailed model can be 

unfolded directly in the model of Fig.5. At the same time, its training can be conducted 

independently. It can also be reduced independently and the reduction results will be used 
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as the believing effect of the corresponding object in the higher level of the FTOPN model in 

Fig.5.  

After completing the FTOPN model, the learning algorithm of FTOPN can be used to train 

the model and adjust it to fulfill the practical requirements. 

Fig. 7. The Object-“Other Robot State” Model 

5.3.2 Application analysis 

From the view of the former FTOPN modeling example, objects in FTOPN model can be 

abstracted. They can be modeled and represented in other levels independently. At the same 

time, the training and fuzzy reduction can also be conducted independently. So for the 

abstraction concepts supported, the model complexity has been reduced effectively because 

of the abstraction concepts in FTOPN. And the fuzzy reduction procedures have been 

simplified. Essentially, hierarchical modeling idea in FTOPN is to the control model size by 

abstracting objects in FTOPN model. In nature, OO abstraction concepts are used to control 

fuzzy knowledge granularity in FTOPN. Because OO concepts are supported in FTOPN, the 

abstract objects can be unfolded or abstracted in FTOPN model flexibly. Our modeling focus 

can also be paid upon the important parts.

A comparative analysis between FPN, PN and neural network is conducted in (Pedrycz, 

1999). Table.1 summarizes the main features of the fuzzy timed Object-oriented Petri nets 

and contrasts these with the structures with which the proposed constructs have a lot in 

common, namely FPN and TFPN. It becomes apparent that FTOPN combine the advantages 

of both FPN in terms of their learning abilities and the glass-style of processing (and 

architectures) of Petri nets with the abstraction of OO concepts. 
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Characteristics
Object Petri 

nets
Fuzzy Petri Nets 

Fuzzy Timed Object 
Oriented Petri nets 

Learning Aspects 

From non-
existent to 

significantly 
limited (the 

same as those 
of common 
Petri nets). 

Significant learning 
abilities parametric 
optimization of the 

connections of the net. 
Structural

optimization can be 
exercised through a 
variable number of 

the transitions 
utilized in the 

network. 

Significant learning 
abilities as well as 
FPN. Distributed 

learning (training) 
abilities are supported 

in different 
independent objects 
on various system 

model levels. 

Knowledge
Representation

Aspects 

Glass Box or 
black box style 

knowledge 
representation
supporting as a 

result of 
abstracting a 

given problem 
(problem

specification) 
onto the 

structure of the 
net in different 

levels. Well-
defined 

semantics of 
places and 
transitions

Transparent
knowledge 

representation (glass 
box processing style) 

the problem (its 
specification) is 

mapped directly onto 
the topology of the 

fuzzy Petri net. 
Additionally, fuzzy 

sets deliver an 
essential feature of 

continuity required to 
cope with continuous 

phenomena
encountered in a vast 

array of problems 
(including

classification tasks) 

Glass Box Style 
(Transparent
Knowledge

Representation) and 
Black Box Processing 
are supported at the 

same time. The 
problem (its 

specification) is 
mapped directly onto 

the topology of 
FTOPN.  Knowledge 

representation
granularity

reconfiguration reacts 
on the reduction of 

model size and 
complexity. 

Table.1 Object Petri nets, Fuzzy Petri nets and Fuzzy Time Object-oriented Petri nets: a 
comparative analysis 

6. Fuzzy timed agent based Petri net 

As a typical multi-agent system (MAS) in distributed artificial intelligence (Jennings et al., 

1998), when CMRS is modeled, some difficulties are met with. For modeling this kind of 

MAS, object-oriented methodology has been tried and some typical agent objects have been 

proposed, such as active object, etc (Guessoum & Briot, 1999). However, agent based object 

models still can not depict its structure and dynamic aspects, such as cooperation, learning, 

temporal constraints, etc(Jennings et al., 1998). This section proposes a high level PN called 

fuzzy timed agent based Petri net (FTAPN) on the base of FTOPN (Xu & Jia, 2005-1) 
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6.1 Agent object and FTAPN 

The active object concept (Guessoum & Briot, 1999) has been proposed to describe a set of 

entities that cooperate and communicate through message passing. To facilitate 

implementing active object systems, several frameworks have been proposed. ACTALK is 

one of the typical examples. ACTALK is a framework for implementing and computing 

various active object models into one object-oriented language realization. ACTALK 

implements asynchronism, a basic principle of active object languages, by queuing the 

received messages into a mailbox, thus dissociating message reception from interpretation. 

In ACTALK, an active object is composed of three component classes: address, activity and 

activeObject (Guessoum & Briot, 1999).  

Fig. 8. The FTOPN Model of ACTALK 

ACTALK model is the base of constructing active object models. However, active object model 

is the base of constructing multi-agent system model or agent system model. So, as the 

modeling basis, ACTALK has been extended to different kinds of high-level agent models. 

Because of this, ACTALK is modeled in Fig.8 by FTOPN.  

In Fig.8, OIP is the describer of the ACTALK model and also represents as the 

communication address. One communication transition is used to represent as the behavior 

of message reception. According to the communication requirements, it may be 

synchronous or asynchronous. If the message has been received, it will be stored in the 

corresponding mail box, which is one first in and first out queue. If the message has been 

received, the next transition will be enabled immediately. So mail box is modeled as abstract 

place object in FTAPN. If there are messages in the mail box, the following transition will be 

enabled and fired. After the following responding activity completes, some active behavior 

will be conducted according to the message.  

Fig.8 has described the ACTALK model based on FTOPN on the macroscopical level. The 

detailed definition or realization of the object “Activity” and “Behavior” can be defined by 

FTOPN in its parent objects in the lower level. The FTOPN model of ACTALK can be used 

as the basic agent object to model agent based systems. That is to say, if the agent based 

model—ACTALK model is used in the usual FTOPN modeling procedure, FTOPN has been 
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extended to agent based modeling methodology. So it is called fuzzy timed agent based Petri net

(FTAPN).

6.2 Learning in FTAPN  

The parameters of FTAPN are always given beforehand. In general, however, these 

parameters may not be available and need to be estimated just like those in FTPN (Pedrycz 

& Camargo, 2003). The estimation is conducted on the base  of some experimental data 

concerning marking of input and output places. The marking of the places is provided as a 

discrete time series. More specifically we consider that the marking of the output place(s) is 

treated as a collection of target values to be followed during the training process. As a 

matter of fact, the learning is carried out in a supervised mode returning to these target

data.

The connections of the FTOPN (namely weights wi and thresholds ri) as well as the time 

decay factors i are optimized (or trained) so that a given performance index Q becomes 

minimized. The training data set consists of (a) initial marking of the input places 

xi(0),…,xn(0) and (b) target values—markings of the output place that are given in a 

sequence of discrete time moments, that is target(0), target(1),…, target(K).   

In FTAPN, the performance index Q under discussion assumes the following form.  

 Q=
K

k
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where the summation is taken over all time instants (k =1, 2,… , K). 
The crux of the training in FTOPN models follows the general update formula in the 
following equation being applied to the parameters: 

 param(iter+1)=param(iter)- paramQ (12) 

where  is a learning rate and paramQ denotes a gradient of the performance index taken 
with respect to all parameters of the net (here we use a notation param to embrace all 
parameters in FTOPN to be trained).  
In the training of FTOPN models, marking of the input places is updated according to the 
following equation: 
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where Ti(k) is the temporal decay. And Ti(k) complies with the form in the following 
equation. In what follows, the temporal decay is modeled by an exponential function, 

others
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The level of firing of the place can be computed as the following equation: 
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The successive level of tokens at the output place and input places can be calculated as that 
in the following equation: 
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 y(k) = y(k-1)sz, xi(k) = xi(k-1)t(1-z) (16) 

We assume that the initial marking of the output place y(0) is equal to zero, y(0)=0. The 
derivatives of the weights wi are computed as the form in the following equation: 
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 (17) 

where i=1,2,…, n. Note that y(k+1)=y(k)sz(k).

6.3 A Modeling example 
In manufacturing integrated circuits, usually there is a Brooks Marathon Express (MX) 
CMRS platform made up of two transferring robots. These two cooperative robots are up to 
complete transferring one unprocessed wafer from the input lock to the chamber and fetch 
the processed wafer to the output lock. Any robot can be used to complete the transferring 
task at any time. If one robot is up to transfer one  new wafer, the other will conduct the 
other fetching task. They will not conflict with each other. Fig. 9 depicts this CMRS FTAPN 
model, where two agent objects (ACTALK) is used to represent these two cooperative 
robots.

(a) The Agent Based FTAPN Model                    (b) The Behavior Model in Every Agent 

Fig. 9. The FTAPN Model 

Fig. 10. The Relevance 
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Fig. 9 (a) has depicted the whole FTAPN model. The agent object—“ACTALK” is used to 

represent every robot model. Different thresholds are used to represent the firing level of the 

behavior conducted by the corresponding robot (agent). They also satisfy the unitary 

requirements and change according to the fuzzy decision in the behavior of every agent in 

Fig. 9 (b). In the model of Fig. 9 (b), three communication transition objects are used to 

represent the behavior for getting different kinds of system states. These states include the 

state of the other robot, its own goal and its current state, which can be required by the 

conductions of the communication transitions tA1, tA2 and tA3. When one condition has been 

got, the following place will be marked. In order to make control decisions (transition object 

tA4) in time, all of these state parameters are required in the prescriptive time interval. 

However, the parameters of the arrival times comply with the rule in Fig. 10 (a). The other 

two kinds of information comply with that in Fig. 10 (b). After the decision, a new decision 

command with the conduction probability will be sent in this relative interval and it also 

affects which behavior will be conducted by updating the threshold in Fig. 10 (a). 

6.4 Application aspects of FTAPN  

Owing to the nature of the facet of temporal knowledge, fuzzy sets and object-oriented 

concepts in this extension of PN, they become viable models in a wide range of engineering 

problem augmenting the already existing high level Petri nets, cf. (Hong & Bae, 2000) 

(Wang, 1998). Two main and commonly categories of models are worth elaborating here.  

6.4.1 Models of multi-agent systems  

The multi-agent paradigm and subsequently a variety of models are omnipresent in a 

number of areas. In a nutshell, in spite of the existing variety of improved models, it still 

lacks a powerful modeling method, which can bridge the gap between model and practical 

implementations. Petri nets come with objects, temporal knowledge and fuzzy sets can use 

active objects to model generic agents with situatedness, autonomy and flexible. This helps 

us to use the object to reduce the complexity of MAS systems and the dynamic learning and 

decision to support the autonomy of agents.   

6.4.2 Models of complex real-time systems  

In models of complex real-time systems as usually encountered in industrial practice, the 

scale of the system module may be too complicated to be analyzed and the readings of 

different system state or sensors may be available at different time. The former may lead to 

the state explosion, while the latter needs adjustment of relevance of the information 

gathered at different time scales. The object models with temporal information degradation 

(aging) help to abstract complicated model and quantify the confidence of the inferred 

results.  

7. Conclusion 

Firstly, a high-level Petri net called timed hierarchical object-oriented Petri net (TOPN) is 

studied deeply in this chapter. 
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For modeling complex time critical systems and analyzing states, TOPN is proposed firstly. 

The work is based on the following work: Hong’s hierarchical object-oriented Petri net 

(HOONet) (Hong & Bae, 2000), Marlin’s timed Petri net (Merlin & Farber, 1976)) and Yao’s 

extended state graph (Yao, 1994).With the introduction of temporal knowledge in TOPN, the 

temporal constraints need to be considered in state analysis. A state analysis method—“TOPN 

extended state graph (TESG)” for TOPN has also been presented in this chapter. Not only state 

analysis, but also consistency can be analyzed by means of TESG. On the other hand, TOPN can 

model complex time critical systems hierarchically. So analysis of properties and state 

change becomes much easier. A decision making example modeled by TOPN has been used 

to illustrate the usefulness of TOPN.  

In the future research of TOPN, temporal reasoning and TOPN reduction rules will be 

studied, which can be used to refine and abstract TOPN models with preserving timing 

property.

Secondly, fuzzy timed object-oriented Petri net (FTOPN) is presented on the base of TOPN. 
Timing effect is also a usual phenomenon in dynamic systems especially in time critical 

systems. In order to model, analyze and simulate this kind of systems, this paper proposes 

fuzzy timed object-oriented Petri net (FTOPN) on the base of TOPN (Xu & Jia, 2006) and 

FTPN (Pedrycz & Camargo, 2003). Temporal fuzzy sets are used in FTOPN to describe the 

timing effect and evaluation levels can be got according to the information arriving time and 

specific fuzzy relevance function. What’s more, compared with FTPN (or FPN) models, the 

model size and reduction complexity of FTOPN models can be reduced by controlling object 

granularity because of supporting OO concept in FTOPN. Every abstract object in FTOPN 

can be trained and reduced independently according to the modeling and analysis 

requirements for OO concepts supported in FTOPN. The validity of this modeling method 

has been demonstrated by using it in the simulation of the decision information fusion 

process in our CMRS.  

State analysis which can analyze the FTOPN and FTAPN models, needs to be studied in the 

future research. With the temporal fuzzy sets introduced into TOPN, the certainty factor 

about object firing (state changing) needs to be considered in the state analysis. 

Finally, agent concepts are introduced into FTOPN and fuzzy timed agent based Petri net 

(FTAPN) is proposed in this chapter. 

Cooperative multi robot system is a kind of usual manufacturing equipments in 

manufacturing industries. In order to model, analyze and simulate this kind of systems, this 

paper proposes fuzzy timed agent based Petri net (FTAPN) on the base of FTOPN (Xu & Jia, 

2005-1) and FTPN (Pedrycz & Camargo, 2003). In FTAPN, one of the active objects—

ACTALK is introduced and used as the basic agent object to model CMRS, which is a typical 

multi-agent system. Every abstract object in FTOPN can be trained and reduced 

independently according to the modeling and analysis requirements for OO concepts 

supported in FTOPN. The validity of this modeling method has been used to model Brooks 

CMRS platform in manufacturing IC. The FTAPN can not only model complex MAS, but 

also be refined into the object-oriented implementation easily. It has provided a 

methodology to overcome the development problems in agent-oriented software 

engineering. At the same time, it can also be regarded as a conceptual and practical artificial 
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intelligence (AI) tool for integrating MAS into the mainstream practice of software 

development.   

State analysis needs to be studied in the future. An extended State Graph (Xu & Jia, 2006) 

has been proposed to analyze the state change of TOPN models. With the temporal fuzzy 

sets introduced into FTAPN, the certainty factor about object firing (state changing) needs to 

be considered in the state analysis. 
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