
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

3

Petri Net Based Modelling of
Communication in Systems on Chip

Holger Blume, Thorsten von Sydow, Jochen Schleifer and Tobias G. Noll
Chair of Electrical Engineering and Computer Systems

RWTH Aachen University
Germany

1. Motivation

Due to the progress of modern microelectronics the complexity of integrated electronic
systems is steadily increasing. For example, the number of transistors which can be
integrated on a single piece of silicon doubles every 18 months according to Moore’s Law
(Moore, 1965). At the same time, the costs for manufacturing deep-sub-µ devices with
feature sizes down to 45 nm are dramatically increasing.
Due to this progress, today, complete systems are integrated on a single silicon die as so-
called Systems on Chip (SoCs). The huge complexity of these SoCs and the very high
manufacturing costs demand sophisticated design strategies as it is not possible to simulate
a sufficiently large number of implementation alternatives in advance. Furthermore, errors
within the design process lead to dramatically increased costs.
Therefore, the field of model based design space exploration (DSE) is of increasing
importance. Model based DSE allows a reduction of the number of implementation
alternatives in an early stage of the design process by quantitative analysis of possible
implementation alternatives (Blume, 2005).
Especially, the design of a sophisticated communication structure on a SoC is of great
interest. For SoCs with moderate complexity mainly bus based communication structures
are applied, but this is not sufficient for modern high complex SoCs, since bus based
communication provides only very limited scalability, reduced bandwidth and no
guaranteed latencies. Furthermore, with a high number of system components the need for
simultaneous communication between different communicating units increases. All these
requirements are already known from multi computer networks. Therefore, for complex on-
chip communication requirements also network-like structures are considered. Hence, the
concept of multi computer networks is transferred and adapted to on-chip communication
problems building so-called Networks on Chip (NoCs) featuring in future the
communication infrastructure for many processor cores.
Generally, NoCs consist of

network-interfaces (NI), where clients like e.g. processor cores can access the NoC,

routing-switches (RS), which route the data through the NoC and

links, through which the data is transported (see Fig. 1).

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.in

te
hw

eb
.c

om

Petri Net: Theory and Applications 42

Fig. 1. Network-on-Chip (NI: Network-Interface, RS: Routing-Switch)

These NoCs imply a huge parameter space featuring parameters like network topology,
routing strategy, link properties, arbitration mechanisms etc.. Some of these parameters are
roughly sketched in the following:
Topology in this case is the way of connecting the various network components to each other,
common examples (see Fig. 2) are networks based on mesh, torus and ring topologies
(Bjerregaard, 2006), besides further regular topologies also heterogeneous and/or
hierarchical topologies as well as completely irregular ones (for example optimized for
specialized signal processing tasks) are discussed.

Fig. 2. Common NoC topologies: mesh (a), torus (b), ring (c)

The switching concept defines the way information is sent through the network. Concepts for
this are line and packet switching. In a line switched network a complete route from source
to destination is established before information is passed along this route. In the packet
switching approach information is divided into small packets that are delivered

Petri Net Based Modelling of Communication in Systems on Chip 43

independently of each other. While line switching generates a considerable overhead for
route establishment there is no need to send destination information along with each
message and vice versa for packet switching. Furthermore, concepts such as wormhole
routing combine characteristics of both approaches (Duato, 2003).
In any of the cases described before, the actual route through the network is determined by
the routing algorithm. In each network node, information is routed from an input to an
output port according to the routing algorithm. These algorithms can be divided into static
and adaptive algorithms as well as minimal-path and non-minimal-path ones. When using a
static routing algorithm there is only a single route for each possible pair of source and
destination. Adaptive algorithms allow for different routes dependent on the current
network state and generally tend to reduce congestion for the cost of higher complexity.
Minimal-path routing algorithms only consider those routes with minimum possible length
while non-minimal-path algorithms also regard further routes featuring non-minimal path
lengths.
Arbitration mechanisms define the way to resolve resource conflicts; this can range from
simple first-come-first-serve or Round Robin schemes to complex schemes including
priority access and disruption of routes.
All of these parameters have a significant influence on congestion, latency and network
load, thereby affecting and possibly limiting SoC and NoC performance.
It is a key task of modern SoC and NoC design to efficiently explore the design space
regarding aspects like performance, flexibility and power consumption presumably in an
early stage of the design flow in order to reduce design time and design costs.
Different approaches for exploring the design space concerning performance aspects have
been proposed:

Emulation on FPGA based platforms (Neuenhahn, 2006)

Simulative approaches, e.g. applying SystemC (Kogel, 2003), (Madsen, 2004),
(Sonntag, 2005)

Combined simulative-analytic approaches (Lahiri, 2001)

formal communication modelling and refinement systems applying dedicated
modelling languages like the Action Systems Formalism (Plosila, 2004)

stochastic approaches applying Markov Models (Mickle, 1998), Queuing Theory
(Kleinrock, 1975) or different forms of Petri Nets incl. deterministic and stochastic Petri
Nets (DSPN) (Ciardo, 1995), (Blume, 2006), (Blume, 2007) and Coloured Petri Nets
(CPN) (Zaitsev, 2004)

Each of these techniques provides its individual advantages and disadvantages. For
example, simulative approaches based on SystemC like (Kogel, 2003) provide highly
accurate results but suffer from long simulation times, making them not appropriate for an
early stage of communication modelling and evaluation. Emulation of communication
architectures and scenarios on FPGA based platforms (Neuenhahn, 2006) provides on one
hand the possibility to quickly acquire results for different aspects. If a suitable FPGA based
model is available it is much faster to attain results than using a simulation based method.
On the other hand the modelling and realization effort of the emulation (incl. the synthesis
of the NoC on the FPGA) is very high. The complexity of the modelled scenarios is limited
by the capacity of the used FPGA. Recently, communication modelling approaches which
are based on so-called deterministic and stochastic Petri Nets (DSPNs) have been presented.
In (Blume, 2006), (Blume, 2007) it could be shown that with the application of these DSPN

Petri Net: Theory and Applications 44

modelling techniques it is possible to efficiently trade modelling effort and modelling
accuracy. Basic but exemplary test scenarios like resource conflicts in state-of-the-art DSP
architectures, basic bus based communication test cases and basic NoC structures
demonstrate a very good modelling accuracy at low modelling effort.
In this chapter the usability of different Petri Net based modelling techniques like DSPNs
and CPNs for modelling complex NoC communication scenarios is investigated and their
specific properties are discussed. This chapter is structured as follows: section 2 provides an
introduction into the Petri Net variants DSPN and CPN. In section 3 these modelling
techniques are applied in order to model different forms of on-chip communication. The
corresponding accuracy of the models compared to values which were derived using FPGA
and DSP based testbeds are provided and discussed. Furthermore, the related modelling
effort is analyzed. Section 4 provides a conclusion and a short outlook to possible future
applications of Petri Net based techniques in the domain of design space exploration for
NoC-architectures.

2. Introduction to Petri nets

In the following section a short introduction to the Petri Net methods which have been
applied in context of this chapter is given. The modelling with these specific methods will be
illustrated by means of descriptive basic examples. First of all, the design with so called
deterministic and stochastic Petri Nets (DSPNs) is sketched. Afterwards, coloured Petri Nets
which extend the possibilities of DSPNs are briefly presented.

2.1 Deterministic and stochastic Petri nets

Deterministic and stochastic Petri Nets have been introduced in 1987 by Ajmone Marslan
and Chiola (Ajmone Marslan, 1987) as an extension of classical Petri Nets. DSPNs extend the
modelling possibilities of classical Petri Nets by introducing the concept of deterministic
transition times. In the following, only a subset of all features provided by DSPNs is
discussed. For a thorough overview see e.g. (Lindemann, 1998).
Petri Nets consist of so-called places, arcs and transitions. Places, depicted as circles in the
graphical representation, correspond to states of e.g. system components. E.g. a place could
be named copy word to illustrate that this place represents the state of copying a word. Places
can be unmarked or marked with one or even more tokens. This illustrates that the
corresponding place is currently allocated. E.g. if a place called copy word is marked, the
associated component is in the state of copying a word.
In Petri Nets a state change is modelled by means of so called (timed) transitions. Three
types are differentiated in DSPNs: immediate transitions, transitions with a probability
density function of their delay (e.g.: negative exponential) or deterministic transitions with a
fixed delay.
Transitions and places are connected via arcs. There are two types of arcs, regular or
inhibitor arcs. Inhibitor arcs are identified by a small inversion circle instead of an
arrowhead at the destination end of it (see Fig. 3). If more than one input place is connected
to a transition via regular arcs, the transition will only be activated when all connected
places are marked. In case of one or more of these arcs being inhibitor arcs the transition will
not fire if the corresponding place is marked. Furthermore, a numeric weight can be

Petri Net Based Modelling of Communication in Systems on Chip 45

assigned to each arc. A weighted arc is only activated if the number of tokens, located in the
place the arc is originating from, is greater or equal than the assigned weight.
The form of graphical representation is often used to build DSPNs. The underlying
mathematical representation of DSPNs can be specified as a nine-tuple

WDMHOITPDSPN ,,,,,,,, 0

with

P, a finite number of places,

T, a finite number of transitions,

HOI ,, denote the input-, output- and inhibitor-functions, which connect

transitions and places,

 denotes the firing-priority-function (specifying firing-priority-levels) for all

immediate transitions,

0M denotes the initial marking of the DSPNs,

D denotes the firing-delay-function (specifying the average delay) for timed

transitions,

W denotes the firing-weight-function, which specifies the weights which are

associated to each transition.
When a Petri Net model has been implemented by use of a graphical design tool or by
directly defining the characteristic DSPN nine-tuple, the belonging mathematical models of
the implemented Petri Net can be analyzed. Then, this analysis yields for example

the static expectation value of the marking of places (occurrence of tokens at a given
place),

the stationary probability for the occurrence of a specific marking of a place,

the average number of tokens passing a transition per unit of time, i.e. the throughput
of a transition.

For the acquisition of results three different approaches exist:

mathematical analysis, within which a closed equation system is deduced from the
Petri Net and this equation system can be solved in order to acquire the desired results,

mathematical approximation, which is based on numeric methods of calculation being
suited for Petri Nets, which cannot be solved in the form of closed equation systems,

simulation, within which the flow of tokens through the net is simulated. This
simulation is carried out until the desired results can be computed according to a
specified confidence bound. Therefore, the relative occurrences of tokens within the
single places are acquired.

Each alternative provides its specific advantages and disadvantages regarding required
computational effort, achievable accuracy etc.. In case of two or more concurrently enabled
deterministic transitions, mathematical analysis is not possible and simulative or
approximative methods have to be applied (Lindemann, 1998).
A further advantage of Petri Nets is the availability of comfortable mathematical methods in
order to determine features of Petri Nets such as the so-called liveness or the absence of
deadlocks (non-resolvable blockades) (Lindemann, 1998). The associated mathematical
methods are often included in the modelling tools and therefore allow a fast verification of
features like absence of deadlocks.

Petri Net: Theory and Applications 46

In order to demonstrate the application of DSPNs to model communication structures a
basic DSPN is depicted in Fig. 3. A simplified arbitration scheme which handles the
competition of a DMA controller and a CPU for the critical resource memory interface is
modelled here. The DSPN consists of two components: a section of a CPU and a DMA-
controller.
In the following, two aspects of the current state and their implications for the following
state of this simple net will be explained. As can be seen in Fig. 3 the memory request place of
the CPU and the memory access granted place are connected to the immediate transition via
regular arcs. These two places are the only places which are connected to this transition and
both are marked with tokens. Thus, the transition is going to fire immediately. The
mentioned places are going to be cleared and the memory access place of the CPU is marked.
This transition example describes the situation where the CPU requests the memory at a
time where the memory access is available. The CPU accesses the memory and transfers data
from or to the memory. The resource memory is therefore busy until the deterministic
transition fires and the place memory access granted is marked again. Thus, access to the
memory by another device (here the DMA-controller) cannot be granted.

Fig. 3. Basic DSPN example (depicted here for a specific state)

The upper immediate transition of the DSPN depicted in Fig. 3 behaves differently
compared to transition as one of the three places connected to transition is connected
via an inhibitor arc. Therefore, this transition is not going to fire as long as all three
connected places are marked. In case that the memory request place of the CPU is not marked
and the other ones are marked, transition will fire immediately. Thus, the DMA-controller
only gets access to copy a word if the CPU is not having or requesting memory access.
Therefore, in this arbitration scheme the CPU has higher priority than the DMA.
The described DSPN requires input parameters such as the memory access delay time T
etc. to determine probabilities and expectations of previously defined places as mentioned
above.
A variety of DSPN modelling environments is available today (Petri Nets World, 2007). For
the DSPN modelling experiments described in this chapter, the modelling environment
DSPNexpress (DSPNexpress, 2003) has been applied. DSPNexpress provides a graphical
editor for DSPN models, as well as a solver backend for analysis of DSPNs. Experiments can

Petri Net Based Modelling of Communication in Systems on Chip 47

be performed for a fixed parameter set and for a parameter sweep across a user-defined
range of values. The package supports the computation of the transient response e.g. the
distribution of tokens (using Picards Iteration Algorithm) as well as computation of the
steady state behaviour of the DSPN model. The latter can be determined by iteratively using
the Generalized Minimal Residual Method, by employing the direct quadrature method or
by utilizing the discrete event simulator backend (Lindemann, 1998). These methods
correspond to the DSPN computation methods mentioned in the beginning of this section.

2.2 Coloured Petri nets

In this section a short introduction to Coloured Petri Nets (CPN) and to the software
CPNtools (Ratzer, 2006) that has been used for the modelling examples discussed here, is
given. First, the basic features of this modelling approach are presented then it is explained
using a basic application example.
Coloured Petri Nets have been developed by K. Jensen in course of his PhD thesis (Jensen,

1980) to expand the modelling possibilities of classical Petri Nets. Like other forms of Petri

Nets a CPN consists of places, tokens, transitions and arcs. The primary feature unique to

CPNs is the inclusion of data structures into tokens. These data structures are called

coloursets and resemble data structures in high level programming languages; they can

range from simple data types such as integers to complex structures like structs or unions in

C/C++. Similar to programming languages it is possible to define variables associated with

these coloursets. Some examples of colourset and variable definitions are shown in Fig 4.a.

Tokens as well as places of a CPN are always associated with a colourset and a place may

only contain tokens of the same colourset as its own. Places in a CPN are depicted as ellipses

(Fig 4. b) with the name of the place written into it and the associated colourset (word)

below. A token in a CPN is represented by a circle (Fig 4. b). Its value (the data stored in the

token) is shown in a rectangle attached to the circle. A number in the circle denotes the

number of tokens with the same value. Fig 4. b for example shows a place called link

associated with the colourset word and holding three tokens, two storing the value (ack, 5)

one with a value of (req, 13). Tokens associated with the predefined colourset unit do not

store any data and thus resemble tokens in an ordinary Petri Net or a DSPN.

Fig. 4. Colourset and variable definitions (a) and graphical representation of a place in a
CPN (b)

Transitions in a CPN are represented by rectangles (Fig. 5) and can access the data
stored in tokens by mapping tokens to variables. There are two possibilities to access
this data:

Petri Net: Theory and Applications 48

Guard conditions: The transition is enabled only if a specific condition – called a guard
condition – regarding one or more variables is met. Guard conditions are encased in
brackets and written above the transition (Fig. 5a).

Transfer function: The transition reads and writes variables according to a specified
function that can range from simple addition of values to complex conditional
commands. Transfer functions consist of the definition of input() variables, output()
variables and the commands to be carried out (action()) and are attached below the
transition (Fig. 5b).

The examples depicted in Fig. 5 show a transition that only fires if the variable ctrl has the
value req (Fig. 5a) and a transition that generates an output variable dest without taking any
input variables (Fig. 5b), the variable dest is filled with the return value of the function
defined in the action part which in this case is a uniformly distributed random number
between 0 and 15.

Fig. 5. Transitions with guard condition (a) and transfer function (b)

Places and transitions in a CPN are linked by arcs. Arcs in a CPN can be unidirectional like
in a DSPN or bidirectional. Unidirectional arcs transfer tokens from a place to a transition or
vice versa (Fig. 6 a), bidirectional arcs transfer the same token from a place to a transition
and back (Fig. 6 b). Arc inscriptions define the mapping of tokens to variables. An
inscription can either be a constant value (Fig. 6 a) or a variable of the colourset that is
associated to the place the arc is connected to (Fig. 6 b). In case of complex coloursets an
inscription can also contain a set of variables. The word colourset defined in Fig. 4 a for
example consists of two parts, a control and an address part. A token of the colourset word can
be either mapped to a single variable of word or to a set (var1, var2) with var1 having the
colourset control and var2 being of the colourset address.
If all places connected to a transition by unidirectional input arcs or by bidirectional arcs
hold tokens and its (optional) guard condition is met, the transition is said to be enabled. In
case of more than one enabled transition in a CPN the one to fire is chosen randomly. Upon
firing a transition deletes the appropriate tokens from input places and generates tokens in
its output places. Places linked to the transition by bidirectional arcs are treated as both
input and output places.

Fig. 6. Unidirectional arc with mapping to value 3 (a), bidirectional arc with mapping to
variable dest (b)

Petri Net Based Modelling of Communication in Systems on Chip 49

For an analysis of clocked systems it is possible to define timed coloursets, defined by the
keyword timed (Fig. 7a) and transition delays marked by the characters @+ (Fig. 7b). If a
colourset is defined as timed, a timestamp is added to the tokens of this colourset. The
timestamp cannot be accessed by guard conditions or transfer functions. When using timed
coloursets the firing of transitions depends on a global clock counter. Transitions can only
fire if the clock value is the same as the largest timestamp of its input tokens. When a timed
transition fires, the timestamp of its output tokens is the sum of the current clock value and
the transition delay, in the example in Fig. 7b this delay is 100 clock cycles.

Fig. 7. Timed colourset definition (a) and transition with associated delay (b)

As an introductory example to CPN modelling a basic model of NoC communication is
presented in the following paragraph. Clients in the NoC are identified by their addresses
(here, integers ranging from 0 to 15). Since the communication in this NoC is based on line
switching a route from source to destination has to be established before starting data
transmission. The coloursets and variables used in this example are those shown in Fig. 7 a
as well as the colourset unit. Messages sent through the NoC are represented by tokens of
the colourset word. This colourset contains a part with the colourset control that designates
how the message is to be handled and a destination address. Possible values for the control
colourset are req (request route), ack (acknowledge route) and rel (release route).
In the beginning, the data source in the modelling example depicted in Fig. 8 is idle – no
data is to be sent. The global clock (clock counter) is supposed to be 0. The place idle is
marked, thus the transition request is enabled. This transition then fires and generates a
token in the place wait – the source is now waiting for establishing of the route. At the same
time the transition generates a token (req, dest) @ 100 in the place link, with @ 100 denoting
the timestamp. This is a request to the network to make a route available from the source to
the client with the address dest. The value of dest is a random number between 0 and 15
generated by the transfer function of the transition request (input (); … discrete(0, 15));) (see
Fig. 8). With a token (req, dest) in link the transition routing becomes enabled. It fires as
soon as the clock reaches 100 and generates an acknowledgement to notify the source of
successful routing. Supposing the routing takes Troute = 30 clock cycles the token generated
in link is (ack, empty) @ 130. Transition ack is now enabled and fires at a clock value of 130
generating a token in the place send. This means that the source switches from wait to the
send mode (data transmission). Because the colourset associated with send is unit timed
rather than unit like for idle and wait the token generated in send receives a time stamp of
130+Tburst, where Tburst describes the duration of a data burst. The transition release
therefore cannot fire until the clock value is 130+Tburst. Transmission of a data burst is
modelled only by setting the source to send mode for Tburst clock cycles. After sending the
data burst (global clock at 130+Tburst) the transition release fires. Firing of this transition

Petri Net: Theory and Applications 50

resets the source state to idle and generates a token (rel, empty) in the place link, signalling
the network to release the route as it is no longer needed. The rel token enables transition
relNet that handles the actual release of the route, which is not modelled explicitly.

Fig. 8. CPN model of communication between a network and an attached data source

This example shows that the inclusion of data structures into CPN modelling increases the
modelling capabilities compared to DSPNs. Both, the inclusion of data structures and the
related use of transfer functions allow for greater functionality and smaller models that
are easier to handle. With a DSPN model for example it would not be possible to store
destination address information in a token or generate random addresses. In a DSPN it
would be necessary to store the address in a binary format in a number of places while
random generation of an address needs a sophisticated DSPN for modelling this process.
The software tool CPNtools (Ratzer, 2006), which has been used for NoC performance
analysis, is a package for modelling and simulation with CPN. It consists of a graphical user
interface for composition of CPN models and a simulator. CPN models are described in a
format derived from Standard Markup Language (SML) called CPNml. Furthermore,
CPNtools allows hierarchical definition of CPNs to facilitate reuse and simplify handling of
large models. Parts of a model that are used multiple times can be encapsulated in a
submodel. These submodels are included in higher hierarchy levels as substitute transitions
with a defined mapping of input and output places of the transition to places in the
submodel. In contrast to DSPNexpress CPNtools does not provide a means of analytical or

Petri Net Based Modelling of Communication in Systems on Chip 51

iterative solution but is centred on simulation. In principle it is possible to generate an
ordinary Petri Net with the same functionality as a CPN that can then in turn be solved
analytically. Due to the complex data structures (coloursets) and transfer functions included
in a CPN the equation system describing such an underlying Petri Net would be very large.
Model parameters can be measured by definition of monitors that collect data relating to
different parts of the CPN such as occupation of places or the number of times a specific
transition fires. The markup language used for model description also allows to use more
complex monitors, including for example conditional data collection.

3. Petri net modelling of exemplary communication scenarios

In this section the exemplary application of Petri Nets for modelling communication
scenarios is presented. The modelling possibilities span from simple bus based processor
communication scenarios to complex NoC examples.

3.1 DSPN based processor communication model

The TMS320C6416 (Texas Instruments, 2007) (see
Fig. 9) is a high performance digital signal processor (DSP) based on a VLIW-architecture.
This DSP features a couple of interfaces, an Enhanced DMA-controller (EDMA) handling
data transfers and two dedicated coprocessors (Viterbi and Turbo decoder coprocessor).
Exemplary communication scenarios on this DSP have been modelled. The C6416 TEB (Test
Evaluation Board) platform including the C6416 DSP has been utilized to measure
parameters of these modelled communication scenarios described in the following. Thus,
modelling results have been proved and verified by comparison with measured values.

Fig. 9. Basic block diagram of the TMS320C6416 DSP

In Fig. 10 a block diagram of the C6416 and different communication paths of basic
communication processes (, and) are depicted.
In the first scenario two operators compete for one critical resource, the external memory
interface (EMIF). Requests for the external memory and with it the memory interface are
handled and arbitrated by the enhanced direct memory access controller (EDMA) applying
an arbitration scheme which is based on priority queues including four different priorities.

Petri Net: Theory and Applications 52

Fig. 10. Communication paths on the C6416 of different analysis scenarios

An FFT (Fast Fourier Transformation) operator runs on the CPU and reads and stores data
from the external memory (e.g. for a 64-point FFT, 1107 read and 924 write operations are
required which can be determined by analysis of the corresponding C-code). The
corresponding communication path of this operator is illustrated on top of the simplified
schematic of the C6416. The communication path of the copy operator is also depicted in
Fig. 10. This operator utilizes the so called Quick Direct Memory Access mechanism
(QDMA) which is a part of the EDMA. It copies data from the internal to the external
memory section. Here, it requests a copy operation every CPU cycle. Since both operators
run concurrently, both aim to access the critical external memory interface resource.
Requests are queued in the assigned transfer request queue according to their priority. If the
CPU and the QDMA both simultaneously request the memory with the same priority, the
CPU request will be handled at first. In all modelled communication scenarios the priority
of request initiated by the CPU and the QDMA were both assigned to the same priority
which means that a competition situation for this waiting queue has been forced. The
maximal number of waiting requests of this queue is 16.
The DSPN depicted in Fig. 11 represents the concurring operators and the arbitration of
these two operators for the memory resource. It is separable into three subnets
(see dashed boxes: Arbitration, FFT on CPU and QDMA-copy operator). The QDMA-copy
operator works similar to the DMA-controller device depicted in Fig. 3.
The proprietary transfer request queue is modelled by the place TransferRequestQueue. The
depth of the queue is modelled by inhibiting arcs with the weight 16 (the queue capacity)
originating from this place. This means that these arcs inhibit the firing of transitions they
are connected to if the corresponding place (TransferRequestQueue) is marked with 16 tokens.
These inhibiting arcs are linked to subnets representing components of the system which
apply for the transfer request queue. The deterministic transition T6 repetitively removes a
token with a delay which corresponds to the duration of an external memory access (see
parameterization in the following).
The QDMA copy operator is modelled by a subnet which produces a memory request to the
EDMA every CPU cycle. The delay of deterministic transition T5 corresponds to the CPU
cycle time. The places belonging to this subnet are COPY_Start and COPY_Submitted. The
token of the place COPY_Start is removed after the deterministic delay assigned to

Petri Net Based Modelling of Communication in Systems on Chip 53

transition T5. The places COPY_Submitted and TransferRequestQueue are then both marked
with a token. If no FFT request initiated by the CPU is pending this process recurs.

Fig. 11. DSPN of FFT / copy operator resource conflict scenario

The subnet representing the FFT operator executed on the CPU (FFT on CPU) is depicted in
the upper left of Fig. 11. If one of the places FFT_Ready2Read (connected to stochastic
transition T1) or FFT_Ready2Write (connected to stochastic transition T2) is marked the place
FFT_RequestPending is also marked by a token. Hereby, a part of the model is activated
which represents the queuing of the CPU requests and the assignment of the associated
memory access. Places belonging to this part are: FFT_RequestPending, BackingUpQueue,
BackupOfQueue, CopyingQueue, CopyOfQueue and FFT_RequestSubmitted. The place
CopyOfQueue is a copy of the place TransferRequestQueue. That means that these places are
marked identically. This copy proceeds by firstly removing every token in
TranferRequestQueue and transferring it via an immediate transition to the place
BackUpQueue. This procedure is controlled by the place BackingUpQueue. As soon as every
token is transferred the place CopyingQueue is marked. Now every token in the BackUpQueue
place is transferred simultaneously to TransferRequestQueue as well as to CopyOfQueue. Thus,
the original marking of TransferRequestQueue is restored and also copied in the CopyOfQueue
place. Now the FFT_RequestSubmitted is marked and an additional token is added to the
TransferRequestQueue representing a further CPU request. The transitions between
FFT_RequestSubmitted and FFT_Reading as well as FFT_Writing remove the token from the
first mentioned place as soon as the CPU request is granted. The deterministic transition T7

Petri Net: Theory and Applications 54

detracts tokens from CopyOfQueue in the same way T6 does in context with
TransferRequestQueue. The external memory access requested by the CPU is granted when
the CopyOfQueue is not marked by any token. The inhibiting arcs between CopyOfQueue and
the transitions connected to FFT_Reading and FFT_Writing ensure that only then the
duration of a read and respectively a write access is modelled with the aid of deterministic
transitions T3 and T4. During memory access initiated by the CPU no further request to the
memory is processed. This is modelled by the inhibiting arcs originating in FFT_Reading and
FFT_Writing (connected to T6). Thus, no further token from the TransferRequestQueue is
removed.
The required parameters of the deterministic and stochastic transitions T1-T7 of this DSPN
model are given in Table 1.
Here, it holds:

transitionspecificaoftimedelaytheoffunctiondensityyprobabilit:

memoryexternalthefrom/towordaread/writetorequiredtime:

operationFFTperaccessesread/writememoryofnumber:

operation)copyparallelwithoutlength,FFTondependent(

operationFFTblocksingleaofduration:

tp

T

N

T

i

ext.mem,Read/Write

Read/Write

FFT

Transition Transition type Formula and parameters

T1

stochastic
(negative

exponential
distributed)

t
1 etp 1

1 for t > 0 with

memextWriteWritememextReadReadFFT

Read
1

TNTNT

N

.,.,

T2

stochastic
(negative

exponential
distributed)

t
2 etp 2

2 for t > 0 with

memextWriteWritememextReadReadFFT

Write
2

TNTNT

N

.,.,

T3 deterministic s188.03 Readmemext.Read, NTt

T4 deterministic s088.04 Writememext.Write, NTt

T5 deterministic ns2MHz50011 Pr5 ocft

T6 deterministic ns5.7MHz13311 .6 memextft

T7 deterministic ns5.7MHz13311 .7 memextft

Table 1. Transition type and transition parameters of the DSPN model of Fig. 11

The required input parameters for the DSPN model like the duration of a single block FFT
without running the concurrent copy operator (TFFT) have been determined by

Petri Net Based Modelling of Communication in Systems on Chip 55

measurements performed on a DSP board. In order to verify the assumptions e.g. for

TRead,ext.mem and TWrite,ext.mem, several experiments with a variation of external factors have

been performed. For example, the influence of the refresh frequency has been studied. By
modification of the value within the so-called EMIF-SDTIM register the refresh frequency of
the external SDRAM could be set. Through different measurements it could be verified that
the resulting influence on the read and write times is below 0.3 % and therefore negligible.
For the final measurements a refresh frequency of 86.6 kHz (what is equal to a refresh
period of 1536 memory cycles and therefore an EMIF-SDTIM register value of 1536) has
been applied.

The influence of the parameter NRead will be explained exemplarily in the following. The

probability density function p1(t) which is a function of NRead characterizes the probability

for each possible delay of the stochastic transition T1. NRead directly influences the expected

delay respectively the firing probability of T1. Here, high values for NRead correspond to a

low firing probability respectively a large expected delay and vice versa.
The modelling results of the DSPN for the duration of the FFT are depicted in Fig. 12. Here,
the calculation time of the FFT operator determined by simulation with the DSPN model has
been plotted against different FFT lengths. In order to attain a quantitative evaluation of the
computed FFT's duration, reference measurements have been made again on a DSP board.
As can be seen from Fig. 12 the model yields a good estimation of the duration for the FFT
operator. The maximum error is less than 10 % (occurring in case of an FFT length of 1024
points).

DSPN model

measured values

measured values

(without parallel

copy operator)

0

2e3

4e3

6e3

8e3

10e3

12e3

14e3

16e3

64 128 256 512 1024

d
u

ra
ti
o

n
 o

f
F

F
T

 c
a

lc
u

la
ti
o

n
 [
µ

s
]

length of FFT [Samples]

Fig. 12. Comparison of measured values with DSPN (FFT vs. copy operator)

Another example based on this DSP was analyzed in order to consolidate the suitability of
using DSPNs for modelling in terms of on-chip communication: Now, the Viterbi
Coprocessor (VCP) and the copy operator compete for the critical external memory interface
resource. The VCP also communicates with the internal memory via the EDMA (commu-

Petri Net: Theory and Applications 56

nication path in Fig. 10). Arbitration is handled by a queuing mechanism configured here
in that way that only a single queue is utilized. This is accomplished by assigning the same
priority to all EDMA requestors i.e. memory access is granted to the VCP and the copy
operator according to a first-come-first-serve policy.
For this experiment the VCP has been configured in the following way. The constraint

length of the Viterbi decoder is 5, the number of states is 16 and the rate is 1/2. In the VCP

configuration inspected here, the VCP communicates with the memory by getting 16 data

packages of 32x32 bit in order to perform the decoding. Both, EDMA and VCP are clocked

with a quarter of the CPU clock frequency (fCPU = 500 MHz). The results are transferred

back to the memory with a package size of 32x32 bit. Performing two parallel operations

(Viterbi decoding and copy operation), the two operators have to wait for their

corresponding memory transfers. The EDMA mechanism of the C6416 always completes

one memory block transfer before starting a new one. Hence, there is a dependency of the

Viterbi decoding duration on the EDMA frame length. This situation has been modelled and

the results have been compared to the measured values as depicted in Fig. 13.

0

50

100

150

200

250

0 1000 2000 3000 4000

V
it
e
rb

i
d

e
c
o

d
in

g
 t

im
e
 [
µ

s
]

EDMA-Frame length [64 Bit words]

DSPN model

measured values

measured values

(without parallel

copy operator)

DSPN model

measured values

measured values

(without parallel

copy operator)

Fig. 13. Comparison of measured values with DSPN (Viterbi vs. copy operator)

Performing only the Viterbi decoding, there is of course no dependency on the EDMA frame

length. If a copy operation is carried out, the Viterbi decoding time significantly increases. In

detail not the decoding process itself is concerned but the duration of data package transfers

between VCP and internal memory. Again the maximum error is less than 10 %.

Petri Net Based Modelling of Communication in Systems on Chip 57

3.2 DSPN based switch fabric communication model

The second DSPN modelling example deals with communication via a switch fabric based

structure. The modelled scenario is a resource sharing conflict. This scenario has been

evaluated on an APEX based FPGA development board (Altera, 2007).

A multi processor network has been implemented on this development board by

instantiating Nios soft core processors on the corresponding FPGA. The synthesizable Nios

embedded processor is a general-purpose load/store RISC CPU that can be combined with

a number of peripherals, custom instructions, and hardware acceleration units to create

custom system-on-a-programmable-chip solutions. The processor can be configured to

provide either 16 or 32 bit wide registers and data paths to match given application

requirements. Both data width versions use 16 bit wide instruction words. Version 3.2 of the

Nios core typically features about 1100 logic elements (LEs) in 16 bit mode and up to 1700

LEs in 32 bit mode including hardware accelerators like hardware multipliers.

More detailed descriptions can be found in (Altera, 2001). A processor network consisting of

a general communication structure that interfaces various peripherals and devices to

various Nios cores can be constructed. The Avalon (Avalon, 2007) communication structure

is used to connect devices to the Nios cores. Avalon is a dynamic sizing communication

structure based on a switch fabric that allows devices with different data widths to be

connected with a minimal amount of interfacing logic. The corresponding interfaces of the

Avalon communication structure are based on a proprietary specification provided by

Altera (Avalon, 2007). In order to realize a processor network on this platform the so-called

SOPC (system on a programmable chip) Builder (SOPC, 2007) has been applied. SOPC is a

tool for composing heterogeneous architectures including the communication structure out

of library components such as CPUs, memory interfaces, peripherals and user-defined

blocks of logic. The SOPC Builder generates a single system module that instantiates a list of

user-specified components and interfaces incl. an automatically generated interconnect

logic. It allows to modify the design components, to add custom instructions and

peripherals to the Nios embedded processor and to configure the connection network.

The analyzed system is composed of two Nios soft cores which compete for access to an

external shared memory (SRAM) interface. Each core is also connected to a private memory

region containing the program code and to a serial interface which is used to ensure

communication with the host PC. The proprietary communication structure used to

interconnect all components of a Nios based system is called Avalon which is based on a

flexible crossbar architecture. The block diagram of this resource sharing experiment is

depicted in Fig. 14. Whenever multiple masters can access a slave resource, SOPC Builder

automatically inserts the required arbitration logic. In each cycle when contention for a

particular slave occurs, access is granted to one of the competing masters according to a

Round Robin arbitration scheme. For each slave, a share is assigned to all competing

masters. This share represents the fraction of contention cycles in which access is granted to

this corresponding master. Masters incur no arbitration delay for uncontested or acquired

cycles. Any masters that were denied access to the slave automatically retry during the next

cycle, possibly leading to subsequent contention cycles.

Petri Net: Theory and Applications 58

Fig. 14. Block diagram of the resource sharing experiment using the Avalon communication
structure

In the modelled scenario the common slave resource for which contention occurs is a shared
external memory unit (shaded in gray in Fig. 14) containing data to be processed by the
CPUs. Within the scope of this fundamental resource sharing scenario several experiments
with different parameter setups have been performed to prove the validity of the DSPN
modelling approach. Adjustable parameters include:

the priority shares assigned to each processor,

the ratio of write and read accesses,

the mean delay between memory accesses.
These parameters have been used to model typical communication requirements of basic
operators like digital filters or block read and write operations running on these processor
cores. In addition, an experiment simulating a more generic, stochastic load pattern, with
exponentially distributed times between two attempts of a processor to access the memory
has been performed. Here, each memory access is randomly chosen to be either a read or a
write operation according to user-defined probabilities. The distinction between load and
store operations is important here because the memory interface can only sustain one write
access every two cycles. Whereas no such limitation exists for read accesses. The various
load profiles were implemented in C, compiled on the host PC and the resulting object code
has been transferred to the Nios cores via the serial interface for execution. In the case of the
generic load scenario, the random values for the stochastic load patterns were generated in a
MATLAB routine. The determined parameters have been used to generate C code sequences
corresponding to this load profile. The time between two attempts of a processor to access
the memory has been realized by inserting explicit NOPs (No Operation instruction) into the
code via inline assembly instructions. Performance measurements for all scenarios have
been achieved by using a custom cycle-counter instruction added to the instruction set of the
Nios cores. The insertion of NOPs does not lead to an accuracy loss related to pipeline stalls,
cache effects or other unintended effects. The discussed example is constructed in such a
way that these effects do not occur. In a first step, a basic DSPN model has been
implemented (see Fig. 15) in less than two hours. Implementation times of the DSPN models
are related to the effort a trained student (non-expert) has to spend to realize the
corresponding model. The training time for a student to become acquainted with DSPN
modelling lasts a couple of days. Distinction between read and write accesses was explicitly

Petri Net Based Modelling of Communication in Systems on Chip 59

neglected to achieve a minimum modelling complexity. The DSPN consists of four sub-
structures:

two parts represent the load generated by the Nios cores (CPU #1 and #2)

a basic cycle process subnet providing a clock signal (Clock-Generation)

the more complex arbitration subnet
Altogether, this basic model includes 19 places and 20 transitions. The immediate transitions
T1, T2 and T3 and the associated places P1, P2 and P3 (see Fig. 15) are an essential part of the
Round Robin arbitration mechanism implemented in this DSPN. The marked place P2
denotes that the memory is ready and memory access is possible. P1 and P3 belong to the
CPU load processes and indicate that the corresponding CPU (#1, #2) tries to access the
memory. If P1 and P2 or P3 and P2 are tagged the transition T1 or accordingly transition T3
will fire and remove the tokens from the connected places (P1, P2 or P2, P3). CPU #1 or
CPU #2 has been assigned the memory access in this cycle. A collision occurs if P1, P2 and
P3 are tagged with a token. Both CPUs try to access the memory in the same cycle (P1 and
P3 marked). Furthermore, the memory is ready to be accessed (P2 marked). A higher
priority has been assigned to transition T2 during the design process. This means that if the
conditions for all places are equal the transition with the highest priority will fire first.
Therefore, T2 will fire and remove the tokens from the places. Thus, the transitions T1, T2
and T3 and the places P1, P2 and P3 handle the occurrence of a collision.

Fig. 15. Basic DSPN for Avalon-Nios example

The modelling results discussed in the following have been acquired by application of the

iterative evaluation method. Though the modelling results applying this basic DSPN model

are quite accurate (relative error less than 10 % compared to the physically measured values,

see Fig. 18), it is possible to increase the accuracy even more by extending the modelling

Petri Net: Theory and Applications 60

effort for the arbitration subnet. For example it is possible to design a DSPN model of the

arbitration subnet which properly reflects the differences between read and write cycles.

Thus, the arbitration of write and read accesses has been modelled in different processes

resulting in different DSPN subnets. This results in a second and enhanced DSPN model

depicted in Fig. 16. The implementation of this enhanced model has taken about three times

the effort in terms of implementation time (approximately five hours) than the basic model

described before.

Fig. 16. Enhanced DSPN for Avalon-Nios example

The DSPN model now consists of 48 transitions and 45 places. Compared to the basic model
the maximum error has been further reduced (see Fig. 17 and Fig. 18). The enhanced model
also properly captures border cases caused e. g. by block read and write operations.
The throughput measured for a code sequence containing 200 memory access instructions
has been compared to the results of the basic and enhanced DSPN model. Fig. 18 shows the
relative error for the throughput (results of the DSPN model compared to measured results
of an FPGA based testbed) which is achieved by varying the mean number of computation
cycles between two attempts of a processor to access the memory. On average the relative
error of calculated memory throughput is reduced by 4-6 % with the transition from the
basic to the enhanced model. Using the enhanced DSPN model the maximum estimation
error is below 6 %. As mentioned before, the evaluation of DSPNs can be performed by
different methods (see Fig. 19). The effort in terms of computation time has been compared
for a couple of experiments. Generally, the time consumed when applying the simulation

Petri Net Based Modelling of Communication in Systems on Chip 61

method is about two orders of magnitude longer than the time consumed by the analysis
methods. The simulation parameters have been chosen in such a way that the simulation
results match the results of the analytic approaches. DSPNexpress provides an iterative
method (Picard's iteration method) and a direct solution method (general minimal residual
method). Fig. 19 illustrates a comparison of the required computational time for the analysis
and the simulation of the introduced basic and enhanced DSPN models. For the example of
the enhanced model the computation time of the DSPN analysis method only amounts to
0.3 sec. and the DSPN simulation time (107 memory accesses) amounts to 20 sec. on a Linux
based PC (2.4 GHz, 1 GByte of RAM). The difference between the iterative and direct
analysis method is hardly noticeable.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 0,2 0,4 0,6 0,8 1

mean computational time between two memory accesses

[clock cycles]

e
ff

e
c
ti

v
e
 m

e
m

o
ry

 t
h

ro
u

g
h

p
u

t

[a
c
c
e
s
s
e
s
 /

 c
lo

c
k
 c

y
c
le

]

basic model

enhanced model

measured

0.350.35

0.3

0.25

0.2

0.15

0.1

0.05

0.2 0.4 0.6 0.8

Fig. 17. Effective memory throughput comparison

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0,00 0,20 0,40 0,60 0,80 1,00

mean computational time between two memory accesses

[clock cycle]

re
la

ti
v
e
 e

rr
o

r
o

f
c
a
lc

u
la

te
d

m
e
m

o
ry

 t
h

ro
u

g
h

p
u

t

basic model

enhanced model

ca. 4-6% improvement

0 0.2 0.4 0.6 0.8 1

Fig. 18. Relative error of memory throughput for basic and enhanced DSPN model

Petri Net: Theory and Applications 62

0,1

1

10

100

iterative direct simulation

evaluation method

re
q

u
ir

e
d

 c
o

m
p

u
ta

ti
o

n
a
l

ti
m

e

[s
e
c
]

basic model

enhanced model

approx. 2 orders

of magnitude

0.1

0.21
0.28 0.29

0.21

19.82 19.39

Fig. 19. Required computational effort for the different evaluation methods

3.3 CPN based NoC model

The NoC model presented in this section consists of 25 network nodes arranged in a 5x5

square mesh as depicted in Fig 20. Each network node consists of a routing switch and a

client. Clients are any data sources connected to the NoC, for example embedded

processors. They are identified by a unique address containing their x and y coordinates.

The routing switches and the links connecting them form the actual communication

infrastructure facilitating communication between clients. The switching scheme chosen in

the model is line switching. Hence, communication between any two clients can be divided

into three stages:

establishing of a route from originating client (source) to the receiving one (destination),

data transmission and

releasing the route.

The communication protocol is described in more detail below. The implemented routing

algorithm is xy-routing. This is a minimal-path routing algorithm trying first to route

horizontally until the destination column is reached (matching of x-coordinates) and then

completes the route vertically (matching of y-coordinates). The arbitration scheme used is

first-come-first-serve.

For analyzing different traffic experiments the clients are configurable by

a list of possible destinations for communication attempts,

the duration of data bursts (measured in clock cycles) to be transmitted (Lburst) and

the average delay between the end of a transmission and the request for routing the

next one (Ldelay).

Petri Net Based Modelling of Communication in Systems on Chip 63

Fig. 20. NoC setup for experiments

The routing switches are not configurable. Performance is measured by latency and source
load. Latency in this case corresponds with the time needed for establishing a route and is
chosen as a performance measure because it is critical for applications that need fast data
transmission, for example real time applications. For applications generating a lot of data,
throughput is important. Therefore, the source load is selected as another performance
characteristic. The source load is defined as the relative time a data source is transmitting;
the requested source load is defined as

source_loadreq =
LdelayLburst

Lburst
 , (1)

 while the achieved source load takes into account the latency (Lat) caused by establishing a
route:

LatLdelayLburst

Lburst
loadsource ach_ . (2)

Since the requested load does not include latency which always occurs in a network, the
achieved source load is always smaller than the requested one.
The essential parts of the model are briefly explained in the following. The NoC model
consists of two main submodels, the routing switch model and the client model. Each
network node consists of a routing switch and an attached client. Messages sent through the
net are represented by tokens of the colourset word (Fig. 21). Each message consists of a
header (colourset control) defining how it is to be processed and the content that is used
according to the header specification. Possible headers are req (request route), rel (release
route), relb (acknowledge release route), kill (routing failure) and ack (acknowledge route),
content can be either a destination address (de) or empty.

Petri Net: Theory and Applications 64

Fig. 21. Essential coloursets for the CPN based NoC model

Since in this example line switching is used, communication between two clients is made up
of several stages as stated above. When a data source tries to send data, a req message is
generated that is then routed through the network according to the routing algorithm. The
content of a req message contains the destination address of the route. In each network node
the req message is processed by the routing switch which reserves the appropriate
connection of two of its ports for the requested route. This is done by comparing the local
and destination addresses and then adding a member to the list of current routes stored in a
token of the colourset routelist. Upon arrival of the req signal at the destination the client
generates an ack message to travel back along the route. Reception of an ack at the source
triggers data transmission. Data is not represented by any tokens because network
performance does not depend on the actual data sent across the NoC but on the time the
route is occupied. After completing data transmission the source client sends a rel signal
which is returned by the destination as relb. Processing of a relb message initiates release of
the partial routes stored in the routing switches. When routing fails because an output port
in any node cannot be reserved since it is already occupied by another route, a kill signal is
generated and sent backwards along the route. If employing a static routing algorithm this
signal is handled like relb. If an adaptive algorithm is used processing of a kill message can
lead to the attempt to select another route. When the source client receives a kill signal it will
issue a new routing request (req) after a configurable time.
The client model is comprised of two submodels, source and sink, of which only the source
model will be discussed here in detail as the functionality of the sink model is elementary.
As the data content is not important for network performance this basic model is sufficient
to model a wide range of possible clients that can be attached to a NoC.
The source submodel shown in Fig 22. includes transitions for handling incoming and
outgoing messages. The place out is the interface of the data source to the network, similar to
the place link in the introductory example (
Fig. 8). The current state of the source is stored in the status place. The source sequentially
passes through the states idle, wait and send. These states are defined as:

idle: There is currently no data to be sent.

wait: A route was requested, the source is waiting for it to be established.

send: A route was established, the source is transmitting data.
Switching from idle to wait occurs when the transition request fires. This transition generates
tokens in the places wait_for_route and out. The token in wait_for_route is later used to
measure latency, the token (req, addr) in the place out signals the network, that a route to the
client with address addr is requested. The timestamp of the token generated in out is the
current global clock value increased by a random number between one and Lpause due to
the processing delay associated with the request transition. The network then replies by
either signalling successful routing (ack) or an aborted routing attempt (kill) by generating a
token in the place out. If a kill token is generated the transition killreq becomes enabled. The
timestamp is increased by Tkill to ensure that there is a delay before the new attempt. If an
ack token is in the place out, the transition ackdata fires. The source state is thereby set to send.

Petri Net Based Modelling of Communication in Systems on Chip 65

Firing of ackdata removes the token from wait_for_route – the route was successfully
established – and generates a token into the place sending. This token receives a time stamp
according to the configured burst length (Tburst). The source stays in the send state for Lburst
clock cycles before the transition release fires and sets the status back to idle. The token (rel,
emp) generated in the place out by this transition signals the network to release the route
originating from this source. Successful release of the route is then acknowledged by
generation of a relb token in the place out. This token enables the transition release_back by
which it is then removed.

Fig. 22. CPN submodel of a data source and required data structure

The place config is used to configure the source. Variables that can be configured are:

adlist: A list of destination addresses that the source can request routes to. If an address
is contained in this list multiple times the probability that a route to the corresponding
client is requested increases accordingly.

Lburst: The length of a data burst, measured in clock cycles.

Lpause: The maximum delay between the end of a transmission and the subsequent
routing request.

Petri Net: Theory and Applications 66

Performance measures obtained in this submodel are the number of routing requests sent,
source load and latency. The number of routing requests sent is measured by counting the
times the transition request fires. Source load is measured by the average occupation of the
place sending. Latency in this case corresponds to the time used for route establishment. It is
measured by computing the total time spent for route establishment (product of the
inspected time period and the average occupation of the place wait_for_route). This value is
then divided by the number of routing requests sent.
The sink submodel is comprised of transitions to respond to incoming req and rel messages
with the appropriate signals of its own, these being ack and relb, without gaining any
performance measures.
The routing switch model (Fig. 23) consists of four submodels, req, forward, ack and kill as
well as the places addr, routes and the interface places inWest to inClient and outWest to
outClient. The addr place contains the address of the node in the network while the current
switching table containing the connections of input and output ports is stored in routes. The
places inWest to inSouth and outWest to outSouth are interfaces to neighbouring routing
switches, the places inClient and outClient are interfaces to the attached client (inClient is
mapped to the place out of the source model shown in Fig. 22). The req submodel itself
contains two further submodels, router and arbiter, and is used to process routing requests.
The forward and ack submodels transmit tokens according to the switching table the former
processing rel the latter ack messages. The kill submodel resembles the ack model but also
includes deletion of routes from the switching table for handling relb and kill signals. The
router and arbiter submodels contained in the req model are used to separate the actual
routing from the arbitration.

Fig. 23. CPN model of a routing switch for mesh networks

The places inWest and interest in the router model depicted in Fig. 24 are interfaces, inW is
mapped to the equivalent place in the routing switch model while interW is the connection
to the arbiter model. The section of the router shown in Fig. 24 is the part responsible for the

Petri Net Based Modelling of Communication in Systems on Chip 67

western port of the routing switch, the sections for the other ports resemble this section and
only differ in the names of places and transitions. The place addr contains the address of the
network node which the routing switch belongs to. In the router the destination address
contained in an incoming req token (x1, y1) is compared to the address of the current
network node (x0, y0) before generating a request to the arbiter according to the routing
algorithm. In case of the router shown in Fig. 24 this is a static xy-routing scheme. The
request generated by the router is used by the arbiter to make the appropriate entry in the
switching table (routes), resource conflicts are resolved in a first come first serve manner. If
an output port is occupied, a kill signal is generated by the arbiter. The single performance
characteristic gained in the routing switch is its load, which is monitored by occupation of
the place routes.

Fig. 24. CPN submodels req and router

Petri Net: Theory and Applications 68

In the context of network performance analysis three different experiments have been
conducted with the model. The results have afterwards been compared to those obtained with
an FPGA based NoC emulator (Neuenhahn, 2006). The experiments are defined as follows:

Experiment 1: Each client is configured to send data to all other clients with equal
probability. Requested source load is the same at all clients and set to values from 10 %
to 80 % with steps of 10 %.

Experiment 2: Same as experiment 1, but static xy-routing is exchanged for an adaptive
variant. This variant tries to route vertically, if a resource conflict prohibits horizontal
routing. Source load is set to the same values as in Experiment 1.

Experiment 3: All clients are configured to send data to the nodes (1, 0), (3, 0) and (2, 2)
with a probability of 14 %. Here, a testcase is modelled, where some I/O interfaces are
accessed more often than other clients. Probability to send to another node is 3 %. The
requested source load is 50 % at all clients.

The size of the complete model is 725 places and 1050 transitions for experiments 1 and 3
and 800 places and 1075 transitions in case of experiment 2 because the adaptive router is
more complex than the static one. Due to the complexity contained in coloursets and
transfer functions these numbers are not easily comparable to those of DSPN models.
Traffic is generated in form of data burst with a duration of Lburst = 100 clock cycles, source
load is set by adjusting the delay between transmissions (Lpause).
Source load in the first two experiments is set to values from 10 % to 80 % with steps of
10 %. All simulations are stopped and repeated after a total of 10,000 transmissions; all
results presented below are averaged over 50 repetitions. Model components are the same
for all experiments with exception of the adaptive router for the second one.
All simulations were conducted on a computer with a dual Intel Pentium processor running
at 3.0 GHz, 1 GB RAM and Microsoft Windows XP as operating system.
Fig. 25 shows a comparison between the first two experimental setups (experiment 1,
experiment 2) with static and adaptive versions of the xy-routing algorithm. It is obvious
that the achieved source load is close to the requested one for small loads as there are only
few resource conflicts. With higher load and thus shorter pauses between individual
transmissions the number of conflicts increases. This leads to a decline in network
performance. The use of adaptive xy-routing slightly increases the achieved load because

Fig. 25. Average achieved load using static and adaptive xy-routing (5x5 mesh)

Petri Net Based Modelling of Communication in Systems on Chip 69

some resource conflicts can be resolved without releasing a partial route and reattempting
from its source. An adaptive variant that would also include rerouting attempts if a network
node receives a kill signal would further increase performance at the cost of more complex
routing switches.
By analyzing the load of the routing switches it is furthermore possible to locate hotspots
that are generated by certain traffic patterns. An example of such a pattern is the one used in
experiment 3. The results obtained from simulating experiment 1 and experiment 3 are
shown in Fig. 26. In experiment 1 the load distribution among the routing switch shows a
flat profile with its maximum in the middle of the NoC (address 2, 2). This hotspot is caused
by the fact, that the majority of possible routes contains the central node because the NoC is
symmetric to its centre. As all possible pairs of source and destination of routes are equally
probable the load of the routing switches is determined only by the number of possible
routes including the corresponding node. The modification of the traffic pattern in
experiment 3 results in the forming of three distinct hotspots easily identified as peaks in the
shown load diagram. Besides high switch loads at those network nodes that are accessed
with a higher probability (addresses 2, 2; 1, 0; 3, 0) hotspots also form at the addresses (1, 1)
and (3, 1) because most routes ending in (1, 0) and (3, 0) run through these nodes.

Fig. 26. Switch load for uniform (a, experiment 1) and irregular traffic distribution leading to
hotspots (b, experiment 3)

A comparison of these results with an FPGA based emulator (Neuenhahn, 2006) shows that
the error of the results obtained with CPN modelling is approximately 2 % for both
performance measures. As an example, Fig. 27 shows the relative deviation of the CPN
modelling results from those of the emulation for experiment 1. The results shown in Fig. 27
are obtained with a requested load of 20 %. For any single load setting the error is below 5 %
within less than five minutes of simulation. This corresponds to approximately eight
simulation runs that are needed to gain acceptably accurate result. Complete syntax checking
takes approximately 15 minutes and is only needed before the first simulation run. Since
syntax checking in CPNtools is incremental this time is reduced to one minute if only the load
setting is changed between simulations.
Since the intended use for CPN modelling, like it is presented here, is analysis of NoC
performance in an early stage of the design flow, the modelling effort is important to evaluate
the usefulness of this method. This effort can be divided into two separate parts, the initial
modelling of the NoC components and the combination of these component models to form a

Petri Net: Theory and Applications 70

complete NoC model. An overview of the time needs for CPN based modelling of a NoC is
given in Table 2. Like the times needed for DSPN modelling these are related to the effort an
experienced student has to spend. The time needed for modelling of the components varies
from five minutes needed for the data sink model which only contains a single place and two
transitions to six hours for more complex components like the source model or the router
model.

Fig. 27. Error of load and latency compared to emulation (requested load 20 %, 5x5 mesh)

Combining these components to the NoC model used in the experiments described in this
section is done in approximately one hour. Exchanging single components, for example the
router model when switching from experiment 1 to experiment 2, takes one minute but
initiates a new syntax check that lasts for five minutes. Altering parameters such as the
requested load setting is a matter of seconds but also requires a new partial syntax check of
approximately two minutes.

modelling step effort

modelling components 5 to 300 minutes

assembly of NoC model 60 minutes

complete syntax check 15 minutes

partial syntax check < 5 minutes

simulation 5 minutes
Table 2. Time needs for CPN based modelling of a NoC

The results obtained and the precision achieved show that CPN based modelling of NoCs is an
adequate approach for use in design space exploration of communication architectures. After
initial modelling of NoC components only little time is needed to construct and modify a NoC
model. The error of the results obtained by simulation of this model is small after a reasonably
short simulation time. Furthermore, due to the modelling possibilities of CPNs complex
components can be modelled with only a few places and transitions thus enabling the user to
handle models of large NoCs with relative ease. These properties make CPN based modelling
an attractive tool for pruning the design space by early elimination of NoC variants that do not
provide the required performance with acceptable costs.

Petri Net Based Modelling of Communication in Systems on Chip 71

4. Conclusion and outlook

It is a key task of modern System-on-Chip (SoC) and Network-on-Chip (NoC) design to
efficiently explore this design space regarding aspects like performance, flexibility and power
consumption presumably in an early stage of the design flow in order to reduce design time
and design costs.
In this chapter several examples for modelling of on-chip communication using Petri Net
based modelling techniques have been presented. These examples include modelling of
internal processor communication and modelling of inter-processor communication using a
crossbar switch fabric. For these examples deterministic and stochastic Petri Nets have been
applied as modelling technique. More complex NoC communication has been modelled
applying Coloured Petri Nets. The results obtained with all of these models were compared to
those calculated on an FPGA based emulator. In all presented experiments the performance
measures derived using these models showed a good precision compared to the results
acquired using the FPGA based emulator. Furthermore, the Petri Net based results could be
derived in attractively short modelling times with only moderate effort.
Therefore, Petri Net based modelling of on-chip communication appears to be a very attractive
approach to explore the design space of communication architectures in an early stage of the
design process. DSPN based and CPN based modelling both provide specific advantages.
DSPN models are suited for systems with moderate complexity such as communication
systems with a small number of clients or bus based communication. The ease of modelling
combined with the possibility of an analytical solution of the equations underlying the DSPN
model provides a way to quickly obtain results. For more complex systems including a lot of
data and complex functionalities, for example the addressing scheme and the routing
algorithm in a NoC, CPN models are more adequate. DSPN based modelling of such systems
is not as efficient since DSPNs do not provide a means of modelling data structures. As CPNs
include data structures and allow to model complex behaviour in form of coloursets and
transfer functions, CPN based modelling is well suited to analyze complex on-chip
communication systems.
Current topics in the field of NoC communication modelling to be addressed with Petri Net
based methods are locating hotspots, analyzing quality-of-service aspects (data integrity,
guaranteed service, etc.) and complex adaptive routing algorithms (incl. the checking of
absence of deadlocks).

5. References

Ajmone Marslan, M.; Chiola, G. (1987). On Petri Nets with Deterministic and Exponentially
Distributed Firing Times, in G. Rozenberg (Ed.) Advances in Petri Nets 1986, Lecture
Notes in Computer Science, Vol. 266, Springer, pp. 146-161

Altera (2001). Nios Embedded Processor Software Development Reference Manual.
Altera (2007). http://www.altera.com
Avalon (2007). http://www.altera.com/literature/manual/mnl_avalon_spec.pdf Bus

specification manual.
Benini, L. & de Micheli, G. (2002). Networks on Chips: A New SoC Paradigm, Computer,

Vol. 35, Iss. 1, pp. 70-78, January 2002, ISSN 0018-9162
Bjerregaard, T. & Mahadevan, S. (2006). A Survey of Research and Practices of Network-on-

Chip, ACM Computing Surveys, Vol. 38, article 1, March 2006, ISSN 0360-0300
Blume, H.; Feldkämper, H.; Noll, T. G. (2005). Model-based Exploration of the Design Space

for Heterogeneous Systems-on-Chip, Journal of VLSI-Signal Processing, Vol. 40, Nr.
1, May 2005, pp. 19-34

Petri Net: Theory and Applications 72

Blume, H.; von Sydow, T.; Becker, D. Noll, T. G. (2007). Application of Deterministic and
Stochastic Petri Nets for Performance Modelling of NoC Architectures, Journal of
Systems Architecture, Vol. 53, Issue 8, 2007, pp. 466-476

Blume, H.; von Sydow, T.; Noll, T. G. (2006). A Case Study for the Application of
Deterministic and Stochastic Petri Nets in the SoC Communication Domain, Journal
of VLSI Signal Processing 2006, Vol. 43, Nr. 2-3, June 2006, pp. 223-233

Ciardo, G.; Cherkasova, L.; Kotov, V.; Rokicki, T. (1995). Modelling a scalable high-speed
interconnect with stochastic Petri Nets, in: Proceedings of the Sixth International
Workshop on Petri Nets and Performance Models PNPM’95 October 03–06, Durham,
North Carolina, USA, pp. 83–94.

DSPNexpress (2003). http://www.dspnexpress.de
Duato, J.; Yalamanchili, S. & Ni, L. (2003). Interconnection Networks – An Engineering

Approach, Morgan Kaufmann, ISBN 0818678003 , San Francisco
Jensen, K. (1980). Net Models in System Development, PhD thesis, Aarhus University
Kleinrock, L. (1975). Queueing Systems – Vol. 1: Theory, John Wiley and sons
Kogel, T.; Doerper, M. et al. (2003). A modular simulation framework for architectural

exploration of On-Chip interconnection networks, CODES + ISSS, October 2003.
Lahiri, K.; Raghunathan, A.; Dey, S. (2001). System-level performance analysis for designing

On-Chip communication architectures, IEEE Transactions on CAD of Integrated
Circuits and Systems, June 2001.

Lindemann, C. (1998). Performance Modelling with Deterministic and Stochastic Petri Nets, John
Wiley and sons, ISBN 0471976466, Berlin

Madsen, J.; Mahadevan, S.; Virk, K. (2004). Network-centric systemlevel model for
multiprocessor SoC simulation, in: J. Nurmi et al. (Eds.), Interconnect Centric Design
for Advanced SoC and NoC, Kluwer Academic Publishers

Mickle, M. H. (1998). Transient and steady-state performance modelling of parallel
processors, Applied Mathematical Modelling 22 (7) (1998) 533–543

Moore, G. (1965). Cramming more components onto integrated circuits, Electronics,
Volume 38, Number 8, April 19, 1965

Neuenhahn, M.; Blume, H.; Noll, T. G. (2006). Quantitative analysis of network topologies
for NoC-architectures on an FPGA-based emulator, .Proceedings of the URSI
Advances in Radio Science - Kleinheubacher Berichte, Miltenberg, September 2006

Petri Nets World (2007). http://www.informatik.uni-hamburg.de/TGI/PetriNets/
Plosila, J.; Seceleanu, T.; Sere, K. (2004). Formal communication modelling and refinement,

in: J. Nurmi, H. Tenhunen, J. Isoaho, A. Jantsch (Eds.), Interconnect Centric Design for
Advanced SoC and NoC, Kluwer Academic Publishers

Ratzer, A. V.; Wells, L.; Lassen, H. M.; Laursen, M.; Qvortrup, J. F.; Stissing, M. S.;
Westergaard, M.; Christensen, S. & Jensen, K. (2006). CPN Tools for Editing,
Simulating and Analysing Coloured Petri Nets, Proceedings of the 24th International
Conference on Applications and Theory of Petri Nets (ICATPN) 2003, pp. 450-462, ISSN
0302-9743, Eindhoven, June 2003, Springer Verlag, Berlin

Sonntag, S.; Gries, M.; Sauer, C. (2005). SystemQ: A Queuing-Based Approach to
Architecture Performance Evaluation with SystemC, Proceedings of the SAMOS V
Workshop, Samos, Greece, July 18-20 2005, LNCS 3553, ISBN 354026969, pp. 434-444

SOPC (2007). http://www.altera.com/products/software/products/sopc/sop-index.html
Texas Instruments (2007). http://www.ti.com
Zaitsev, D. A. (2004). An Evaluation of Network Response Time using a Coloured Petri Net

Model of Switched LAN In: K. Jensen (ed.): Proceedings of the Fifth Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, October 2004,
Department of Computer Science, University of Aarhus, PB-570, 157-166.

Petri Net, Theory and Applications

Edited by Vedran Kordic

ISBN 978-3-902613-12-7

Hard cover, 534 pages

Publisher I-Tech Education and Publishing

Published online 01, February, 2008

Published in print edition February, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Although many other models of concurrent and distributed systems have been de- veloped since the

introduction in 1964 Petri nets are still an essential model for concurrent systems with respect to both the

theory and the applications. The main attraction of Petri nets is the way in which the basic aspects of

concurrent systems are captured both conceptually and mathematically. The intuitively appealing graphical

notation makes Petri nets the model of choice in many applications. The natural way in which Petri nets allow

one to formally capture many of the basic notions and issues of concurrent systems has contributed greatly to

the development of a rich theory of concurrent systems based on Petri nets. This book brings together

reputable researchers from all over the world in order to provide a comprehensive coverage of advanced and

modern topics not yet reflected by other books. The book consists of 23 chapters written by 53 authors from

12 different countries.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Holger Blume, Thorsten von Sydow, Jochen Schleifer and Tobias G. Noll (2008). Petri Net Based Modelling of

Communication in Systems on Chip, Petri Net, Theory and Applications, Vedran Kordic (Ed.), ISBN: 978-3-

902613-12-7, InTech, Available from:

http://www.intechopen.com/books/petri_net_theory_and_applications/petri_net_based_modelling_of_communi

cation_in_systems_on_chip

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

