We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,400
Open access books available

117,000
International authors and editors

130M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
The Role of Magnetic Resonance Imaging (MRI) in Autonomic Nervous System Monitoring

Yousif Mohamed Y. Abdallah and Nouf H. Abuhadi

Abstract

Medical imaging of the nervous system is the methodology used to achieve pictures of parts of the nervous system for therapeutic uses to recognize the ailments. Magnetic resonance imaging (MRI) is a kind of medical imaging tool that utilizes solid magnetic fields and radio waves to deliver point-by-point pictures of the inside of the body. There are large number of imaging methodologies done each week around the world. Medical imaging is developing rapidly due to developments in image acquisition tools including functional MRI and hybrid imaging modalities. This chapter abridged the role of magnetic resonance imaging (MRI) in autonomic nervous system monitoring. This chapter also summarizes the image interpretation challenges in diagnosing autonomic nervous system disorders.

Keywords: medical, imaging, autonomic nervous system

1. Introduction

The nervous system is divided into two parts, the central (CNS) and peripheral (PNS) part. The CNS includes the majority of the neural tissues and comprises the brain and spinal cord. PNS comprises all the structures outside the CNS and includes the special sense, spinal and cranial, and autonomic nervous system (ANS) [1–4]. The nervous system is composed mostly of the axons of sensual and motor neurons that permit between the CNS and the body. The autonomic sensory system (ANS) is divided into the peripheral sensory parts that provision the muscles and organs and influence the capacity of inner organs [5–7]. This system is considered as a regulatory framework that stimulates the action of those organs and muscles. This system manages in essence capacities, for example, the pulse, absorption, optical reaction, pee, and voluptuous stimulation [8–11]. This framework is the essential instrument responsible for the battle or flight reaction. Inside the mind, the central nerves manage this system. Autonomic capacities incorporate control of breath, heart guideline (the cardiovascular control focus), vasomotor action (the vasomotor focus), and certain reflex activities, for example, hacking, wheezing, gulping, and heaving [11–14]. This system is then subdivided into different zones that are connected additionally to ANS and sensory structures outside to the cerebrum. The central nerve over the cerebrum trunk goes as an integrator for autonomic capacities, accepting ANS administrative contribution from the limbic framework to do as such. The ANS has three subdivisions: the thoughtful sensory, the parasympathetic...
Autonomic Nervous System Monitoring

sensory, and the enteric anxious system. [15–18] Some researchers exclude the enteric sensory as a component of this organization. [8] The thoughtful sensory organization frequently includes “fight or flight” framework, although the parasympathetic sensory organization regularly includes the “rest and digest” or “feed and breed” framework. Most of the time, both of these frameworks have “inverse” activities where one framework actuates a physiological reaction and the other hinders it [19–23]. A more established improvement of thoughtful and parasympathetic structures as “excitatory” and “inhibitory” was toppled because of the numerous exemptions found. In ANS, there are many constrainers and excitatory neurotransmitters, which locate among neural cells.

The non-noradrenergic system affects the gut and the lungs [24, 25]. Magnetic resonance imaging (MRI) is a medicinal imaging method utilized to frame photos of the life systems and the functional procedures of the body. MRI machines utilize solid magnetic fields and RF pulse to create pictures of the structures of the body. MRI does not use ionizing radiation like CT, PET, and other scanners. MRI is a restorative utilization of nuclear magnetic resonance (NMR) [26–28]. This technique can be utilized for NMR spectroscopy. Although the risks of conventional radiography are presently very much protected in utmost medicinal settings, an MRI examination may at present be viewed as a superior decision than a CT exam. MRI is generally utilized in emergency clinics and facilities for therapeutic determination. An MRI may produce diverse data in contrast to CT scan. There might be dangers and inconvenience related to MRI scans. In contrast to CT filters, this procedure commonly is more intense and risky. In the 1970–80s, MRI has demonstrated to be a flexible imaging method. Although MRI is utmost unmistakably utilized in analytic prescription and biological researches, it additionally might be utilized to make pictures of inorganic particles. The supported increment sought after for MRI inside wellbeing frameworks has prompted worries about cost adequacy and overdiagnosis [29–32].

2. Anatomy of autonomic nervous system (ANS)

The ANS is partitioned into the thoughtful and the parasympathetic sensory system. The thoughtful division starts in the thoracic spines and ends up in the L2–3. The parasympathetic division includes both cranial (III, IX, X) and sacral (S2–4) nerves (Figure 1) [33, 34].

The thoughtful sensory system consists of neural cells that appear beyond T1 and continue to level L2/3. There are a few areas whereupon preganglionic neurons can be able neurotransmitters because of their postganglionic neuron stability. These ganglia assign the postganglionic neurons beside which innervation of goal structures pursues. Instances regarding splanchnic (instinctive) nerves are as follows:

1. Cervical cardiovascular nerves then thoracic instinctive nerves, which are neural ligature of the thoughtful band

2. Thoracic splanchnic nerves

3. Lumbar splanchnic nerves, which are neural connection of the prevertebral ganglia

4. Sacral splanchnic nerves, which are neural concretion of the second quantity hypogastric plexus [35–40]
2.1 Sensory neurons

The sensory part is taken outdoors concerning necessary instinctive true neurons determined in the hem sensory dictation (PNS), of cranial real ganglia: the geniculate, petrosal, or nodose ganglia, annexed one at a time after cranial nerves. These tactile neurons are responsible of organization of the degrees of charcoal dioxide, oxygen, or grit between the blood, blood boat ounce yet the artificial business enterprise about the belly and intestine content [41–44]. The nTS gets the performance beside an adjacent chemosensory focus, the area postrema, who recognizes poisons among the blood yet the cerebrospinal melted and is necessary because synthetically instigated spewing and restrictive style repugnance (the intelligence as ensures so a life as has been harmed through sustenance in no way connection such again). These instinctive tactile data constantly then unknowingly regulate the labor regarding the machine neurons about the ANS (Figure 2) [45, 46].
Autonomic Nervous System Monitoring

Figure 2.
Sensory neurons [1, 3, 8].

Figure 3.
The central and peripheral nervous system [1, 3, 8].
2.2 Innervation

Autonomic nerves travel in accordance with organs via the entire body. The true portion on the of the autonomic nerves remaining achieves the spinal piece at definitive spinal fragments. The neural signal travel from the autonomic system to the other body part through number pf the nerves that distributed throughout the body (Figure 3) [47, 48].

3. Physiology of autonomic nervous system

Thoughtful and parasympathetic divisions regularly work contrary to one another. Yet, this resistance is better named reciprocal in nature as opposed to hostile. The thoughtful partition regularly works in activities needing fast reactions. The thoughtful framework is regularly the “battle or flight” framework, while the other framework is frequently the “rest and summary” or “feed and breed” framework [49–51]. In any case, numerous cases of thoughtful and parasympathetic movement cannot be credited to “battle” or “rest” circumstances. For example, adjustable over out of a leaning again and placing role would contain an unsustainable decline between circulatory pressure notwithstanding a compensatory rise within the blood vessel’s thoughtful tonus. Another mannequin is the steady, second-to-second tweak of the bough with the aid of thoughtful then parasympathetic impacts, so an aspect on the respiratory cycle. When all is said and done, these two frameworks ought to be viewed as for all time tweaking capacities, in normally hostile design, to accomplish homeostasis. Higher living beings keep up their honesty by means of homeostasis, which depends on negative criticism guideline, which, thusly, ordinarily relies upon the autonomic anxious system [52–55]. Some run-of-the-mill activities of the thoughtful and parasympathetic sensory systems are recorded beneath [55].

4. Pathology of autonomic nervous system

4.1 Sweating abnormalities

Sudomotor or perspiring changes can likewise be highlights of autonomic brokenness, inferring changes in perspiring not related legitimately to side effects of orthostatic narrow mindedness or on the other hand presyncope [56–58]. Patients may report either expanded or on the other hand over the top perspiring or diminished perspiration yield and warmth narrow mindedness, either internationally, segmentally, or on the other hand sketchy in appropriation. Numerous patients with distal perspiration misfortune report expanded perspiration yield, which may happen as a compensatory reaction is unaffected territories, for example, the head and upper-middle, yet which is seen by the patient as unnecessary perspiring [59].

Sudomotor brokenness might be because of anomalies in focal control instruments (as in the different framework decay), or all the more generally in patients with autonomic fringe neuropathy, either as a disconnected variation from the norm of postganglionic thoughtful nerve strands just in hypohidrosis or worldwide anhidrosis, or as a component of an increasingly summed up autonomic neuropathy, either essential (immune system autonomic neuropathy) or auxiliary (amyloidosis, diabetic fringe neuropathy, or little fiber tangible neuropathy because of Sjögren’s disorder) in nature [60, 61].
4.2 Secretomotor symptoms

Secretomotor indications incorporate sicca manifestations of dry eyes (xerophthalmia) and dry mouth (xerostomia). Patients do not visit the physicians for more investigations unless they becomes serious, however, with cautious addressing, they might be evoked. The brokenness of autonomic innervation might be seen in autonomic neuropathies or part of summed up autonomic disappointment, albeit even more ordinarily found previously [63–65].

5. Magnetic resonance imaging (MRI)

For MRI examination, the patient is situated inside an MRI scanner up to expectation constructions a consolidated alluring discipline around the sector in imitation of keep imaged. In utmost therapeutic applications, protons (hydrogen particles) that containing cloud particles was passed into tissues in order to create a sign that later use to make a photograph of internal structure of the body. Initially, energy of swaying magnetic field is temporarily related after the patient at the becoming reverberation recurrence. The energized hydrogen iotas beam a radio recurrence signal, which is estimated with the aid of an accepting curl. The radio sign may stay instituted to encode role data with the aid of altering the foremost pleasing subject utilizing bias loops. As those curls are rapidly became concerning or far away that redact the trademark stupid concussion on an MRI check. The difference in a number of tissues is managed by using the dimensions at which energized particles appear returned to a coherent state. Exogenous division specialists would possibly lie fond in accordance with the unaccompanied in conformity to perform the photograph clearer. [65] The actual parts of an MRI machine are precept magnet and the RF framework, which admits the NMR signal. The complete framework is restrained by using at least certain PCs. The area virtue on the magnet is estimated in teslas then preserving in thinking so just concerning the frameworks labor at 1.5 T, business frameworks are on hand someplace in the extent concerning 0.2 yet 7 T. For claustrophobic patient usually the open superconducting magnet machine is used. Recently, MRI has been shown either at ultra-low fields. The place ample sign quality is done conceivable via prepolarization (on the pray of 10 up to ~100 mT) then by estimating the Larmor antecedence fields at around one hundred microteslas including very delicate superconducting quantum arrest gadgets (SQUIDs) [66]. Each art comes lower back according to its harmony administration and then exasperation by using the unrestricted unwinding approaches regarding T1 or T2. The T1 weighted picture is treasured because surveying the brain tissues, distinguishing greasy structure, describing average lung accidents and now every is pointed out in performed because

![MRI T1-weighted image](image-url)
of acquiring morphological data, simply namely because of post-differentiate imaging (Figure 4) [30, 67, 68].

The T2-weighted picture shows a valuable structure for identifying and recognition of the pathophysiological problems of ANS and gives useful information that enable the neurosurgeons to perform a successful procedure (Figure 5).

6. Conclusion

In nervous system disorders, the non-ionizing radiation is used to scan and produce multi-dimension images with and without contrast media utilization. In the 1970s, Ian Robert Young and Hugh Clow had first brain images using MRI. In 1990, Seiji Ogawa who used the oxygen-depleted blood phenomena introduced functional MRI (fMRI). In the 1990s, the development and introduction of the new MRI protocols helped in the demonstration of gray and white matter areas of the nervous system. Many MRI scans later were done by using high magnetic strength (3.0 up to 9.4 T).

Acknowledgements

The authors are thankful to the Deanship of Scientific Research, at Majmaah University, for funding this research.

Conflict of interest

There are no conflicts of interest.
Author details

Yousif Mohamed Y. Abdallah* and Nouf H. Abuhadi²

1 Radiological Science and Medical Imaging Department, College of Applied Medical Science, Majmaah University, Majmaah, Saudi Arabia

2 Diagnostic Radiology Department, College of Applied Medical Science, Jazan University, Jazan, Saudi Arabia

*Address all correspondence to: yyousif@mu.edu.sa

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The Role of Magnetic Resonance Imaging (MRI) in Autonomic Nervous System Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89593

References


[20] Le Bihan D, Breton E. Method to Measure the Molecular Diffusion and/or Perfusion Parameters of Live Tissue. US Patent # 4809701;1987


The Role of Magnetic Resonance Imaging (MRI) in Autonomic Nervous System Monitoring

DOI: http://dx.doi.org/10.5772/intechopen.89593

Tomography. 1994;18(3):339-343. DOI: 10.1097/00004728-199405000-00001. PMID 8188896


11


[58] Sritippayawan S, MacLaughlin EF, Woo MS. Acute neurological deficits in a young adult with cystic fibrosis. Pediatric Pulmonology. 2003;35:147-5114


