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1. Introduction 

Reconfigurable computing is an emerging technology with important implications for space 

systems. Spacecraft serve as sensor platforms to gather, format, possibly screen or interpret, 

and then downlink sensor data. Once launched, a spacecraft may operate unattended for 

decades. The trend in spacecraft design is toward more complex and voluminous data, 

including multispectral and hyperspectral images and synthetic aperture radar, which 

require extensive on-board data processing. Other on-board computing tasks are navigation, 

orientation, and communication. As spacecraft grow more sophisticated, the need for 

higher-performance computing grows also.  

Reconfigurable computing allows computing hardware to be configured or “wired” by 
software to optimize the architecture for the problem at hand. Some early discussions of 
reconfigurable computing are found in (DeHon, 1996), and Villasenor (Villasenor, 1997). 
Reconfigurable computers may be implemented on specially-designed hardware, or on 
Field Programmable Gate Arrays (FPGAs). Hauck and DeHon cover FPGA-based 
reconfigurable computing very thoroughly their book (Hauck, 2008).  
The space environment presents special challenges to the system designer. Chief among 

these are: 

1. Power efficiency. Electrical power is a scarce and expensive commodity for orbiters and 
deep space probes. In addition, removing heat generated by electronics is very 
challenging in space, where air cooling is not an option. 

2. Minimum size and weight. Increased size and weight increase launch costs, and require 
more fuel for on-orbit maneuvering. 

3. High reliability for long mission life. On-orbit repair is rarely feasible, and the time and 
monetary cost of replacing a spacecraft are high. 

4. Rapid deployment or redeployment of spacecraft to meet new or changing mission 
requirements. 

5. Radiation tolerance. The specific requirements depend on the mission profile, but all 
spacecraft systems must be designed to cope with cosmic radiation, chiefly heavy ions. 

In some space missions, rapid deployment of a new spacecraft, or redeployment of an 
existing craft, are of high priority. Many of potential benefits of reconfigurability for space 
are laid out in (Lanza, 2004). Reconfigurability can help designers meet challenges (1) and 
(2) above by enabling hardware to be reconfigured for different phases of a computational 
task, resulting in smaller size, lower weight, and reduced power consumption than would 

Source: Aerospace Technologies Advancements, Book edited by: Dr. Thawar T. Arif,  
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be the case if each task required dedicated hardware. For example, in an instrument 
calibration task, three configurations of a processor were used to capture and format 
calibration data, and a fourth configuration was used in operational mode, to calibrate data 
in real time (Sabde, 2003 & 2004). 

1.1 Radiation effects and their mitigation 

It is the need for radiation tolerance that sets spacecraft systems apart. There are three basic 
approaches to radiation protection: shielding, system-level redundancy, and chip-level 
mitigation. Most spacecraft employ some kind of radiation shielding, but this adds size and 
weight, and provides only partial protection. System level redundancy, such as Triple 
Module Redundancy (TMR), protects against radiation-induced soft errors, but increases 
complexity, weight, and power consumption up to five fold. There is much to be gained by 
designing microelectronic circuits and systems to be intrinsically resistant to the effects of 
radiation (Holmes, 2002). 
The primary radiation effects of concern in Complementary Metal Oxide (CMOS) integrated 
circuits are divided into Total Ionizing Dose (TID) and Single Event Effects (SEE), which 
include Single Event Latchup (SEL), Single Event Upset (SEU), and Single Event Transients 
(SET). 
Total Ionizing Dose (TID). This is caused by the accumulation of ions in the integrated 
circuit materials, particularly low-grade “field” oxides. The electric charges carried by the 
trapped ions produce an electric field that alters the behavior of the circuits, most commonly 
causing leaking between adjacent components. The significance of TID depends on the 
space mission, as some regions of space carry higher radiation concentrations than others. 
TID effects are mitigated by choosing an appropriate CMOS process in which materials are 
pure, and less likely to trap charged particles, and feature dimensions are small enough to 
enable particles to anneal out as fast as they accumulate. Most modern processes are 
adequately resistant to TID for space applications. 
Single Event Latchup (SEL). This is a pathological condition in which a particle strike 
induces a current loop in parasitic transistors, which can disable or destroy the device. SEL 
is mitigated in bulk CMOS processes by adding guard bands of heavily doped silicon which 
drain away these charges, and weaken the parasitic circuits. Silicon-on-Insulator (SOI) 
processes are inherently immune to SEL. 
Single Event Upset (SEU). This is a soft memory error, induced when the charge deposited 
by an ion sets or resets a latch, disrupting the state of the digital logic. Latches can be 
designed at the circuit and layout levels to resist SEU by incorporating redundancy. 
Single Event Transients (SET). When an ion strike changes the state of combinational logic, 
which then propagates into the downstream logic and memory circuits, causing logical 
malfunction, this is called a Single Event Transient. It is mitigated at the circuit and layout 
levels by adding redundancy and temporal separation between signals.  
Radiation Hardening by Design (RHBD) is a practical strategy for achieving radiation 
tolerance in digital integrated circuits fabricated with commercial processes. The first step is 
to select a process that is adequately immune to TID, and to design a standard logic cell 
library that incorporates SEE and SEL mitigation. A processor can then be synthesized from 
a hardware description language (HDL) using this cell library. To achieve a practical level of 
radiation tolerance, the final layout must be completed carefully. For example, the radiation 
sensitivity of critical circuit elements such as clock trees can be enhanced by increasing the 
size and drive strength of these elements, enabling them to harmlessly absorb the extra 
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charge. Radiation Hardening by Design (RHBD) can often achieve acceptable levels of 
radiation tolerance, but exacts a performance cost, as the resulting processor is slower, 
larger, and consumes more power than an un-hardened equivalent. 

2. Data processor options 

Embedded computing systems are commonly built around one or more core processor 

chips. Microprocessors, microcontrollers and digital signal processors (DSPs) are essentially 

sequential processors, executing one pre-defined instruction at a time. Some processor 

architectures feature multiple execution units and instruction pipelining to increase 

throughput, but the execution model is still basically sequential. The design is completed 

through system and application software. Sequential processors are unquestionably the 

most flexible processor choice, but they face certain performance limitations. The primary 

way to increase data throughput in a sequential processor is to reduce the instruction cycle 

time. Radiation hardening adds delays, which increases instruction cycle time, often very 

significantly. 

High throughput can often be achieved with application-specific integrated circuits (ASICs), 

semi-custom chips often synthesized from a hardware description language (HDL). ASICs 

fabricated from commercial processes can be made sufficiently radiation-tolerant for space 

applications by using a radiation-hard-by-design (RHBD) techniques. As the name implies, 

however, these chips are inflexible, and cannot usually be retargeted to meet different 

system requirements. Design schedules are long – months to years – and the non-recurring 

engineering (NRE) and fabrication costs are high.  

Another choice is high-performance field programmable gate arrays (FPGAs), which can be 
configured to implement computing functions, and are often the platform of choice for 
reconfigurable computing. By departing from the sequential computing model, data path 
parallelism, and hence throughput, can be increased. With today’s high-performance 
FPGAs, however, it is difficult to meet power and radiation requirements for space 
applications. Originally intended to replace logic gates, they are based on a fine-grained 
architecture, often requiring millions of configuration registers and interconnect switches. 
The required circuitry consumes silicon area are and leads to high power consumption. 
FPGA systems can be hardened against single-event radiation effects or soft errors, at the 
system level with triple-module redundancy (TMR), but this complicates the hardware 
significantly and greatly increases the power consumption. 
The chapter will focus on processors that are designed specifically for reconfigurable 
computing, using the Field Programmable Processor Array as a case study (Donohoe, 2007). 
The goal is to achieve data processing rates comparable to ASICs with flexibility 
approaching that of software. Energy efficiency is achieved by selecting a data granularity 
appropriate to numerical processing, which reduces interconnect and configuration 
complexity by up to three orders of magnitude compared to FPGAs. Radiation tolerance can 
be built in at the gate level using RHBD techniques, thus avoiding the area and power costs 
of triple-module redundancy. 

2.1 Architectures 

Spacecraft on-board processing fits in the category of embedded computing, as distinct from 
general-purpose computing associated with laptop or desktop computers. An embedded 
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computer is designed into a product, is often not detectable as a computer by the users, and 
is targeted to a comparatively limited range of processing tasks. Thus, some flexibility may 
often be sacrificed to maximize throughput and energy efficiency. 
Spacecraft data processing applications that demand high throughput are often streaming 
processes such as signal and image processing, instrument calibration, and feedback control 
loops. These are well-suited to Single Instruction-Multiple Data (SIMD) computational models, 
something they share with multimedia processing.  Most reconfigurable computing 
implementations perform best on these kinds of problems, which fit naturally into a dataflow 
computing model. A. Dehon provides a survey of computing models for reconfigurable 
computing in Chapter 5 of (Hauck, 2008), with emphasis on dataflow models.  
Some representative reconfigurable computing architectures are listed below. 
PipeRench. A product of research at Carnegie-Mellon University, the PipeRench (Goldstein, 
2000; Tessier, 2 001) is a very innovative architecture that interleaves processing elements 
and data registers to form a virtualized data path, portions of which map onto hardware at 
any time. This virtualization model enables implementation of computational problems too 
large to fit directly on the hardware. When implemented in a 0.18 micron process, it was 
competitive with commercial DSP chips in throughput, consuming less than one watt for a 
20-tap FIR filter. 
RAW Processor. Developed at the Massachusetts Institute of Technology, the RAW 
processor (Taylor, 2002) is essentially an on-chip network of RISC processor cores with 
flexible interconnect to enable it to set up a multicore computing fabric. It represents the 
high end of complexity and flexibility. It is not intended for low-power applications.  
Stream Processor. The Stream Processor (Khailany, 2008) is an example of an SIMD 
architecture designed for signal processing and multimedia applications. Implemented as a 
System on Chip (SOC) in a 0.13 micron process, it is reported to deliver performance of 256 
16-bit Giga-operations per second (GOPS) with excellent power efficiency. The architecture 
is quite comprehensive, optimized for processing data streams. 
For more examples, see “Reconfigurable Computing for Digital Signal Processing: A 
Survey” (Tessier, 2001). 

3. Field programmable processor array 

The Field Programmable Processor Array a reconfigurable processor architecture and chip 

developed for high-throughput, low-power, on-board data processing for space (Donohoe, 

2007). The design philosophy is to minimize hardware features to incorporate only those 

necessary to implement a class of challenge problems, which include examples of 

instrument calibration, Fourier transform hyperspectral image processing, wavelet-based 

operations, image registration, and pattern recognition. One processor chip contains 16 

processing elements (PEs), each capable of multiplication and addition, an on-board 

execution unit with eight nested hardware loops, five 16-bit I/O ports, a special dynamically 

switchable output port, and interface circuits. FPPA chips can be tiled to form a larger 

computing fabric. Internal data paths are 16 and 32 bits. Multiple precision is supported. 

3.1 FPPA architecture 

The Field Programmable Processor Array implements a dynamic streaming dataflow 
computing model, as described in DeHon’s survey (Hauck, 2008, Ch. 5). Each processing 
 

www.intechopen.com



Reconfigurable Computing for Space  

 

41 

 

Fig. 1. Arrangement of FPPA and host 

element serves as node in the data flow network. A host processor is required to initialize 

and configure the FPPA, as shown in Figure 1. Figure 2 shows a data path pipeline 

constructed from four processing elements, an I/O port (IOP0) configured for input, and an 

I/O port (IOP1) configured for output, all of which form nodes in the dataflow network. In 

the synchronous dataflow computing model the sequence of operations is encoded in the 

topology of the network. Processing occurs at a node when valid data appear at all the 

inputs to a node, and the node “fires”, that is, it latches input data and begins processing. In 

the FPPA, the “Fire” signals (Fire IOP0, etc.) initiate processing at a node; data appear at the 

output when computation at that node is complete. This is sometimes called a “blocking 

read, non-blocking write” structure. 
 

 

Fig. 2. Synchronous dataflow processing pipeline 

A degree of flexibility is provided by the ability to conditionally select one or another input 

to a node based on a computational result. In DeHon’s taxonomy, the FPPA implements a 

dynamic streaming dataflow compute model (Hauck 2008). 

Operation occurs in two phases: (1) configuration, in which processing elements are 

configured by a host processor to perform data processing functions, and (2) execution, 

where the processor operates autonomously on a stream of data, without intervention by 

the host.  In addition to the I/O and output ports, the processor implements sixteen one-bit 
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output control signals and sixteen one-bit input control signals. The output controls signal 

internal state to external devices. The input controls implement a “wait on event” function, 

halting FPPA processing until an external condition is satisfied. In this way, the FPPA can 

synchronize itself with external devices. 

The goals of high throughput with deterministic sample rate, low power consumption, and 
radiation tolerance are addressed below. 
High throughput is achieved through through data path pipelining. Multiple chips can be 
connected to increase the size of the computational fabric in increments of 32 PEs. 
Interconnect paths are established during a configuration, and persists until the next 
configuration phase. 
Low power consumption is achieved by concentrating chip resources in the data path. The 
control mechanism is very simple and distributed, minimizing the complexity of control 
circuitry and communication. 
The chip is implemented using Radiation Hard by Design (RHBD) techniques built into a 
standard cell library designed for a commercial bulk CMOS process. The chip was 
synthesized using a commercial software tool (Synopsys). The library mitigates single even 
latchup (SEL) with guard bands, and single event upset (SEU) with a 14-transistor SEL-
resistant latch circuit.  

3.2 Interconnect structure 

The interconnect structure provides dedicated data paths within a configuration cycle. There 
are no shared busses, although conditional data path selection enables data streams to be 
merged and split. As a result, there is no bus contention, and execution time is deterministic. 
Up to 90% of the area of a high-performance FPGA might be dedicated to programmable 

interconnect, including routing channels, switches, and configuration registers. This is due 

to the fine-grained, bit-oriented architecture, and the high flexibility of the configurable logic 

elements. The result is large chip area and relatively high power consumption. The logic 

elements of the FPPA are more coarse-grained, directly implementing a16-bit arithmetic and 

logic functions. The required interconnect are and power consumption are proportionally 

less. 

The datapth Interconnect requirements are: 
1. Read in stream(s) of data 
2. Break data streams out into separate substreams for processing 
3. Reassemble substreams into output stream(s) by combining with arithmetic/logic 

operations, or interleaving 
4. Write output streams 
5. Synchronize input and output data streams with external devices 
The interconnect implementation is subject to these constraints: 
1. No throughput penalty for adding processing nodes 
2. Acceptable interconnect area 
3. Minimal interconnect stages, hence delays 
4. Low interconnect power dissipation 
5. Small number of reconfiguration bits to enable fast and energy-efficient configuration 
The interconnect structure designed to meet these requirements is shown in Figure 3. Data 

stream input and output requirements #1 and #4 are met with clocked data I/O ports.  
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Fig. 3. FPPA datapath 

Requirement #2 is implemented with input registers on each of the PEs, under the control of 
a program memory; this enables each PE to pick the required data items out of an input 
stream to form the head of a new chain of processing nodes. Recombining data streams, 
requirement #3, is accomplished in one of these ways: 
a. Streams can be combined in a PE with arithmetic operations (add, subtract, multiply)  

or logical operations (AND, OR, etc.) 
b. Conditional data path selection enables selection of one of two paths based on a 

condition code resulting from an operation. For example, selection might be based on 
magnitude (greater than, less than, equal to) or other arithmetic or logical relations. 

c. The Dynamic Output Port (DOP) allows the output data word to be chosen, under 
program control, from any of the PEs. This can be used, for example, to reshuffle the 
data in a Discrete Fourier Transform calculation to produce the desired order. 

Constraint #1 precludes shared buses; the chosen architecture uses dedicated point-to-point 

paths curing a configuration phase. To meet constraints #2 and #3, we assume that 

applications exhibit spatial locality – that is, it is possible to concentrate high-speed activities 

requiring rich interconnect between processing elements into a small spatial region, while 

sparser communication can be tolerated between spatially separated nodes. The resulting 

architecture is hierarchical, with fourteen interconnect channels within a PE cluster. This 

supports data-intensive local operations such as multiprecision accumulation. Six channels 

are provided between each cluster and the central routing switch. Finally, six ports are 
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provided for each FPPA chip. Constraint #5 is met by the sixteen bit granularity and the pre-

built arithmetic and logic circuits, which require many fewer configuration bits than a bit-

oriented FPGA. 

3.2 FPPA software 

A novel computing paradigm requires a new approach to software. Programming 

languages designed for sequential, random-access machines are not easily adapted to highly 

concurrent architectures. The challenge for dataflow architectures (and similar 

computational structures implemented in FPGAs), is to create “circuitizeable” code. Where 

flow control in a sequential computer is determined by a sequence of instructions, in a 

dataflow architecture the flow of data is controlled through registers and data path selectors, 

e.g. multiplexers.  

Systems that target FPGAs for reconfigurable computing often use hardware description 

languages such as VHDL in order to achieve detailed low-level control of the fine-grained 

architectures. While well-suited to describing hardware circuits, VHDL is too low-level to be 

effective for implementing general algorithms. 

Software developed to support the FPPA includes a functional simulator, assembly-level 

software translators to produce configuration and run-time files, and design-entry tools, 

including a graphical design entry program and an adaptation of the Single-Assignment C 

(SA-C) language compiler (Bohm, 2002). 

SA-C is a C-like language originally developed to target FPGAs then modified for the FFPA. 

To ensure that the code is circuitizable, the Single-Assignment C (SA-C) language  

imposes the constraint that a variable can only be written (assigned) at one point in the 

program.  

Figure 4 shows a flow diagram for application software development for the FPPA. The 

source can be written in SA-C or the FPPAflo graphical design entry program. Both compile 

to a dataflow graph, an intermediate representation that is suitable for automatic 

optimization. The key optimization parameters are throughput and computing resources, 

primarily processing elements and routing. Resources may be distributed over multiple 

FPPA chips. 

The source code must be translated into two files: a configuration file, and a runtime file. 

The configuration file contains configuration instructions to set up the input and output 

ports, the processing elements, and the internal routing paths. The runtime file contains the 

runtime program specification. These are translated into bit streams by the configuration 

assembler and runtime assembler, respectively. The final output is a file of packets to be 

read by the host processor to configure the FPPA, in the FPPA-specific host-computer 

interface (HCI) format. 

3.3 Memory 

The FPPA is a shallow-memory device; the only data memory is the input registers to the 

processing elements and the I/O ports, and an 8-word programmable delay line in each PE. 

The latter is provided to aid in aligning parallel paths in the dataflow pipeline. Many 

applications, such as one-dimensional linear and nonlinear filters and wavelets, can be 

implemented without additional memory. 
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Fig. 4. FPPA software design flow 

Many applications require larger-scale data memory, however. For example, two-

dimensional image filters typically require “line buffers” to hold past image values. 

Sequential processors are typically coupled with random access memory to store 

instructions and data, accessible over shared busses. For streaming applications, data 

memory is often organized in regular data structures with well-defined access modes: first-

in, first-out (FIFO) queues, last-in, first-out (LIFO) stacks, sequential access, circular buffers, 

or two-dimensional matrices representing images or subimages. High-performance FPGAs 

are typically equipped with user-definable memory. These large-scale on-chip platforms are 

not yet available in radiation-hard form, however. 

 In the FPPA, program memory is small (128 x 128 bits); each bit controls one module. The 

program memory is distributed over the chip into 1x128 bit latch arrays, each co-located 

with the module it controls. Data memory is not provided on chip because of the challenges 

of implementing large-scale memory in a logic process, and the problem of deciding how 
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much memory to incorporate and how to organize it, as this is highly application 

dependent. 

The FPPA can work with random access memory, but this is very costly in terms of I/O 

ports and board-level interconnects, as shared busses are not supported, and dedicated data 

busses are required for addresses and data. For this reason, a Reconfigurable Memory 

Module (RMM) was conceived to aid in coupling the FPPA with commercial memory chips. 

This consists of an interface module configured to generate addresses for a particular 

application, interfaced with a commercial memory chip. In one instantiation of the RMM, 

the following access modes were implemented: 

RMM Data Access Modes 
1. Sequential access 
2. Last In, First Out (LIFO) stack  
3. First In, Last Out (FIFO) buffer 
4. Circular (ring) buffer 
5. Lookup Table (LUT) 
6. Region of Interest (ROI) 
7. Histogram 
The circular buffer defines a beginning and end of a buffer in the memory. Access is 

sequential until the end of the buffer is reached; then it wraps around to the beginning. 

Lookup table mode (mode 5) is just random access, using one of the data ports for an 

address and the other for data. Region of interest mode (mode 6) models the random access 

memory as a two-dimensional array (often used to store images), and defines a subarray, or 

subimage; sequential accesses sweep horizontally across a row of data elements; when the 

end of the row is reached, the address counter moves to the beginning of the next row. 

Histogram mode (mode 7) supports histogram calculations, which are sometimes used in 

image enhancement and in signal and image analysis. For example, estimating signal 

entropy requires calculating  

 1
0 2( ) ( )log ( )N

x n nH X p x p x−
== ∑  (1) 

 

Where X is a set of N values x0 to xN-1 and p(xn) is the probability of occurrence of value of 

element xn. This probability can be estimated by counting occurrences of xn for each n, i.e., 

forming a histogram, then dividing by the total number of samples. This histogram is 

initialized by setting each element to zero using sequential access mode. To calculate the 

histogram, a data sample is read from a source, and this is used as an index into the 

histogram in a read-modify-write operation: the histogram values is read, incremented, then 

written back. Finally, the histogram can be read out in sequential access mode. Thus, three 

configurations of the RMM are required.  

Figure 5 shows a typical arrangement for an FPPA systems consisting of one FPPA, a host 

processor, and the RMM. The host configures and initializes both the FPPA and the RMM. 

One FPPA data port is used for writing from the FPPA to the RMM, and one for reading 

from the RMM into the FPPA. The host communicates with the RMM via an 8-bit data bus 

and two asynchronous handshake signals, RTX and CTX. Once the FPPA and RMM are set 

up, and the FPPA begins to execute, the host is not longer required. Two control bits, 

command_0 and command_1, are sufficient for the FPPA to control the RMM. 
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Fig. 5. Example system consisting of FPPA, host, and RMM 

3.4 Prototype chip 

A prototype of the FPPA was synthesized from VHDL using radiation-hard-by-design 

standard cell library implemented in a bulk 0.25 micron commercial CMOS process1. The 

design then fabricated and tested. The die measures 7 x 7 mm, contains 241,306 gates, and 

uses 200 pins of a 208 pin flat-pack package. 

The chip was tested at 22.5 MHz on two challenge problems: a cloud masking algorithm for 
hyperspectral image data (Zhou, 2003), and wavelet-based dimensionality reduction for 
hyperspectral images (Sinthop, 2003).  Both applications were completely parallelizable, so 
the throughput was one output sample per input sample. Both applications were 
implemented so that they fit in one FPPA chip, without external data memory. To facilitate 
comparison with other processors, a power-performance metric was defined, mega- 
 

                                                 

1 The prototype chip is not fully radiation tolerant, as single-event-upset resistant latches 
were not used. 
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Fig. 6. Prototype FPPA chip 

operations/second-watt (MOPS/watt). Instructions sets vary between processors, so that 

one processor may require more machine level instructions to implement a computation 

than another. To the system designer, the relevant instructions are those that transform data 

as defined in a high-level description of the problem. Here we define an “instruction” as an 

arithmetic operator (add, multiply), or a logic operator (shift, AND, etc.).  

For the cloud masking algorithm, the FPPA ran at 742 MOPS consuming 0.23 watts, or 3,167 

Mops/sec-watt. The FPPA executed the wavelet application with 1080 MOPS consuming 

0.48 watts, or 1,849 MOPS/watt. 

4. Conclusion 

Spacecraft represent one of the application domains that have the most to gain from 

reconfigurability, particularly due to the high cost and long delays associated with 

designing, building, qualifying and launching a new craft (Lanza 2004). Areas in which 

spacecraft can benefit include: 

• Tele-alteration: the ability to change configuration and function of a system remotely, 
increasing mission agility and extending the useful life of the system. 

• Resilience and robustness: reconfigurability makes it possible to map out failed 
components and restore functionality. 

• Functionality on demand : when a new function is required, if the configurable 
resources are in place, remotely configure the required functionality 

Adapting commercial technologies to reconfigurable space systems is complicated by the 

requirements of small size and weight, low power consumption, and radiation hardness. 

This chapter presented an example of a reconfigurable processor developed for space using 

radiation-hard-by-design techniques. The goals of the design were to achieve an appropriate 

level of functionality to solve a wide range of space computing problems, extensible to 

larger-scale problems than can be implemented in one chip, minimal power consumption, 

and sufficient radiation hardness for space applications. The architecture implements a 
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synchronous dataflow computing model, and is extensible by tiling multiple chips to 

increase the size of the dataflow network, and adding reconfigurable memory modules for 

applications requiring external data memory. 

Reconfigurable computing is becoming a reality, but we can envision extending the concept 

of reconfigurability beyond logic to other domains. Software radio is a familiar example, in 

which key components of a radio communication system can be altered to adapt to different 

frequencies and communication protocols. Reconfigurable analog systems could permit in 

situ configuration of sensing and control functions. Reconfigurable pathways (wiring, 

optical, fluidic, thermal) could enable software-defined physical systems.  A reconfigurable 

power infrastructure, and even reconfigurable matter can be conceived to accommodate as-

yet unimagined demands for spacecraft systems. 
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