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1. Introduction 

In the present day, partial reconfiguration is a reality (Becker & Hartenstein, 2003). There are 
many industries investing as well in fine-grain (like FPGAs (Huebner et al., 2004)) as in 
coarse grain solutions (eg. XPP (Becker & Vorbach, 2003)). This capability enables the 
necessary configuration area to decrease and the development of lower cost and more 
energy efficient systems, where timing is the main concern. 
The main contribution of this work is to enable the engineers to discover earlier during the 
design-flow the best cost-benefit relationship between configuration time and saved chip 
area. 
Such relationship is generally obtained only after the prototyping phase during the 
hardware verification. Once the dynamic reconfiguration simulation is possible in a simple 
way, the concrete benefits of such simulations can be checked in a simple way. 
The innovative technique presented here allows the modeling and simulation of such 
systems by enabling new functions to module blocking and resuming in the simulator 
kernel. This enables the dynamic behavior to be foreseen before the synthesis on the target 
configuration (like FPGA). Furthermore, systems evaluation is possible even before their 
hardware description using a Hardware Description Language. Papers were published 
(Brito et al., 2006; Brito et al., 2007) presenting how the partial reconfiguration can be 
practically simulated. 
In this work a novel methodology for simulate partial and dynamic reconfigurable system is 
presented. This methodology can be applied to any hardware simulator which uses an event 
scheduler. The main idea is to register each block that is not configured on a chip at a given 
moment in simulated time. Modifying the simulator scheduler, it is programmed to not 
execute those blocked modules. We prove in this work that this approach covers every 
partial and dynamic reconfigurable system situation. SystemC is used as a case of study and 
several systems were simulated using our methodology. 
The section 2 presents what a simulator should implement to be considered able to simulate 
partial and dynamic systems. The methodology is presented on section 3 and section 4 
presents how we applied it to SystemC. A particular strategy was adopted to log the chip 
area usage enabling the investigation of the benefits of dynamic reconfigurations in each 
application. This logging strategy is presented on section 5. Section 6 proves that the partial 
and dynamic reconfiguration can be really modeled and simulated using our methodology 
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in practice with SystemC. Section 8 brings some consideration on the simulator performance 
after its adaptation and section 9 reports some further works using this methodology 
applying it to other targets. 

2. Simulation of partial and dynamic reconfiguration 

Before presenting the novel methodology for simulating partial and dynamic 
reconfiguration, it is necessary to characterize what in fact can be considered a simulator for 
dynamic reconfiguration. In (Lysaght & Dunlop, 1993) is described partial reconfiguration 
as the execution of a tasks sequence by hardware modules scheduled on time. In (Zhang & 
Ng, 2000) is affirmed that in order to simulate the operation of a Dynamically 
Reconfigurable FPGA (or DR-FPGA) a simulator must be able to simultaneously model any 
active static circuit and the switching of dynamic circuits along the time. 
In (Dorairaj et al., 2005) is presented best practices for modelling partial reconfiguration 
using the PlanAhead simulation tool. It mainly recommends the utilization of bus macros 
among candidate modules for replacement. During the module substitution the original 
module is deactivated in order to activate the replacing one. The deactivation and activation 
of modules are the two basic operations for partial reconfiguration simulation. 
Meanwhile, Pleis et. al. defend that a dynamically reconfigurable system is formed by 
different interchangeable functionalities (Pleis & Ogami, 2007). 
Based on those interpretations of simulation of partial and dynamic, we can summarize that 
all simulators should be complete if it can model three operations: 

• Module removing; 

• Module switching; 

• Module partitioning. 
These basic operations are presented here. Fig. 1 presents a Module C being removed to give 
place to another module of same area of smaller. 
 

 

Fig. 1. Module removing of Module C. 

Fig. 2 presents the second dynamic reconfiguration case, which can be seen as a logical 
continuation of module removing, when the Module C, after being removed, is replaced by 
a different module (Module D) on the same area. 
Module partitioning is the third type of reconfiguration and is presented in Fig. 3. On this 
illustration the Module A is separated into three different modules, which together execute 
the same functionality of Module A, but by separated modules at different moments. 
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Fig. 2. Switching from Module C to Module D. 

The two first reconfiguration types are important because they map the chip modification to 
save area (module removing) and to change functionality (module switching). The module 
partitioning is important to enable the same functionality be partitioned into different 
modules scheduled on time. In this way, we have the three basic benefits from partial and 
dynamic reconfiguration, save area, change functionality and time partitioning, other 
benefits are consequences of these. 
 

 

Fig. 3. Module partitioning into three different modules of same functionality. 

3. The methodology 

The methodology created to simulate dynamic reconfiguration is based on changing the 
execution mechanism of discrete-event simulators. The simulator must check every module 
before executing it, verifying if they were deactivated before. In the affirmative case the 
module must not be executed. 
Fig. 4 presents a general simulator module based on events and organized in modules and 
processes, used mainly for digital hardware systems simulation. Each module can 
implement one or more processes, which execute the task. The processes have a sensitivity 
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list each, indicating which events they are sensitive to. A process is executed on a simulation 
cycle if one event registered on its sensitivity list occurs during that specific cycle. 
In the example of Fig. 4, the event E3 could represent the clock signal modification, and as 
we can see, every process is sensitive to it; each clock signal will trigger every processes to 
be executed. 
The scheduler is part of the simulator kernel, and decides the execution sequence for each 
cycle. If event E1 is scheduled, for example, it will be searched on the processes sensitivity 
lists, and be found on processes 1 and 3, which belong to modules A and B, respectively. 
The simulated time is formed by a sequence of simulation cycles. At each cycle, one or more 

events can occur. In case of no event occurs during a cycle, the simulation clock advances 

and none activity is performed, making the simulation faster. The simulation performance 

depends directly on sensitivity lists. The more events the lists have, more probable is a 

process to be executed and new cycles to be created, which costs hardware processing. 

Back to dynamic reconfiguration, a not configured module can be defined as a never-
executed module, not depending on occurred events, neither on its sensitivity list. On the 
same way, not configured modules can be reconfigured during simulation just by allowing 
its normal execution based on events. 
Our methodology lies on the interception of the execution signals generated from the 
simulator to the modules, making that not configured modules never receive those signals. 
Conceptually, we adopted the module blocking instead of process blocking, as a module 
normally represents a hardware functionality unit. 
 

 

Fig. 4. Modified simulator to block modules not more configured on system. 
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Fig. 4 presents the modification that should be done aiming at interception of execution 
signals to not configured modules. Our strategy was implemented by creating a blocked 
modules list. Instead of immediately executing the processes sensitive to an event we 
propose the blocked modules list to be checked before its execution. The process will be 
executed only if the module which it belongs to does not appears in the list. For example, on 
Fig. 4, the Module B was found on blocked modules list. For that reason, the Process 3 was 
not executed, although it is sensitive to event E1. 
Using our methodology the implementation of dynamic reconfiguration on a simulator can 
be performed just by managing the blocked modules list, adding some kind of reference to 
the modules that should not be configured and removing it to reconfigure the module. 

4. Adding dynamic reconfiguration simulation to SystemC 

In order to implement the methodology using a functional simulator, SystemC was selected. 
We adopted a bottom-up approach adding functions to activate and deactivate modules by 
the programmer during simulation. SystemC is open-source, free and enables the modeling 
and simulation at TLM and RTL using Object-Orientation concepts (Grotker et al., 2002). It 
does not allow deactivation of modules during simulation, but as an open-source tool, it is a 
great candidate for our methodology application. The Adriatic project (Qu et al., 2004) also 
uses SystemC at transaction level (TLM), but it does not simulate the dynamic behaviour of 
the modules during simulation. On the other hand the OSSS+R project (Schallenberg et al., 
2006) simulates the dynamic reconfiguration of SystemC modules using heritage and 
polymorphism. It implements a SystemC language extension which allows the switching of 
modules inherited from the same super class. This top-down approach does not allow the 
simulation of RTL systems, neither its application to other not Object-Oriented simulators. 
The strategy is implementing two special functions for activating and deactivating modules 
during simulation named dr_sc_turn_on and dr_sc_turn_off, respectively. Both were written 
modifying the SystemC kernel source code. Figure 6 presents the added functions 
declarations in the sc_simcontext.h SystemC header file. The two routines dr_add_constraint 
are used to store modules attributes, like the chip area occupation by the module and the 
reconfiguration delay, always present when a module is configured on chip. The extern key- 
word indicates that the routine can be called outside the sc_context class. In other words, 
those functions can be called by user code on regular simulations. 
 

 

Fig. 5. Main routines added to SystemC library (sc_simcontext.h) 

In Fig. 6 is presented how the functions were implemented in sc_simcontext.cpp SystemC 
kernel file. A linked list is used to store the names of the modules that must be not executed 
(not configured). The routine dr_sc_turn_off add the module name to the list, while the 
dr_sc_turn_on remove the module from the list, allowing it to be executed (reconfigured). 
Another list is keep to store the modules constraints (chip area and reconfiguration delay). 
This list is required when the dr_add_constraint function is called. In this case, constraints are 
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added to the list and cannot be removed, just overwritten. The chip area of each module is 
used for chip occupation analysis normally performed after simulation. Such analysis is 
important to figure out how effective the application of dynamic reconfiguration on chip was. 
 

 

Fig. 6. The added routines from Figure 6 implemented in sc_simcontext.cpp file. 

The details of the routines to manipulate the linked lists are presented on Fig. 7. Adding a 
module name into the configuration list (dr_add_config function) is not a problem. The 
module name is simply added into the list. But, the dr_remove_config just remove the module 
name from the list if the reconfiguration delay for that module has expired, and the first call 
of this function is considered just a removing request. Therefore, before removing the 
module name, the delay is compared with the elapsed time since the removing request. 
 

 

Fig. 7. Implementation of the new routines. 
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Now the SystemC execution properly can be performed. This execution is made at 
sc_simcontext class by the crunch method. The modified code can be seen on Fig. 8. Initially 
in line 3 the method pop_runnable_method returns the sc_method_handle to the next method to 
be executed at simulation. The modifications aim at the execution avoidance of methods 
from ConfigList and store the execution history of each module in a logging file. The fout 
object is responsible to print every event on log file. The blocked modules are represented in 
log file with and “X” (lines 18 and 20), and when the module is executed, the module area is 
printed on file instead (lines 15 and 28). 
The three conditionals on lines 10, 11 and 12, check whether the module should be executed 
or not. Initially is checked whether module name is on ConfigList (line 10), and then whether 
the request_remove was called for the module (line 11), finishing the verification checking 
whether the reconfiguration delay was already elapsed (line 12). If all verifications are true, 
the module is removed from ConfigList (line 13) and finally executed (line 14). Following the 
process, the module area is printed on log file (line 15). Case any conditional returns false, a 
“X” is printed on log file representing execution blocking. 
 

 

Fig. 8. SystemC crunch routine, responsible for executing every module in simulation. 

4. Execution logging 

As detailed before, every simulation cycle is logged on a file. A fragment of the log file is 
presented on Figure 10. Each line on the log file stores the simulation cycle timestamp, the 
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modules occupation area and the respective module names. If a module is not configured at 
that time, and “X” is stored instead of its chip area. All information is stored on CSV format 
(Comma-separated values). 
 

 

Fig. 9. A fragment from an execution log file. 

The log file can easily be exported to calculations softwares and the system behavior can be 
seen in table format, furthermore, graphics can be made. Fig. 10 presents an example of a 
graphic representing the chip area utilization over the time. On this example, some modules 
are not configured during some time intervals, making the total chip area varying from 7 to 
12 area units (hypothetical unit). 
Using this strategy, conventional systems can also have their execution log analyzed and 
candidate modules for partial reconfiguration can be detected. Therefore, the log analysis 
can be used as the first step for system behavior study. 

5. Experiments and results 

In order to apply our methodology to model and simulate dynamically reconfigurable 
hardware systems, two case studies were developed. 
The first work was the modelling and simulation of a research project for Daimler-Crysler in 
collaboration with the University of Karlsruhe in Germany (Becker & Vorbach, 2003). The 
objective is to simulate a dynamically reconfigurable hardware, which controls some eight 
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Fig. 10. Chip area usage generated from an execution log file. 

inner cabin devices on-demand, four windows, two seats, one internal mirror and one 
controller for the lights. If the user requests a certain service, the corresponding hardware 
unit is configured and initialized in an unoccupied slot within the dynamic reconfigurable 
area of the FPGA system (see Fig. 11). The results of this work were published in IEEE 
Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures 
(ISVLSI’2007) in Porto Alegre (Brito et al., 2007). 
In this example, a maximum number of four applications can be executed in parallel. This 
hardware constraint enables the reduction of the number of different electronic hardware 
control units within a car, hence saves space, power consumption and costs. The justification 
of hardware implementation can be easily demonstrated, when considering heavy CAN 
traffic, where traditional microprocessor based systems reach their limits. 
The example application is implemented on a Xilinx Virtex-II FPGA (XC2V3000). To get an 
overview of the complete system, Fig. 11 shows a block schematic containing all main 
integrated components. A MicroBlaze Soft-IP controller from Xilinx is used. A detailed 
description of the run-time system and the tasks of the MicroBlaze controller can be found 
in (Huebner et al., 2004). 
The FPGA of the Virtex-II series also provides an internal configuration access port (ICAP) 
that allows reconfiguration without the need of external wiring. The partial bitstreams for 
the modules are stored in an external flash memory. The run-time system accesses them by 
sending start address and end address to a decompressor module on demand. A further 
start command enables the decompressor, which reads the compressed bitstream from the 
flash memory in order to write the configuration code through the ICAP interface to the 
internal configuration memory of the FPGA. 
While it is being processed, the controller and all other modules are able to continue the 
execution of their tasks. A signal from the decompressor reports the end of the configuration 
process, which indicates that the service is ready for use. The complete system is connected 
via a CAN interface to its environment. 
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Fig. 11. Architecture of the automotive system. 

The experiments show that if the FPGA’s dynamic area is constrained to 8 CLB columns 
which are equal to 1 application slot, the average response time is about 1000 times larger 
than the client timing constraint, which is 100ms. On the contrary, a system owning 64 CLB 
columns, where all eight applications can be configured at the same time, the average 
response time satisfies the timing constraint. However, the area usage is far from being 
reasonable or efficient. 
Actually the real hardware implementation (as represented by Fig. 11) uses 32 CLB columns. 
In this case, the simulations show that the system’s average response time is shorter than 
100ms if the request rate is set to maximum 1 per second. A larger rate implies a system stall 
for a specific period of time. The problem arises mostly after the fifth request, when no slot 
is temporarily available. 
The response time with 32 configurable columns satisfies most use cases, although with 24 
columns (which mean 3 applications per time) it may be sufficient for non-critical 
applications. It could not respond instantly, for example, if a window were closed with 
somebody having his hand in between. 
The second example implements a general purpose simulator for processors, called PReProS 
(A General Purpose Partially Reconfigurable Processor Simulator), whereas this technique 
supports run-time reconfiguration (Brito et al., 2007). Such technique uses high-level 
representations to model and simulate the reconfiguration, giving the opportunity to 
designers to foresee the dynamic behavior of your system before the hardware is going to be 
implemented for the target architecture, or even before the system specification in HDL, if 
desired. 
Considering the simulation of dynamic and partially reconfigurable systems, a couple of 
steps should be done, like the target architecture specification, the definition of necessary 
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hardware resources and the designing of the applications. The presented approach aims at 
writing a reusable parametrizable SystemC program able to model and simulate real target 
processor architectures. For example, coarse-grained like XPP (Becker et al., 2003) which 
consists of configurable ALUs communicating via a packet oriented, automatically 
synchronized communication network. Further, fine-grained architectures, like standalone 
FPGAs and embedded FPGAs, which have the well known FPGA behavior, or any other 
processor, running any kind of application. 
The goal is to parameterize the individual processor’s characteristics in such a general way 

that all kind of processing element can be fully described using this set of parameters. The 

main features that have to be considered here are the clock frequency, properties of the data 

and configuration ports, and the number of chip area available on chip. In the same way, the 

applications’ properties can be set by the frequency, needed ports, data width and number 

of configured area units. When using this simulator the designer just have to set the 

parameters and implement its own blocks to configure the applications and exchange data 

with the PReProS. 

On Fig. 12 it is possible to see the amount of used resources of the XPP simulated chip when 

five different applications were scheduled. XPP was simulated containing 144 ALUs. In this 

way more parallel configurations could be simulated. The free area is marked by the darker 

area in the figure. By investigating these results, the best parallel performance and hence the 

best processing power and efficiency of the simulated processor area can be achieved. It 

helps the designer to reevaluate his/her algorithms and implementation strategy, or if the 

selected architecture should be changed to better target his needs. 
 

 

Fig. 12. Total chip area utilization by PRePros 
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6. New design-flow with partial and dynamic reconfiguration 

An important aspect is the integration of this modeling and simulation technique into the 
design flow. It is desired to achieve this in a plug and play manner. To provide such 
lightweight integration, the SystemC (www.systemc.org) description language is used. The 
capabilities are presented as an easy to use API and can be applied to any system, which is 
described in SystemC. Fig. 13 presents a typical SystemC based design flow. Usually, the 
same approach is used twice, to develop both, statically and dynamically reconfigurable 
systems. The absence of specific techniques and tools would turn such development into an 
arduous and costly task. 
During hardware verification, it is quite common to iterate several times within the design 
cycle, thus returning to the TLM and RTL model. Our technique aims at reducing these 
verification cycles and, as a result, decreasing development time. 
There are other efforts to provide similar functionalities using SystemC. However, they are 
mostly TLM-based (like OSSS+R project (Schallenberg et al., 2004)) including operation 
restrictions, or do not focus on simulation (like Adriatic project (Qu et al., 2004)). The 
presented approach attacks the same problem in a more general way. Any module can be 
removed, added or switched at simulation-time. 
Aiming at decreasing design time, an extension of the common SystemC based design flow 
is proposed. The modeling and simulation of dynamic and partial reconfiguration is 
aggregated, resulting in a modified design flow, as shown in Fig. 13. 
The dynamic behavior at TLM or RTL is performed by specific instructions. The designer 
decides about a proper location in his code. An interesting way is an implementation in one 
or more separated models, which centralizes the dynamic behavior of the system. These 
modules can then be realized as dedicated blocks that control and schedule run-time 
configuration. 
 

 

Fig. 13. Typical design-flow using SystemC adapted for dynamic reconfiguration. 

7. Proof of concept 

In order to validate the methodology, we should proof that all three types of dynamic 
reconfiguration operations defined on Section 2 can be modeled and simulated by our 
SystemC modified version. In general, the strategy used to model partial reconfigurable 
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system with SystemC is based on, first declares and connects all modules that will be part of 
the system at some time. Fig. 14 shows how the module substitution should be done. It 
replaces the sc_module_C by the sc_module_D. Initially both modules are present in the 
system, but just the module C is configured. At the second moment, the module C is 
deactivated by calling dr_sc_turn_off (“moduleC”) and the module D is configured by calling 
dr_sc_turn_on (“moduleD”). 
 

 

Fig. 14. Implementation of the first dynamic reconfiguration type (switching). 

On the second type of reconfiguration operation, a module should be removed from the 
system. As can be seen on Fig. 15, at the first step every modules were instantiated on 
simulation, and at the second the module C was deactivated by calling dr_sc_turn_off 
(“moduleC”). 
 

 

Fig. 15. Implementation of the second dynamic reconfiguration type (removing). 

For the third partial reconfiguration operation (see Fig. 16) is necessary instantiate the 
complete module (sc_module A) at the same time with all the sub modules (modules A’, A’’ 
and A’’’) that execute the module A functionality partitioned in time. The sub-modules are 
deactivated at the first time and at the second moment the module A is deactivated and the 
sub modules are configured. 
These three demonstrations show that using the methodology is possible to simulate the 
three basic dynamic reconfiguration operations, the module switching, removing and 
partitioning. We believe that each simulator able to simulate these three operations is able to 
simulate any dynamically (and partially) reconfigurable system. 
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Fig. 16. Implementing the third type of reconfiguration (partitioning). 

8. Simulator performance 

The feasibility of the methodology was demonstrated for the first time in (Brito et al., 2006). 
In (Brito et al., 2007) an automotive application was simulated and the dynamic 
reconfiguration benefits could be visualized using the logging feature. In (Brito et al., 2007) a 
general purpose simulator was created using the modified SystemC, in order to simulate 
processors with dynamic reconfiguration features like some FPGAs and coarse-grained 
chips. 
These works were designed at TLM, so the performance of using the modified SystemC was 
not significantly low. Our experiments demonstrated some performance limitations with 
RTL simulations. The simulator performance was tested simulating an MPEG-4 decoder 
(Rocha et al., 2006). Initially the system was modeled used SystemC RTL and brought to 
chip synthesis and silicon fabrication. The decoder implements the Simple Profile Level 0 from 
MPEG-4. The decoder architecture contains the project of a personalized hardware to the 
bitstream decoding, Variable Length Code (VLC), texture decoding, movement compensation 
and color spaces conversion. The experiments on hardware demonstrate that 30 frames per 
second were decoded (Rocha et al., 2006). 
A 16 frames video was simulated in two different runs. For the first run the original 
SystemC version 2.1.1 without modification was used. For the second run the modified 
SystemC of the same version was used. In both cases, no dynamic reconfiguration was used. 
The results show that the modified simulator presented a three times slower simulation than 
the SystemC without modification (see Table 1). 
Using the modified SystemC, the Config List is checked at each simulation cycle. This 
checking causes a negative impact to the simulation time, as the list is completely analyzed 
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at each cycle. We believe that the simulation time increase is tolerable considering the 
advantage to be able to simulate dynamic reconfiguration both at RTL and TL abstraction 
level. 
 

Simulator Simulation time 

Traditional SystemC 12m56.630s 

Modified SystemC 36m34.334s 

Table 1. Performance of the modified SystemC in RTL (MPEG-4 decoder example). 

9. Methodology extension 

In general, the methodology principles applied in partial reconfiguration consists in turning 
off a sub-module "A" before of configuration of the sub-module "B" in the area previously 
occupied by "A" and then turning on the sub-module "B". Analyzing the turning on and off 
principles of the sub-modules, these principles are similar to those adopted by the technique 
of power gate, differentiating which in technique power gate turning on and off the same 
module. This section will be shows the work based on reusability of the methodology to 
modify the SystemC simulator, the purpose is to simulate power gate design in RTL 
(Silveira et al., 2009). 

9.1 Overview power-gate 
Power gate strategy is based on adding mechanisms to turn off blocks within the SoC that 
are not being used, the act of turning off and on the block is accomplished in appropriate 
time to achieve power saving while minimizing performance impact (Keating et al., 2007). 
When the event of turning off happens, the energy savings is not instantaneous due to 
thermal issues of the previous activity and the nature of technology is not ideal for power 
gate. In the event of turning on the block requires some time that cannot be ignored by the 
system designer for the block to retake the activity (Keating et al., 2007). Fig. 17 shows an 
example of the activity of a block with power gate implemented. 
 

 

Fig. 17. Profile with Power Gating (Keating et al., 2007) 

Differently of a block that is always active, a power-gate block is powered by a power-
switching network that will supply VDD or VSS power gate block, the CMOS 
(Complementary Metal–Oxide–Semiconductor) switches are distributed within or around 
the block. Control of CMOS switches is accomplished by a power gating controller. In some 

www.intechopen.com



 Dynamic Modelling 

 

44 

cases it is necessary to retain the state of the block during the turned off period to restore the 
state when it is turned on. This restraint is implemented using special flip-flops. Figure 18 
shows the diagram with the structure of the SoC with power gate. 
 

 

Fig. 18. Block Diagram of a SoC with Power Gating (Keating et al., 2007) 

9.2 Simulator implementation 
In order to implement the functional verification of low power design using a functional 
simulator, a similar approach developed to simulate partial and dynamic reconfiguration 
(Brito et al., 2006; Brito et al., 2007) was selected. This is a bottom-up approach adding 
functions to activate and deactivate modules by the programmer. 
The strategy implements two new special functions for turning on and off modules during 
simulation named sc_lp_turn_on and sc_lp_turn_off, respectively. These functions were 
written modifying the SystemC kernel source-code. The routine sc_lp_add_constraint was 
also created and is used to store modules attributes about their energy consumption and the 
turn-on delay, always present when a module is re-activated on chip. Table 2 presents how 
the functions signatures in sc_simcontext.h SystemC kernel file. 
 

extern void sc_lp_turn_on(std::string module_name);  

extern void sc_lp_turn_off(std::string module_name);  

extern void sc_lp_add_constraint(std::string module_name, sc_time wakedelay);  

Table 2. Functions declarations 

A linked list is used to store the names of the modules that must be not executed (turn-off). 
The routine sc_lp_turn_off adds the module name to the list, while sc_lp_turn_on removes 
the module from the list, allowing it to be executed (activity). Another list is kept to store the 
module constraints (wake delay and energy consumption). This list is required when the 
sc_lp_add_constraint function is called. In this case, constraints are added to the list and 
cannot be removed, just overwritten. The extern key-word indicates that the routine can be 
called outside the sc_context class. In other words, those functions can be called by user 
code on regular simulations. 

9.3 Functional verification 
VeriSC methodology adopts projects with hierarchy concept, therefore a project can be 
divided into parts to be implemented and verified (Silva & Melcher, 2005). BVE-Cover library 
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was chosen to accomplish the functional verification with coverage of the design. Several 
simulations were performed with different versions of SystemC simulator and design: 

• SC + DV1: At this stage were used the original SystemC version 2.2.0 and the first 
implementation of the design. 

• SC–LP + DV1: At this stage were used the new SystemC-LP functions added and the 
first implementation of the design. 

• SC–LP + DV2: At this stage were used the new SystemC-LP version and the second 
implementation containing the power gate design. 

9.4 Results 
Several results were extracted (Silveira et al., 2009), but with respect to reusability of the 
methodology we can highlight, (1) was possible to simulate low power design in RTL, and 
during the simulation we can verify the power gate principles operating; (2) the simulator 
performance loss, which a negative point, fact occurred due to the adoption of the strategy 
used in the dynamic reconfiguration simulator. Fig. 19 shows a graphic with the different 
simulators performance. The first simulation time was measured using regular SystemC 
(SC) and the first design (DV1), which does not use the new functions. It took 0.32 seconds. 
The next experiment achieved 0.75 seconds to simulate the first design (DV1) using SystemC 
modified for low power (SC-LP). The third and worst result was achieved when simulated 
using low power and using in design the new implemented functions (DV2). 
 

 

Fig. 19. Simulators performance 

10. Simulator improvement 

Due to simulator performance loss around 1000% compared with original SystemC, 
improvements were accomplished. This section presents that improvement to SystemC 
simulator with support for the functional verification of designs containing the principles of 
power gate design implemented in RTL. To demonstrate that the new modifications 
improved the performance of the simulator, the same techniques adopted in (Silveira et al., 
2009) will be used. 

10.1 Simulator optimization 
The optimization of the simulator (Silveira et al., 2009) was accomplished based on the 
profiling of the running simulator, which demonstrated an excessive number of accesses to 
linked lists added to SystemC simulator kernel. A linked list is used to store the names of 
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the modules that must not be executed. The routine sc_lp_turn_off adds the module name to 
the list, while sc_lp_turn_on removes the module from the list, allowing it to be executed. 
Another list is kept to store the module constraints (wake delay). This list is required when 
the sc_lp_add_constraint function is called. In this case, constraints are added to the list and 
cannot be removed, only overwritten. 
Based on profiling information, an asymptotic and semantic analysis of data structures used 
to implement the simulator kernel was performed. That consists of: (1) a new data structure 
to store information about which modules are turned off and the delay needed to retake full 
activity after its reactivation, (2) the data structure must provide information access at a very 
short and constant time interval. 
The new functions were rewritten using a hash map to replace the linked list. Each hash 
map element represents a design module and is composed two variables (a boolean and a 
time). The boolean variable is responsible for identifying whether the module is activated or 
not, the time variable is responsible for storing the necessary time delay to re-activate the 
module. The elements are accessed using a key, which is the name of the module. The 
functions signatures have been altered, sc_lp_add_constraint was removed and its function 
was added to the routine sc_lp_turn_on and attributes are now passed to hash map. Table 3 
shows how the functions signatures currently in sc_simcontext.h SystemC kernel file. 
 

extern void sc_lp_turn_on (const char* module_name, sc_time wakedelay);  

extern void sc_lp_turn_off (const char* module_name);  

Table 3. Functions Declarations 

10.2 Results 
Among the simulations results, the preservation of the semantics and performance 
enhancement of the new simulator compared to the version shows in (Silveira et al., 2009) 
can be highlighted. 
The improvement in simulator performance can be seen in Fig. 20. It can be seen that the 
design simulations (DV1) using the improved simulator (SC-LP-V2) presents an increasing 
of 4% in simulation time and simulations of power gate design (DV2) the increase of 8% in 
comparison with the original SystemC simulator. 
 

 

Fig. 20. Simulators performance 
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Comparing the two SC-LP simulators, the gains were significant. The SC-LP-V2 simulator 
achieved a performance increase of 224% in the execution of design without power gate 
design and 925% simulating power gate design. These performance gains were reached by 
eliminating the costs of elements addition and removal from linked lists and increasing the 
speed for accessing information through the use of hash map structure. 

12. Final considerations 

The innovative methodology presented here allows the modelling and simulation partially 
and dynamically reconfigurable hardware systems, enabling new functions to module 
blocking and resuming in the simulator kernel. This enables the dynamic behaviour to be 
foreseen before the synthesis on the target hardware (like FPGA). Furthermore, systems 
evaluation is possible even before their hardware description using a Hardware Description 
Language. 
Even further, the same approach is being used to model and simulate low power hardware 
systems through power gate technique. The results prove that as dynamic reconfiguration, 
as low power systems can be simulated using the identical simulators. This opens new 
opportunities for both areas, enabling the tool exchanging for both proposes. 
Our innovative methodology can be applied to any hardware simulator which uses an event 
scheduler. The main idea is to register each block that is not configured on a chip at a given 
moment during simulation. The simulator scheduler is programmed to not execute those 
blocked modules. We prove in this work that this approach covers every partial 
reconfigurable system situation. A particular strategy is also adopted to log the chip area 
usage enabling the investigation of the benefits of partial reconfigurations for each 
application. 
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