
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

3

A Methodology for Modelling and Simulation of
Dynamic and Partially Reconfigurable Systems

Alisson Vasconcelos Brito1, George Silveira2 and Elmar Uwe Kurt Melcher2

1Federal University of Paraiba (UFPB),
2Federal University of Campina Grande (UFCG)

Brazil

1. Introduction

In the present day, partial reconfiguration is a reality (Becker & Hartenstein, 2003). There are
many industries investing as well in fine-grain (like FPGAs (Huebner et al., 2004)) as in
coarse grain solutions (eg. XPP (Becker & Vorbach, 2003)). This capability enables the
necessary configuration area to decrease and the development of lower cost and more
energy efficient systems, where timing is the main concern.
The main contribution of this work is to enable the engineers to discover earlier during the
design-flow the best cost-benefit relationship between configuration time and saved chip
area.
Such relationship is generally obtained only after the prototyping phase during the
hardware verification. Once the dynamic reconfiguration simulation is possible in a simple
way, the concrete benefits of such simulations can be checked in a simple way.
The innovative technique presented here allows the modeling and simulation of such
systems by enabling new functions to module blocking and resuming in the simulator
kernel. This enables the dynamic behavior to be foreseen before the synthesis on the target
configuration (like FPGA). Furthermore, systems evaluation is possible even before their
hardware description using a Hardware Description Language. Papers were published
(Brito et al., 2006; Brito et al., 2007) presenting how the partial reconfiguration can be
practically simulated.
In this work a novel methodology for simulate partial and dynamic reconfigurable system is
presented. This methodology can be applied to any hardware simulator which uses an event
scheduler. The main idea is to register each block that is not configured on a chip at a given
moment in simulated time. Modifying the simulator scheduler, it is programmed to not
execute those blocked modules. We prove in this work that this approach covers every
partial and dynamic reconfigurable system situation. SystemC is used as a case of study and
several systems were simulated using our methodology.
The section 2 presents what a simulator should implement to be considered able to simulate
partial and dynamic systems. The methodology is presented on section 3 and section 4
presents how we applied it to SystemC. A particular strategy was adopted to log the chip
area usage enabling the investigation of the benefits of dynamic reconfigurations in each
application. This logging strategy is presented on section 5. Section 6 proves that the partial
and dynamic reconfiguration can be really modeled and simulated using our methodology

Source: Dynamic Modelling, Book edited by: Alisson V. Brito,
 ISBN 978-953-7619-68-8, pp. 290, January 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

 Dynamic Modelling

30

in practice with SystemC. Section 8 brings some consideration on the simulator performance
after its adaptation and section 9 reports some further works using this methodology
applying it to other targets.

2. Simulation of partial and dynamic reconfiguration

Before presenting the novel methodology for simulating partial and dynamic
reconfiguration, it is necessary to characterize what in fact can be considered a simulator for
dynamic reconfiguration. In (Lysaght & Dunlop, 1993) is described partial reconfiguration
as the execution of a tasks sequence by hardware modules scheduled on time. In (Zhang &
Ng, 2000) is affirmed that in order to simulate the operation of a Dynamically
Reconfigurable FPGA (or DR-FPGA) a simulator must be able to simultaneously model any
active static circuit and the switching of dynamic circuits along the time.
In (Dorairaj et al., 2005) is presented best practices for modelling partial reconfiguration
using the PlanAhead simulation tool. It mainly recommends the utilization of bus macros
among candidate modules for replacement. During the module substitution the original
module is deactivated in order to activate the replacing one. The deactivation and activation
of modules are the two basic operations for partial reconfiguration simulation.
Meanwhile, Pleis et. al. defend that a dynamically reconfigurable system is formed by
different interchangeable functionalities (Pleis & Ogami, 2007).
Based on those interpretations of simulation of partial and dynamic, we can summarize that
all simulators should be complete if it can model three operations:

• Module removing;

• Module switching;

• Module partitioning.
These basic operations are presented here. Fig. 1 presents a Module C being removed to give
place to another module of same area of smaller.

Fig. 1. Module removing of Module C.

Fig. 2 presents the second dynamic reconfiguration case, which can be seen as a logical
continuation of module removing, when the Module C, after being removed, is replaced by
a different module (Module D) on the same area.
Module partitioning is the third type of reconfiguration and is presented in Fig. 3. On this
illustration the Module A is separated into three different modules, which together execute
the same functionality of Module A, but by separated modules at different moments.

www.intechopen.com

A Methodology for Modelling and Simulation of Dynamic and Partially Reconfigurable Systems

31

Fig. 2. Switching from Module C to Module D.

The two first reconfiguration types are important because they map the chip modification to
save area (module removing) and to change functionality (module switching). The module
partitioning is important to enable the same functionality be partitioned into different
modules scheduled on time. In this way, we have the three basic benefits from partial and
dynamic reconfiguration, save area, change functionality and time partitioning, other
benefits are consequences of these.

Fig. 3. Module partitioning into three different modules of same functionality.

3. The methodology

The methodology created to simulate dynamic reconfiguration is based on changing the
execution mechanism of discrete-event simulators. The simulator must check every module
before executing it, verifying if they were deactivated before. In the affirmative case the
module must not be executed.
Fig. 4 presents a general simulator module based on events and organized in modules and
processes, used mainly for digital hardware systems simulation. Each module can
implement one or more processes, which execute the task. The processes have a sensitivity

www.intechopen.com

 Dynamic Modelling

32

list each, indicating which events they are sensitive to. A process is executed on a simulation
cycle if one event registered on its sensitivity list occurs during that specific cycle.
In the example of Fig. 4, the event E3 could represent the clock signal modification, and as
we can see, every process is sensitive to it; each clock signal will trigger every processes to
be executed.
The scheduler is part of the simulator kernel, and decides the execution sequence for each
cycle. If event E1 is scheduled, for example, it will be searched on the processes sensitivity
lists, and be found on processes 1 and 3, which belong to modules A and B, respectively.
The simulated time is formed by a sequence of simulation cycles. At each cycle, one or more

events can occur. In case of no event occurs during a cycle, the simulation clock advances

and none activity is performed, making the simulation faster. The simulation performance

depends directly on sensitivity lists. The more events the lists have, more probable is a

process to be executed and new cycles to be created, which costs hardware processing.

Back to dynamic reconfiguration, a not configured module can be defined as a never-
executed module, not depending on occurred events, neither on its sensitivity list. On the
same way, not configured modules can be reconfigured during simulation just by allowing
its normal execution based on events.
Our methodology lies on the interception of the execution signals generated from the
simulator to the modules, making that not configured modules never receive those signals.
Conceptually, we adopted the module blocking instead of process blocking, as a module
normally represents a hardware functionality unit.

Fig. 4. Modified simulator to block modules not more configured on system.

www.intechopen.com

A Methodology for Modelling and Simulation of Dynamic and Partially Reconfigurable Systems

33

Fig. 4 presents the modification that should be done aiming at interception of execution
signals to not configured modules. Our strategy was implemented by creating a blocked
modules list. Instead of immediately executing the processes sensitive to an event we
propose the blocked modules list to be checked before its execution. The process will be
executed only if the module which it belongs to does not appears in the list. For example, on
Fig. 4, the Module B was found on blocked modules list. For that reason, the Process 3 was
not executed, although it is sensitive to event E1.
Using our methodology the implementation of dynamic reconfiguration on a simulator can
be performed just by managing the blocked modules list, adding some kind of reference to
the modules that should not be configured and removing it to reconfigure the module.

4. Adding dynamic reconfiguration simulation to SystemC

In order to implement the methodology using a functional simulator, SystemC was selected.
We adopted a bottom-up approach adding functions to activate and deactivate modules by
the programmer during simulation. SystemC is open-source, free and enables the modeling
and simulation at TLM and RTL using Object-Orientation concepts (Grotker et al., 2002). It
does not allow deactivation of modules during simulation, but as an open-source tool, it is a
great candidate for our methodology application. The Adriatic project (Qu et al., 2004) also
uses SystemC at transaction level (TLM), but it does not simulate the dynamic behaviour of
the modules during simulation. On the other hand the OSSS+R project (Schallenberg et al.,
2006) simulates the dynamic reconfiguration of SystemC modules using heritage and
polymorphism. It implements a SystemC language extension which allows the switching of
modules inherited from the same super class. This top-down approach does not allow the
simulation of RTL systems, neither its application to other not Object-Oriented simulators.
The strategy is implementing two special functions for activating and deactivating modules
during simulation named dr_sc_turn_on and dr_sc_turn_off, respectively. Both were written
modifying the SystemC kernel source code. Figure 6 presents the added functions
declarations in the sc_simcontext.h SystemC header file. The two routines dr_add_constraint
are used to store modules attributes, like the chip area occupation by the module and the
reconfiguration delay, always present when a module is configured on chip. The extern key-
word indicates that the routine can be called outside the sc_context class. In other words,
those functions can be called by user code on regular simulations.

Fig. 5. Main routines added to SystemC library (sc_simcontext.h)

In Fig. 6 is presented how the functions were implemented in sc_simcontext.cpp SystemC
kernel file. A linked list is used to store the names of the modules that must be not executed
(not configured). The routine dr_sc_turn_off add the module name to the list, while the
dr_sc_turn_on remove the module from the list, allowing it to be executed (reconfigured).
Another list is keep to store the modules constraints (chip area and reconfiguration delay).
This list is required when the dr_add_constraint function is called. In this case, constraints are

www.intechopen.com

 Dynamic Modelling

34

added to the list and cannot be removed, just overwritten. The chip area of each module is
used for chip occupation analysis normally performed after simulation. Such analysis is
important to figure out how effective the application of dynamic reconfiguration on chip was.

Fig. 6. The added routines from Figure 6 implemented in sc_simcontext.cpp file.

The details of the routines to manipulate the linked lists are presented on Fig. 7. Adding a
module name into the configuration list (dr_add_config function) is not a problem. The
module name is simply added into the list. But, the dr_remove_config just remove the module
name from the list if the reconfiguration delay for that module has expired, and the first call
of this function is considered just a removing request. Therefore, before removing the
module name, the delay is compared with the elapsed time since the removing request.

Fig. 7. Implementation of the new routines.

www.intechopen.com

A Methodology for Modelling and Simulation of Dynamic and Partially Reconfigurable Systems

35

Now the SystemC execution properly can be performed. This execution is made at
sc_simcontext class by the crunch method. The modified code can be seen on Fig. 8. Initially
in line 3 the method pop_runnable_method returns the sc_method_handle to the next method to
be executed at simulation. The modifications aim at the execution avoidance of methods
from ConfigList and store the execution history of each module in a logging file. The fout
object is responsible to print every event on log file. The blocked modules are represented in
log file with and “X” (lines 18 and 20), and when the module is executed, the module area is
printed on file instead (lines 15 and 28).
The three conditionals on lines 10, 11 and 12, check whether the module should be executed
or not. Initially is checked whether module name is on ConfigList (line 10), and then whether
the request_remove was called for the module (line 11), finishing the verification checking
whether the reconfiguration delay was already elapsed (line 12). If all verifications are true,
the module is removed from ConfigList (line 13) and finally executed (line 14). Following the
process, the module area is printed on log file (line 15). Case any conditional returns false, a
“X” is printed on log file representing execution blocking.

Fig. 8. SystemC crunch routine, responsible for executing every module in simulation.

4. Execution logging

As detailed before, every simulation cycle is logged on a file. A fragment of the log file is
presented on Figure 10. Each line on the log file stores the simulation cycle timestamp, the

www.intechopen.com

 Dynamic Modelling

36

modules occupation area and the respective module names. If a module is not configured at
that time, and “X” is stored instead of its chip area. All information is stored on CSV format
(Comma-separated values).

Fig. 9. A fragment from an execution log file.

The log file can easily be exported to calculations softwares and the system behavior can be
seen in table format, furthermore, graphics can be made. Fig. 10 presents an example of a
graphic representing the chip area utilization over the time. On this example, some modules
are not configured during some time intervals, making the total chip area varying from 7 to
12 area units (hypothetical unit).
Using this strategy, conventional systems can also have their execution log analyzed and
candidate modules for partial reconfiguration can be detected. Therefore, the log analysis
can be used as the first step for system behavior study.

5. Experiments and results

In order to apply our methodology to model and simulate dynamically reconfigurable
hardware systems, two case studies were developed.
The first work was the modelling and simulation of a research project for Daimler-Crysler in
collaboration with the University of Karlsruhe in Germany (Becker & Vorbach, 2003). The
objective is to simulate a dynamically reconfigurable hardware, which controls some eight

www.intechopen.com

A Methodology for Modelling and Simulation of Dynamic and Partially Reconfigurable Systems

37

Fig. 10. Chip area usage generated from an execution log file.

inner cabin devices on-demand, four windows, two seats, one internal mirror and one
controller for the lights. If the user requests a certain service, the corresponding hardware
unit is configured and initialized in an unoccupied slot within the dynamic reconfigurable
area of the FPGA system (see Fig. 11). The results of this work were published in IEEE
Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures
(ISVLSI’2007) in Porto Alegre (Brito et al., 2007).
In this example, a maximum number of four applications can be executed in parallel. This
hardware constraint enables the reduction of the number of different electronic hardware
control units within a car, hence saves space, power consumption and costs. The justification
of hardware implementation can be easily demonstrated, when considering heavy CAN
traffic, where traditional microprocessor based systems reach their limits.
The example application is implemented on a Xilinx Virtex-II FPGA (XC2V3000). To get an
overview of the complete system, Fig. 11 shows a block schematic containing all main
integrated components. A MicroBlaze Soft-IP controller from Xilinx is used. A detailed
description of the run-time system and the tasks of the MicroBlaze controller can be found
in (Huebner et al., 2004).
The FPGA of the Virtex-II series also provides an internal configuration access port (ICAP)
that allows reconfiguration without the need of external wiring. The partial bitstreams for
the modules are stored in an external flash memory. The run-time system accesses them by
sending start address and end address to a decompressor module on demand. A further
start command enables the decompressor, which reads the compressed bitstream from the
flash memory in order to write the configuration code through the ICAP interface to the
internal configuration memory of the FPGA.
While it is being processed, the controller and all other modules are able to continue the
execution of their tasks. A signal from the decompressor reports the end of the configuration
process, which indicates that the service is ready for use. The complete system is connected
via a CAN interface to its environment.

www.intechopen.com

 Dynamic Modelling

38

Fig. 11. Architecture of the automotive system.

The experiments show that if the FPGA’s dynamic area is constrained to 8 CLB columns
which are equal to 1 application slot, the average response time is about 1000 times larger
than the client timing constraint, which is 100ms. On the contrary, a system owning 64 CLB
columns, where all eight applications can be configured at the same time, the average
response time satisfies the timing constraint. However, the area usage is far from being
reasonable or efficient.
Actually the real hardware implementation (as represented by Fig. 11) uses 32 CLB columns.
In this case, the simulations show that the system’s average response time is shorter than
100ms if the request rate is set to maximum 1 per second. A larger rate implies a system stall
for a specific period of time. The problem arises mostly after the fifth request, when no slot
is temporarily available.
The response time with 32 configurable columns satisfies most use cases, although with 24
columns (which mean 3 applications per time) it may be sufficient for non-critical
applications. It could not respond instantly, for example, if a window were closed with
somebody having his hand in between.
The second example implements a general purpose simulator for processors, called PReProS
(A General Purpose Partially Reconfigurable Processor Simulator), whereas this technique
supports run-time reconfiguration (Brito et al., 2007). Such technique uses high-level
representations to model and simulate the reconfiguration, giving the opportunity to
designers to foresee the dynamic behavior of your system before the hardware is going to be
implemented for the target architecture, or even before the system specification in HDL, if
desired.
Considering the simulation of dynamic and partially reconfigurable systems, a couple of
steps should be done, like the target architecture specification, the definition of necessary

www.intechopen.com

A Methodology for Modelling and Simulation of Dynamic and Partially Reconfigurable Systems

39

hardware resources and the designing of the applications. The presented approach aims at
writing a reusable parametrizable SystemC program able to model and simulate real target
processor architectures. For example, coarse-grained like XPP (Becker et al., 2003) which
consists of configurable ALUs communicating via a packet oriented, automatically
synchronized communication network. Further, fine-grained architectures, like standalone
FPGAs and embedded FPGAs, which have the well known FPGA behavior, or any other
processor, running any kind of application.
The goal is to parameterize the individual processor’s characteristics in such a general way

that all kind of processing element can be fully described using this set of parameters. The

main features that have to be considered here are the clock frequency, properties of the data

and configuration ports, and the number of chip area available on chip. In the same way, the

applications’ properties can be set by the frequency, needed ports, data width and number

of configured area units. When using this simulator the designer just have to set the

parameters and implement its own blocks to configure the applications and exchange data

with the PReProS.

On Fig. 12 it is possible to see the amount of used resources of the XPP simulated chip when

five different applications were scheduled. XPP was simulated containing 144 ALUs. In this

way more parallel configurations could be simulated. The free area is marked by the darker

area in the figure. By investigating these results, the best parallel performance and hence the

best processing power and efficiency of the simulated processor area can be achieved. It

helps the designer to reevaluate his/her algorithms and implementation strategy, or if the

selected architecture should be changed to better target his needs.

Fig. 12. Total chip area utilization by PRePros

www.intechopen.com

 Dynamic Modelling

40

6. New design-flow with partial and dynamic reconfiguration

An important aspect is the integration of this modeling and simulation technique into the
design flow. It is desired to achieve this in a plug and play manner. To provide such
lightweight integration, the SystemC (www.systemc.org) description language is used. The
capabilities are presented as an easy to use API and can be applied to any system, which is
described in SystemC. Fig. 13 presents a typical SystemC based design flow. Usually, the
same approach is used twice, to develop both, statically and dynamically reconfigurable
systems. The absence of specific techniques and tools would turn such development into an
arduous and costly task.
During hardware verification, it is quite common to iterate several times within the design
cycle, thus returning to the TLM and RTL model. Our technique aims at reducing these
verification cycles and, as a result, decreasing development time.
There are other efforts to provide similar functionalities using SystemC. However, they are
mostly TLM-based (like OSSS+R project (Schallenberg et al., 2004)) including operation
restrictions, or do not focus on simulation (like Adriatic project (Qu et al., 2004)). The
presented approach attacks the same problem in a more general way. Any module can be
removed, added or switched at simulation-time.
Aiming at decreasing design time, an extension of the common SystemC based design flow
is proposed. The modeling and simulation of dynamic and partial reconfiguration is
aggregated, resulting in a modified design flow, as shown in Fig. 13.
The dynamic behavior at TLM or RTL is performed by specific instructions. The designer
decides about a proper location in his code. An interesting way is an implementation in one
or more separated models, which centralizes the dynamic behavior of the system. These
modules can then be realized as dedicated blocks that control and schedule run-time
configuration.

Fig. 13. Typical design-flow using SystemC adapted for dynamic reconfiguration.

7. Proof of concept

In order to validate the methodology, we should proof that all three types of dynamic
reconfiguration operations defined on Section 2 can be modeled and simulated by our
SystemC modified version. In general, the strategy used to model partial reconfigurable

www.intechopen.com

A Methodology for Modelling and Simulation of Dynamic and Partially Reconfigurable Systems

41

system with SystemC is based on, first declares and connects all modules that will be part of
the system at some time. Fig. 14 shows how the module substitution should be done. It
replaces the sc_module_C by the sc_module_D. Initially both modules are present in the
system, but just the module C is configured. At the second moment, the module C is
deactivated by calling dr_sc_turn_off (“moduleC”) and the module D is configured by calling
dr_sc_turn_on (“moduleD”).

Fig. 14. Implementation of the first dynamic reconfiguration type (switching).

On the second type of reconfiguration operation, a module should be removed from the
system. As can be seen on Fig. 15, at the first step every modules were instantiated on
simulation, and at the second the module C was deactivated by calling dr_sc_turn_off
(“moduleC”).

Fig. 15. Implementation of the second dynamic reconfiguration type (removing).

For the third partial reconfiguration operation (see Fig. 16) is necessary instantiate the
complete module (sc_module A) at the same time with all the sub modules (modules A’, A’’
and A’’’) that execute the module A functionality partitioned in time. The sub-modules are
deactivated at the first time and at the second moment the module A is deactivated and the
sub modules are configured.
These three demonstrations show that using the methodology is possible to simulate the
three basic dynamic reconfiguration operations, the module switching, removing and
partitioning. We believe that each simulator able to simulate these three operations is able to
simulate any dynamically (and partially) reconfigurable system.

www.intechopen.com

 Dynamic Modelling

42

Fig. 16. Implementing the third type of reconfiguration (partitioning).

8. Simulator performance

The feasibility of the methodology was demonstrated for the first time in (Brito et al., 2006).
In (Brito et al., 2007) an automotive application was simulated and the dynamic
reconfiguration benefits could be visualized using the logging feature. In (Brito et al., 2007) a
general purpose simulator was created using the modified SystemC, in order to simulate
processors with dynamic reconfiguration features like some FPGAs and coarse-grained
chips.
These works were designed at TLM, so the performance of using the modified SystemC was
not significantly low. Our experiments demonstrated some performance limitations with
RTL simulations. The simulator performance was tested simulating an MPEG-4 decoder
(Rocha et al., 2006). Initially the system was modeled used SystemC RTL and brought to
chip synthesis and silicon fabrication. The decoder implements the Simple Profile Level 0 from
MPEG-4. The decoder architecture contains the project of a personalized hardware to the
bitstream decoding, Variable Length Code (VLC), texture decoding, movement compensation
and color spaces conversion. The experiments on hardware demonstrate that 30 frames per
second were decoded (Rocha et al., 2006).
A 16 frames video was simulated in two different runs. For the first run the original
SystemC version 2.1.1 without modification was used. For the second run the modified
SystemC of the same version was used. In both cases, no dynamic reconfiguration was used.
The results show that the modified simulator presented a three times slower simulation than
the SystemC without modification (see Table 1).
Using the modified SystemC, the Config List is checked at each simulation cycle. This
checking causes a negative impact to the simulation time, as the list is completely analyzed

www.intechopen.com

A Methodology for Modelling and Simulation of Dynamic and Partially Reconfigurable Systems

43

at each cycle. We believe that the simulation time increase is tolerable considering the
advantage to be able to simulate dynamic reconfiguration both at RTL and TL abstraction
level.

Simulator Simulation time

Traditional SystemC 12m56.630s

Modified SystemC 36m34.334s

Table 1. Performance of the modified SystemC in RTL (MPEG-4 decoder example).

9. Methodology extension

In general, the methodology principles applied in partial reconfiguration consists in turning
off a sub-module "A" before of configuration of the sub-module "B" in the area previously
occupied by "A" and then turning on the sub-module "B". Analyzing the turning on and off
principles of the sub-modules, these principles are similar to those adopted by the technique
of power gate, differentiating which in technique power gate turning on and off the same
module. This section will be shows the work based on reusability of the methodology to
modify the SystemC simulator, the purpose is to simulate power gate design in RTL
(Silveira et al., 2009).

9.1 Overview power-gate
Power gate strategy is based on adding mechanisms to turn off blocks within the SoC that
are not being used, the act of turning off and on the block is accomplished in appropriate
time to achieve power saving while minimizing performance impact (Keating et al., 2007).
When the event of turning off happens, the energy savings is not instantaneous due to
thermal issues of the previous activity and the nature of technology is not ideal for power
gate. In the event of turning on the block requires some time that cannot be ignored by the
system designer for the block to retake the activity (Keating et al., 2007). Fig. 17 shows an
example of the activity of a block with power gate implemented.

Fig. 17. Profile with Power Gating (Keating et al., 2007)

Differently of a block that is always active, a power-gate block is powered by a power-
switching network that will supply VDD or VSS power gate block, the CMOS
(Complementary Metal–Oxide–Semiconductor) switches are distributed within or around
the block. Control of CMOS switches is accomplished by a power gating controller. In some

www.intechopen.com

 Dynamic Modelling

44

cases it is necessary to retain the state of the block during the turned off period to restore the
state when it is turned on. This restraint is implemented using special flip-flops. Figure 18
shows the diagram with the structure of the SoC with power gate.

Fig. 18. Block Diagram of a SoC with Power Gating (Keating et al., 2007)

9.2 Simulator implementation
In order to implement the functional verification of low power design using a functional
simulator, a similar approach developed to simulate partial and dynamic reconfiguration
(Brito et al., 2006; Brito et al., 2007) was selected. This is a bottom-up approach adding
functions to activate and deactivate modules by the programmer.
The strategy implements two new special functions for turning on and off modules during
simulation named sc_lp_turn_on and sc_lp_turn_off, respectively. These functions were
written modifying the SystemC kernel source-code. The routine sc_lp_add_constraint was
also created and is used to store modules attributes about their energy consumption and the
turn-on delay, always present when a module is re-activated on chip. Table 2 presents how
the functions signatures in sc_simcontext.h SystemC kernel file.

extern void sc_lp_turn_on(std::string module_name);

extern void sc_lp_turn_off(std::string module_name);

extern void sc_lp_add_constraint(std::string module_name, sc_time wakedelay);

Table 2. Functions declarations

A linked list is used to store the names of the modules that must be not executed (turn-off).
The routine sc_lp_turn_off adds the module name to the list, while sc_lp_turn_on removes
the module from the list, allowing it to be executed (activity). Another list is kept to store the
module constraints (wake delay and energy consumption). This list is required when the
sc_lp_add_constraint function is called. In this case, constraints are added to the list and
cannot be removed, just overwritten. The extern key-word indicates that the routine can be
called outside the sc_context class. In other words, those functions can be called by user
code on regular simulations.

9.3 Functional verification
VeriSC methodology adopts projects with hierarchy concept, therefore a project can be
divided into parts to be implemented and verified (Silva & Melcher, 2005). BVE-Cover library

www.intechopen.com

A Methodology for Modelling and Simulation of Dynamic and Partially Reconfigurable Systems

45

was chosen to accomplish the functional verification with coverage of the design. Several
simulations were performed with different versions of SystemC simulator and design:

• SC + DV1: At this stage were used the original SystemC version 2.2.0 and the first
implementation of the design.

• SC–LP + DV1: At this stage were used the new SystemC-LP functions added and the
first implementation of the design.

• SC–LP + DV2: At this stage were used the new SystemC-LP version and the second
implementation containing the power gate design.

9.4 Results
Several results were extracted (Silveira et al., 2009), but with respect to reusability of the
methodology we can highlight, (1) was possible to simulate low power design in RTL, and
during the simulation we can verify the power gate principles operating; (2) the simulator
performance loss, which a negative point, fact occurred due to the adoption of the strategy
used in the dynamic reconfiguration simulator. Fig. 19 shows a graphic with the different
simulators performance. The first simulation time was measured using regular SystemC
(SC) and the first design (DV1), which does not use the new functions. It took 0.32 seconds.
The next experiment achieved 0.75 seconds to simulate the first design (DV1) using SystemC
modified for low power (SC-LP). The third and worst result was achieved when simulated
using low power and using in design the new implemented functions (DV2).

Fig. 19. Simulators performance

10. Simulator improvement

Due to simulator performance loss around 1000% compared with original SystemC,
improvements were accomplished. This section presents that improvement to SystemC
simulator with support for the functional verification of designs containing the principles of
power gate design implemented in RTL. To demonstrate that the new modifications
improved the performance of the simulator, the same techniques adopted in (Silveira et al.,
2009) will be used.

10.1 Simulator optimization
The optimization of the simulator (Silveira et al., 2009) was accomplished based on the
profiling of the running simulator, which demonstrated an excessive number of accesses to
linked lists added to SystemC simulator kernel. A linked list is used to store the names of

www.intechopen.com

 Dynamic Modelling

46

the modules that must not be executed. The routine sc_lp_turn_off adds the module name to
the list, while sc_lp_turn_on removes the module from the list, allowing it to be executed.
Another list is kept to store the module constraints (wake delay). This list is required when
the sc_lp_add_constraint function is called. In this case, constraints are added to the list and
cannot be removed, only overwritten.
Based on profiling information, an asymptotic and semantic analysis of data structures used
to implement the simulator kernel was performed. That consists of: (1) a new data structure
to store information about which modules are turned off and the delay needed to retake full
activity after its reactivation, (2) the data structure must provide information access at a very
short and constant time interval.
The new functions were rewritten using a hash map to replace the linked list. Each hash
map element represents a design module and is composed two variables (a boolean and a
time). The boolean variable is responsible for identifying whether the module is activated or
not, the time variable is responsible for storing the necessary time delay to re-activate the
module. The elements are accessed using a key, which is the name of the module. The
functions signatures have been altered, sc_lp_add_constraint was removed and its function
was added to the routine sc_lp_turn_on and attributes are now passed to hash map. Table 3
shows how the functions signatures currently in sc_simcontext.h SystemC kernel file.

extern void sc_lp_turn_on (const char* module_name, sc_time wakedelay);

extern void sc_lp_turn_off (const char* module_name);

Table 3. Functions Declarations

10.2 Results
Among the simulations results, the preservation of the semantics and performance
enhancement of the new simulator compared to the version shows in (Silveira et al., 2009)
can be highlighted.
The improvement in simulator performance can be seen in Fig. 20. It can be seen that the
design simulations (DV1) using the improved simulator (SC-LP-V2) presents an increasing
of 4% in simulation time and simulations of power gate design (DV2) the increase of 8% in
comparison with the original SystemC simulator.

Fig. 20. Simulators performance

www.intechopen.com

A Methodology for Modelling and Simulation of Dynamic and Partially Reconfigurable Systems

47

Comparing the two SC-LP simulators, the gains were significant. The SC-LP-V2 simulator
achieved a performance increase of 224% in the execution of design without power gate
design and 925% simulating power gate design. These performance gains were reached by
eliminating the costs of elements addition and removal from linked lists and increasing the
speed for accessing information through the use of hash map structure.

12. Final considerations

The innovative methodology presented here allows the modelling and simulation partially
and dynamically reconfigurable hardware systems, enabling new functions to module
blocking and resuming in the simulator kernel. This enables the dynamic behaviour to be
foreseen before the synthesis on the target hardware (like FPGA). Furthermore, systems
evaluation is possible even before their hardware description using a Hardware Description
Language.
Even further, the same approach is being used to model and simulate low power hardware
systems through power gate technique. The results prove that as dynamic reconfiguration,
as low power systems can be simulated using the identical simulators. This opens new
opportunities for both areas, enabling the tool exchanging for both proposes.
Our innovative methodology can be applied to any hardware simulator which uses an event
scheduler. The main idea is to register each block that is not configured on a chip at a given
moment during simulation. The simulator scheduler is programmed to not execute those
blocked modules. We prove in this work that this approach covers every partial
reconfigurable system situation. A particular strategy is also adopted to log the chip area
usage enabling the investigation of the benefits of partial reconfigurations for each
application.

13. References

Becker, J. & Hartenstein, R. (2003). Configware and morphware going mainstream. Journal of
Systems Architecture. Vol. 49, No. 4-6, p. 127-142, September, 2003.

Becker, J., Vorbach, M. (2003). Architecture, Memory and Interface Technology Integration
of an Industrial/Academic Configurable System-on-Chip (CSoC)”, IEEE
COMPUTER SOCIETY. ANNUAL Symposium ON VLSI, Tampa, Florida, February
20–21, 2003.

Becker, J.; Huebner, M. & Ullmann, M. (2003). Power Estimation and Power Measurement of
Xilinx Virtex FPGAs: Trade-offs and Limitations”. Proceedings of the 16nd Annual
Symposium on Integrated Circuits and System Design (SBCCI03), Sao Paulo, Brazil,
September, 2003.

Brito, A. V.; Rosas, W. & Melcher, E. U. K. (2006). An open-source tool for simulation of
partially reconfigurable systems using SystemC. Proceedings of IEEE Computer
Society Annual Symposium on VLSI (ISVLSI 2006), Karlsruhe, Germany, 2006.

Brito, A. V.; Kuehnle, M.; Huebner, M.; Becker, J. & Melcher, E. U. K. (2007). A General
Purpose Partially Reconfigurable Processor Simulator (PReProS)” Proceedings of 15th
Reconfigurable Architecture Workshop (RAW'2007), 2007, Long Beach. 21st International
Parallel & Distributed Processing Symposium. Piscataway, New Jersey: IEEE, 2007.

Brito, A. V.; Kuehnle, M.; Huebner, M.; Becker, J. & Melcher, E. U. K. (2007). Modelling and
Simulation of Dynamic and Partially Reconfigurable Systems using SystemC”.

www.intechopen.com

 Dynamic Modelling

48

Proceedings of IEEE Computer Society Annual Symposium on Emerging VLSI
Technologies and Architectures, (ISVLSI'2007), Porto Alegre. IEEE Computer Society
Piscataway, Vol. 1. p.200 – 203. New Jersey: IEEE 2007

Dorairaj, N.; Shiflet, E. & Goosman, M. (2005), PlanAhead Software as a Platform for Partial
Reconfiguration. Xcell Journal. Xilinx, Inc. December 2005.

Grotker, T.; Liao, S.; Martin, G. & Swan, S. (2002). System Design with SystemC. Kluwer
Academic Publishers, 2002.

Huebner, M.; Becker, T. & Becker, J. (2004). Real-Time LUT-Based Network Topologies for
Dynamic and Partial FPGA Self-Reconfiguration. Proceedings of the 16nd Annual
Symposium on Integrated Circuits and System Design (SBCCI03). Recife, Brazil,
September, 2004.

Keating, M.; Flynn, D.; Aitken, R. & Gibbons, A., Shi, K. (2007). Low Power Methodology
Manual, For System-on-Chip Design, Series: Series on Integrated Circuits and
Systems 2007, XVI, 304 p., Hardcover, ISBN: 978-0-387-71818-7

Keating, M.; Flynn, D.; Aitken, R.; Gibbons, A. & Shi, K. Low Power Methodology Manual, For
System-on-Chip Design, Series: Series on Integrated Circuits and Systems 2007, XVI,
304 p., Hardcover, ISBN: 978-0-387-71818-7

Lysaght, P., Dunlop, J. (1993). Dynamic Reconfiguration of Field Programmable Gate
Arrays. Proceedings of the 1993 International Workshop on Field-Programmable Logic and
Applications. Oxford, England: Abingdom EE&CS Books, p. 82-94, 1993.

Pleis, M. A. & Ogami, K. Y. (2007). Dynamic reconfiguration interrupt system and method.
Cypress Semiconductor Corporation, San Jose, CA, US. 2007.

Qu, Y.; Tiensyrja, K. & Masselos, K. (2004), System-Level Modeling of Dynamically
Reconfigurable Co-Processors. Proceedings of International Conference on Field
Programmable Logic and Applications, Antwerp, Belgium, August-September, 2004.

Qu, Y.; Tiensyrja, K. & Masselos, K. (2004). System-Level Modeling of Dynamically
Reconfigurable Co-Processors”, International Conference on Field Programmable
Logic and Applications, Antwerp, Belgium, August-September 2004.

Rocha, A. K.; Lira, P., Ju, Y. Y., Barros, E.; Melcher, E. U. K. & Araujo, G. (2006). Silicon
Validated, IP Cores Designed by The Brasil-IP Network”. Proceedings of IP/SOC
Conference, Grenoble, França, 2006.

Schallenberg, A.; Oppenheimer, F. & Nebel, W. (2004). Designing for Dynamic and Partially
Reconfigurable FPGAs with SystemC and OSSS, Proceedings of Forum on Specification
and Design Languages (FDL ‘04), Lille, France, September, 2004.

Schallenberg, A.; Oppenheimer, F. & Nebel, W. (2006). OSSS+R: Modelling and Simulating
Self-Reconfigurable Systems. Proceedings of the International Conference on Field
Programmable Logic and Applications, p. 177–182, August 2006.

Silva, K. R. G. & Melcher, E. U. K. (2005). A methodology aimed at better integration of
functional verification and RTL design, Design Automation for Embedded Systems,
Vol. 10, No. 4, p. 285-298.

Silveira, G. S.; Brito, A. V. & Melcher, E. U. (2009). Functional verification of power gate
design in SystemC RTL. Proceedings of the 22nd Annual Symposium on Integrated
Circuits and System Design: Chip on the Dunes, Natal, Brazil, August, 2009, SBC,
Porto Alegre.

Zhang, X. & Ng, K. W. (2000). A review of high-level synthesis for dynamically
reconfigurable FPGAs”. Microprocessors and Microsystems, Vol. 24, No. 4, p. 199-211.
August 2000.

www.intechopen.com

Dynamic Modelling

Edited by Alisson V. Brito

ISBN 978-953-7619-68-8

Hard cover, 290 pages

Publisher InTech

Published online 01, January, 2010

Published in print edition January, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

When talking about modelling it is natural to talk about simulation. Simulation is the imitation of the operation of

a real-world process or systems over time. The objective is to generate a history of the model and the

observation of that history helps us understand how the real-world system works, not necessarily involving the

real-world into this process. A system (or process) model takes the form of a set of assumptions concerning its

operation. In a model mathematical and logical assumptions are considered, and entities and their relationship

are delimited. The objective of a model – and its respective simulation – is to answer a vast number of “what-if”

questions. Some questions answered in this book are: What if the power distribution system does not work as

expected? What if the produced ships were not able to transport all the demanded containers through the

Yangtze River in China? And, what if an installed wind farm does not produce the expected amount of

energyt? Answering these questions without a dynamic simulation model could be extremely expensive or

even impossible in some cases and this book aims to present possible solutions to these problems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Alisson Vasconcelos Brito, George Silveira and Elmar Uwe Kurt Melcher (2010). A Methodology for Modelling

and Simulation of Dynamic and Partially Reconfigurable Systems, Dynamic Modelling, Alisson V. Brito (Ed.),

ISBN: 978-953-7619-68-8, InTech, Available from: http://www.intechopen.com/books/dynamic-modelling/a-

methodology-for-modelling-and-simulation-of-dynamic-and-partially-reconfigurable-systems

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

