We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,100 Open access books available
116,000 International authors and editors
120M Downloads

154 Countries delivered to
TOP 1% Our authors are among the most cited scientists
12.2% Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Robust H_{∞} Control for Linear Switched Systems with Time Delay

Yan Li, Zhihuai Li and Xinmin Wang
Northwestern Polytechnical University
P. R. China

1. Introduction

Switched control has been applied widely in the intelligent robots, aerospace and aeronautics engineering and wireless communications. In this chapter, the robust H_{∞} control for linear uncertain switched systems with time delay is studied.

Switched systems with time delay include the system with single time delay and the system with multiple time delays. Linear switched systems with time delay can be described as follows:

$$
\begin{align*}
x(t) & = A_{\sigma(t)}x(t) + \sum_{j=1}^{N} A_{\alpha_{ij}(t)}x(t - \tau_j) + B_{\sigma(t)}u(t) + B_{\alpha_{ij}(t)}w(t) \\
z(t) & = C_{\sigma(t)}x(t) + \sum_{j=1}^{N} C_{\alpha_{ij}(t)}x(t - \tau_j) + D_{\sigma(t)}u(t) + B_{\alpha_{ij}(t)}w(t) \\
x(t) & = \phi(t), t \in (-\max(\tau_j), 0)
\end{align*}
$$

where $x(t) \in \mathbb{R}^n$ is the system state vector, $u(t) \in \mathbb{R}^m$ is the input vector, $z(t) \in \mathbb{R}^m$ is the output vector, $w(t) \in l_2$ is the disturbance vector, $\sigma(t) : [0, \infty) \to M = \{1, 2, 3, ..., m\}$ is the switching signal, $A_{\sigma(t)}$, $A_{\alpha_{ij}(t)}$, $B_{\sigma(t)}$, $B_{\alpha_{ij}(t)}$, $C_{\sigma(t)}$, $C_{\alpha_{ij}(t)}$, $D_{\sigma(t)}$, $B_{\alpha_{ij}(t)}$ are known constant matrices, $\phi(t)$ represents the initial condition of the system, τ_j represents the time delay. For the system (1), if $N=1$, it is a switched system with single time delay, otherwise it is a switched system with multiple time delays.

The state feedback control for switched systems can be designed with memory or without memory.

For the switched system (1), the state feedback control can be designed as follows:

- $u(t) = K_{\sigma(t)}x(t)$ is the state feedback control without memory;
- $u(t) = K_{\sigma(t)}x(t) + \sum_{j=1}^{N} K_{\alpha_{ij}}x(t - \tau_j)$ is the state feedback control with memory.

Compared with the results on the stability of switched systems, research on the H_{∞} control for switched systems is not adequate yet. Attentions have been attracted to the H_{∞} control...
for switched systems since 1998, when Hespanha considered the problem firstly. Similar to the stability problem, the H_∞-control problem can be classified into:

Problem A. The H_∞ control under arbitrary switching signal;

Problem B. The H_∞ control under a certain switching signal.

Problem A means the internal stability and the L_2 gain of the switched systems are independent of the switching signal. Problem A is usually solved through the common Lyapunov method which is conservative in that the common Lyapunov function is not easy to choose.

Wu and Meng (Wu & Meng, 2009) studied H_∞ model reduction for continuous-time linear switched systems with time-varying delay. By applying the average dwell time approach and the piecewise Lyapunov function technique, delay delay-dependent and delay-independent sufficient conditions are proposed in terms of linear matrix inequality (LMI) to guarantee the exponential stability and the weighted H_∞ performance for the error system. Zhang and Liu (Zhang & Liu 2008) studied the problem of delay-dependent robust H_∞ control for switched systems with disturbance and time-varying structured uncertainties. A sufficient condition ensuring the robust stabilization and H_∞ performance under arbitrary switching laws was obtained based on the Lyapunov function and Finslerpsilas lemma. Xie et al. (Xie et al., 2004) proposed conditions for uniformly quadratic stability for uncertain switched systems based on common Lyapunov method and LMI formulation. Fu et al. (Fu et al., 2007) proposed a the sufficient condition for the design of dynamic output feedback control of switched systems based on the common Lyapunov function approach and convex combination technique. Song et al. (Song et al., 2007) present the switching law and robust H_∞ control design for a class of discrete switched systems with time-varying delay. Song (Song et al., 2006) also studied a class of uncertain discrete switched systems with time delay. The switching law and the H_∞ controller are given based on the Multi-Lyapunov Function method. Ma et al. (Ma et al., 2006) proposed an H_∞ controller with memory for discrete switched systems with time delay.

In this chapter, the robust H_∞ control based on multi-Lyapunov-Function approach and LMI formulation for general linear switched systems with time delay is first introduced. The results are then extended to robust H_∞ control without and with memory for uncertain linear switched systems with time-varying delay. Suppose all sub-systems are not robust stable, a sufficient condition for system stabilization with H_∞ bound is given, as well as the design algorithm for the robust H_∞ switched control and the switching law. The simulation results show the effectiveness of the methods.

2. Robust H_∞ stability and stabilization for linear switched systems

Consider the following linear switched system:

\[x = Ax + Bw \]
\[z = Cx \quad (2) \]
Consider the following linear switched system:

\[\dot{x}(t) = A_i x(t) + B_i w(t), \]

where \(x(t) \in \mathbb{R}^n \) is the state vector, \(z(t) \in \mathbb{R}^{m_z} \) is the disturbance vector, \(A_i, B_i, C_i \) are constant matrices with proper dimensions, and \(i \in \{0, \infty\} \rightarrow M = \{1, 2, \ldots, m\} \) is the switching signal.

Lemma 1: \(X, Y \) are matrices with proper dimensions. There exists a scalar \(\alpha > 0 \) such that the following inequality holds:

\[X^T Y + Y^T X \leq \alpha X^T X + \alpha^{-1} Y^T Y \quad (3) \]

Lemma 2: For given symmetric matrix \(S = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \), the dimension of \(S_{11} \) is \(n \times r \). The following three conditions are equivalent:

1. \(S < 0 \)
2. \(S_{11} < 0, S_{22} - S_{12}^T S_{21}^T S_{22} < 0 \)
3. \(S_{22} < 0, S_{11} - S_{22}^T S_{21}^T S_{12} < 0 \) \quad (4)

Lemma 3: For a given scalar \(\gamma > 0 \), \(\gamma = \max(\gamma_i), i \in M \), if there is a switching law \(i = i(x(t), t) \) and a positive matrix \(P_i \) satisfying

\[\begin{bmatrix} A_i^T P_i + P_i A_i & P_i B_i \\ * & -\gamma_i^2 I \end{bmatrix} \begin{bmatrix} P_i & C_i^T \\ * & -I \end{bmatrix} < 0 \quad (5) \]

the system (2) is stable with \(H_\infty \) performance \(\gamma \).

Proof: Choose the Lyapunov function of the sub-system of system (2) as \(V_i = x^T P_i x \). The derivative of the Lyapunov function is

\[\dot{V}_i = x^T P_i x + x^T P_i \dot{x} = x^T (A_i^T P_i + P_i A_i)x + w^T B_i^T P_i x + x^T B_i P_i w \]

When \(w = 0 \), if the above equation satisfies

\[x^T (A_i^T P_i + P_i A_i)x < 0 \]

the system (2) is asymptotic stable.

According Lemma 2, the inequality (5) is equivalent to

\[\begin{bmatrix} A_i^T P_i + P_i A_i & P_i B_i \\ * & -\gamma_i^2 I \end{bmatrix} \begin{bmatrix} P_i & C_i^T \\ * & -I \end{bmatrix} < 0 \]

For any \(x(t) \) and \(w(t) \), the following inequality holds

\[\begin{bmatrix} x^T(t) \\ w^T(t) \end{bmatrix} \begin{bmatrix} A_i^T P_i + P_i A_i & P_i B_i \\ * & -\gamma_i^2 I \end{bmatrix} \begin{bmatrix} P_i & C_i^T \\ * & -I \end{bmatrix} \begin{bmatrix} x^T(t) \\ w^T(t) \end{bmatrix} < 0 \]

which is equivalent to

\[\dot{V}_i(x(t), w(t), t) + z^T(t)z(t) - \gamma_i^2 w^T(t)w(t) < 0 \]

Under the zero initial condition, we have

\[\int_0^\infty [z^T(t)z(t) - \gamma_i^2 w^T(t)w(t)]dt \leq \int_0^\infty [\dot{V}_i(x(t), w(t), t) + z^T(t)z(t) - \gamma_i^2 w^T(t)w(t)]dt - V_{i_0}(x(\infty), w(\infty), +\infty) \]

\[= \sum_{i=1}^m \int_0^\infty [\dot{V}_i(x(t), w(t), t) + z^T(t)z(t) - \gamma_i^2 w^T(t)w(t)]dt - V_{i_0}(x(\infty), w(\infty), +\infty) < 0 \]
Thus
\[\int_{t_0}^{t_1} z(t)z(t)dt \leq \gamma^2 \int_{t_0}^{t_1} w(t)w(t)dt \]
This completes the proof.

From the above proof we know that if inequality (5) holds,
1) When the disturbance \(w=0 \), the system is asymptotically stable;
2) There exist a scalar \(\gamma > 0 \) satisfying the robust \(H_\infty \) performance
\[\int_{t_0}^{t_1} z(t)z(t)dt \leq \gamma^2 \int_{t_0}^{t_1} w(t)w(t)dt \]

Therefore, we can conclude that the switched system (2) satisfies the condition of robust \(H_\infty \) control.

Consider the following linear switched system:
\[\dot{x} = Ax + Bu + D_1w \]
\[z = C_1x \]
where, \(x(t) \in \mathbb{R}^n \) is the state vector, \(u(t) \in \mathbb{R}^m \) is the control input, \(z(t) \in \mathbb{R}^q \) is the output, \(w(t) \in \mathbb{L}_2 \) is the disturbance, \(A_i, B_i, C_i, D_i \) are constant matrices with proper dimensions. \(i : [0, \infty) \rightarrow M = \{1, 2, 3, \ldots, m\} \) is the switching signal.

Definition 1. For a given scalar \(\gamma > 0 \), \(\gamma = \max(\gamma_i), i \in M \), if there is a state feedback control without memory \(u = Kx \), such that the closed-loop subsystem of system (6) is stable with \(H_\infty \) performance \(\gamma \), the system (6) is robust stabilizable with \(H_\infty \) performance \(\gamma \).

With the above knowledge, we will study linear switched systems with time delay in the following sections. Firstly, the robust \(H_\infty \) control for general linear switched systems is analyzed. The results are then extended to uncertain switched systems with time-varying delay and uncertain switched systems with multiple time delays.

3. Robust \(H_\infty \) stabilization for linear switched systems with time delay

Consider the following Linear switched systems with time delay

\[
\begin{align*}
\dot{x}(t) &= A_{\sigma(t)}x(t) + A_{\sigma(t)T}x(t-\tau) + B_{\sigma(t)}u(t) + B_{\sigma(t)T}w(t) \\
z(t) &= C_{\sigma(t)}x(t) \\
x(t) &= \phi(t)
\end{align*}
\]

Where \(x(t) \in \mathbb{R}^n \) is the state vector, \(u(t) \in \mathbb{R}^m \) is the control input, \(z(t) \in \mathbb{R}^q \) is the output vector, \(w(t) \in \mathbb{L}_2 \) is the disturbance, \(z \in \mathbb{R}^r \) is the controlled output, \(\sigma(t) : [0, \infty) \rightarrow M = \{1, 2, 3, \ldots, m\} \) is the switching signal, \(A_{\sigma(t)}, B_{\sigma(t)}, A_{\sigma(t)T}, B_{\sigma(t)T}, C_{\sigma(t)} \) are known constant matrices, \(\tau \) is the time delay, \(\phi(t) \) is a smooth function on \(\mathbb{R}^r \) presenting the initial condition of the system.

Theorem 1. For system (7), and given scalar \(\gamma > 0 \), \(\gamma = \max(\gamma_i) \), if there exist a switching law \(\sigma(t) = i \) and positive matrices \(P_i, R_i \in \mathbb{R}^{m \times m} \) such that the following inequality holds:

www.intechopen.com
Consider the following Linear switched systems with time delay vector, the initial condition of the system. Without memory delay and uncertain switched systems with multiple time delays. The results are then extended to uncertain switched systems with time-varying control. Therefore, we can conclude that the switched system (2) satisfies the condition of robust performance. The controller is \(u(t) = K_x(t) \) and the switching law is \(\sigma(t) = \arg \min_{i \in M} \{ x^T(t) P_i x(t) \} \).

Proof: Suppose there are positive definite matrices \(P_i, R_i \in R^{m \times m} \) and matrix \(K_i \in R^{m \times n} \), such that the linear matrix inequality (8) holds. The controller is \(u(t) = K_x(t) \) and choose the Lyapunov function as

\[
V(x(t), w(t), t) = x^T(t) P_i x(t) + \int_{t-\tau}^{t} x^T(s) R_i x(s) ds
\]

Then,

\[
\dot{V}(x(t), w(t), t) = x^T(t) P_i x(t) + x^T(t) P_i x(t) + x^T(t) R_i x(t) - x^T(t-\tau) R_i x(t-\tau)
\]

\[= x^T(t) [(A + BK_i)^T P_i + P_i (A + BK_i) + R_i] x(t) + x^T(t) P_i B_i x(t) + x^T(t) (t-\tau) A_i^T P_i x(t) \]

\[+ x^T(t) P_i A_i x(t-\tau) - x^T(t-\tau) R_i x(t-\tau) < 0 \] (10)

Rewrite the inequality (10) as

\[
\begin{bmatrix}
 x(t) \\
 x(t-\tau)
\end{bmatrix}^T
\begin{bmatrix}
 S_i & P_i A_i \\
 * & -R_i
\end{bmatrix}
\begin{bmatrix}
 x(t) \\
 x(t-\tau)
\end{bmatrix} < 0
\]

(11)

By Lemma 2 and inequality (8), we have

\[
\begin{bmatrix}
 S_i & P_i A_i & P_i R_i \\
 * & -R_i & 0 \\
 * & * & -\gamma_i^2 I
\end{bmatrix}
\begin{bmatrix}
 C_i^T \\
 C_i^T x(t) \\
 x(t)
\end{bmatrix} < 0
\]

(12)

For any \(x(t), x(t-\tau), w(t) \), the following inequality holds.

\[
\begin{bmatrix}
 x(t) \\
 x(t-\tau) \\
 u(t)
\end{bmatrix}^T
\begin{bmatrix}
 S_i & P_i A_i & P_i R_i \\
 * & -R_i & 0 \\
 * & * & -\gamma_i^2 I
\end{bmatrix}
\begin{bmatrix}
 x(t) \\
 x(t-\tau) \\
 u(t)
\end{bmatrix} < 0
\]

(13)

Thus, we have

\[\dot{V}(x(t), w(t), t) + z^T(t) z(t) - \gamma_i^2 w^T(t) w(t) < 0\]

With \(\gamma = \max(\gamma_i), i \in M \) and under zero initial condition, we have
\[
\int_0^\infty [z^T(t)z(t) - \gamma^2 w^T(t)w(t)]\,dt \\
\leq \int_0^\infty [\dot{V}(x(t), w(t), t) + z^T(t)z(t) - \gamma^2 w^T(t)w(t)]\,dt - V(x(+\infty), w(+\infty), +\infty) \\
= \sum_{i=1}^m \int_0^\infty [\dot{V}(x(t), w(t), t) + z^T(t)z(t) - \gamma^2 w^T(t)w(t)]\,dt - V(x(+\infty), w(+\infty), +\infty) < 0
\]

Thus
\[
\int_0^\infty z^T(t)z(t)\,dt \leq \gamma^2 \int_0^\infty w^T(t)w(t)\,dt
\]

that is
\[
z^T(t)z(t)\,dt < \gamma^2 w^T(t)w(t).
\]

This completes the proof.

Remark 1. To convert the inequality (8) into an LMI, right and left multiplying the following matrix
\[
\begin{bmatrix}
X_1 & 0 & 0 & 0 \\
0 & I & 0 & 0 \\
0 & 0 & I & 0 \\
0 & 0 & 0 & I
\end{bmatrix}
\]
to inequality (8) lead to
\[
\begin{bmatrix}
S & A_j & B_w & X_iC^T \\
* & -R_i & 0 & 0 \\
* & * & -\gamma^2 I & 0 \\
* & * & * & -I
\end{bmatrix} < 0
\]

where, \(S = AX_1 + X_1A^T + BY_1 + Y_1B^T + Q_1\), \(X_i = P_i^{-1}\), \(Y_i = K_iX_i\). The state feedback gain \(K_i = Y_iX_i^{-1}, i \in M\) can be obtained by solving inequality (14).

Example 1 Consider the linear switched system (7) with
\[
A' = \begin{bmatrix}
-1 & -2 \\
1 & 2
\end{bmatrix}, A^i = \begin{bmatrix}
-1 & -1 \\
0 & 0
\end{bmatrix}, B^i = \begin{bmatrix}
1 \\
1
\end{bmatrix}, B_w = \begin{bmatrix}
0.2 \\
0.5
\end{bmatrix}, C^i = [1 \ 1].
\]
\[
\gamma^2 = 3, w(t) = \cos(t), \tau^2 = 0.2.
\]
\[
A^1 = \begin{bmatrix}
-1.5 & -2 \\
1 & 3
\end{bmatrix}, A_1 = \begin{bmatrix}
-1 & -1 \\
0 & 0
\end{bmatrix}, B_1 = \begin{bmatrix}
1 \\
1
\end{bmatrix}, B_w = \begin{bmatrix}
0.2 \\
0.5
\end{bmatrix}, C = [1 \ 1].
\]
\[
\gamma^2 = 3, w(t) = \cos(t), \tau^2 = 0.2.
\]

By solving the linear matrix inequality (14), we have:

\[
P^1 = \begin{bmatrix}
0.1967 & -1.2115 \\
-1.2115 & 7.4606
\end{bmatrix}, K^1 = \begin{bmatrix}
1.1140 & -6.8599 \\
-1.1140 & 7.4606
\end{bmatrix}
\]
\[
P^2 = \begin{bmatrix}
0.0281 & -0.1732 \\
-0.1732 & 1.0670
\end{bmatrix}, K^2 = \begin{bmatrix}
0.7320 & -4.5086 \\
-0.7320 & 4.5086
\end{bmatrix}
\]

www.intechopen.com
By solving the linear matrix inequality (14), we have:

\[\text{Remark 1.} \]

This completes the proof.

To convert the inequality (8) into an LMI, right and left multiplying the following

\[\begin{bmatrix} V_x(t) & V_x(t) \end{bmatrix} \begin{bmatrix} x(t) \end{bmatrix} \leq 0 \]

\[\begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} x(t) \end{bmatrix} \]...

\[\begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} x(t) \end{bmatrix} \]

The state response of the closed-loop system is shown in Figure 1. x1 and x2 are system states, the initial condition is [x1,x2]=[10,-10]. The result shows the system is stable under the switching law when it is switched among the closed-loop subsystems.

4. Robust H_∞ stabilization for uncertain linear switched systems with time-varying delay

Consider the following linear uncertain switched system with time-varying delay

\[
\dot{x}(t) = (A_{\sigma(t)} + \Delta A_{\sigma(t)})x(t) + (B_{\sigma(t)} + \Delta B_{\sigma(t)})u(t) + (B_{\sigma(t)} + \Delta B_{\sigma(t)})u(t) + (C_{\sigma(t)} + \Delta C_{\sigma(t)})z(t) + (D_{\sigma(t)} + \Delta D_{\sigma(t)})w(t) + (D_{\sigma(t)} + \Delta D_{\sigma(t)})w(t) \]

\[
x(t) = \phi(t), t \in [\max(d(t), h(t)), 0] \]

where, $x(t) \in \mathbb{R}^n$ is state vector, $u(t) \in \mathbb{R}^m$ is the control input, $z(t) \in \mathbb{R}^m$ is the output, $w(t) \in l_2$ is the disturbance, $\sigma(t) : [0, \infty) \rightarrow M = \{1, 2, 3, \ldots, m\}$ is the switching signal, $A_{\sigma(t)}$, $B_{\sigma(t)}$, $C_{\sigma(t)}$, $D_{\sigma(t)}$, $\Delta A_{\sigma(t)}$, $\Delta B_{\sigma(t)}$, $\Delta C_{\sigma(t)}$, $\Delta D_{\sigma(t)}$ are known constant matrices, $\Delta A_{\sigma(t)}$, $\Delta B_{\sigma(t)}$, $\Delta C_{\sigma(t)}$, $\Delta D_{\sigma(t)}$ are bounded real functional matrices with proper dimensions, representing the uncertainties, $\phi(t)$ is the initial condition. $d(t)$ and $h(t)$ are the state delay and the control delay respectively. There are positive scalers d, h, ρ_d, ρ_h, such that
\[0 \leq d(t) < d \leq \rho_d < 1\]
\[0 \leq h(t) \leq d \leq \rho_h < 1\]

Denote
\[
\begin{align*}
\overline{A} &= A_{\sigma(t)} + \Delta A_{\sigma(t)}, \\
\overline{B} &= B_{\sigma(t)} + \Delta B_{\sigma(t)}, \\
\overline{C} &= C_{\sigma(t)} + \Delta C_{\sigma(t)}, \\
\overline{D} &= D_{\sigma(t)} + \Delta D_{\sigma(t)}
\end{align*}
\]

and suppose:
\[
\begin{align*}
\begin{bmatrix}
\Delta A_{\sigma(t)} \\
\Delta C_{\sigma(t)} \\
\Delta B_{\sigma(t)} \\
\Delta D_{\sigma(t)}
\end{bmatrix} &= \begin{bmatrix}
H_{\sigma} \\
H_{\sigma_{\text{inf}}} \\
F_{\sigma_{\text{inf}}} \\
F_{\sigma_{\text{inf}}}
\end{bmatrix}\begin{bmatrix}
E_{\sigma} \\
E_{\sigma_2} \\
E_{\sigma_3} \\
E_{\sigma_4}
\end{bmatrix}
\end{align*}
\]

where \(H_{\sigma}, H_{\sigma_{\text{inf}}}, E_{\sigma}, E_{\sigma_2}, E_{\sigma_3}, E_{\sigma_4}\) are constant matrices with proper dimensions and \(F_{\sigma_{\text{inf}}}\) satisfying
\[
F_{\sigma_{\text{inf}}}^T F_{\sigma_{\text{inf}}} \leq I
\]

Theorem 2 For a given scalar \(\gamma > 0\), if there are positive definite matrices \(P_r, R_s, R_n \in R^{n \times n}\), such that:
\[
\begin{bmatrix}
S_1 & P \overline{A}_d & P \overline{B}_d & P \overline{C}_d + K_d \overline{B}_d \\
* & -(1 - \rho_d) R_s & 0 & 0 & C_d \\
* & * & -(1 - \rho_h) R_n & 0 & K_h \overline{B}_d \\
* & * & * & -\gamma^2 I & \overline{B}_d \\
* & * & * & * & -I
\end{bmatrix} < 0
\]

where
\[
S_1 = \overline{A}_d^T P_d + P_d \overline{A}_d + K_d \overline{B}_d^T P_d + P_d \overline{B}_d K_d + R_s + R_n
\]

the system (16) is robust stabilizable with \(H_{\sigma}\) performance \(\gamma\), \(\gamma = \max(\gamma_i)\), \(u(t) = K_d x(t)\) is the switched robust \(H_{\sigma}\) controller. The switching law is \(\sigma(t) = i = \arg\min_{i \in \mathbb{N}} \|x(t) P_i x(t)\|\).

Proof: If there are positive definite matrices \(P_r, R_s, R_n \in R^{n \times n}\) and matrix \(K_d \in R^{n \times n}\) satisfying the inequality (21) with the controller \(u(t) = K_d x(t)\) and Lyapunov function:
\[
V(x(t), w(t), t) = x^T(t)P_d x(t) + \int_{t_0}^{t} x^T(s)R_d x(s)ds + \int_{t_0}^{t} x^T(s)R_n x(s)ds
\]

Then
\[
\dot{V}(x(t), w(t), t) = x^T(t)P_d x(t) + x^T(t)P_d x(t) + x^T(t)(R_d + R_n) x(t)
\]

\[
- (1 - \tilde{d}(t)) x^T(t - \tilde{d}(t)) R_d x(t) - (1 - \tilde{h}(t)) x^T(t - \tilde{h}(t)) R_d x(t - \tilde{h}(t))
\]

\[
= x^T(t) \overline{A}_d P_d x(t) + x^T(t) \overline{A}_d x(t) + x^T(t) \overline{C}_d P_d x(t) + x^T(t) \overline{B}_d K_d x(t)
\]

\[
+ x^T(t) R_d x(t) + R_n x(t) + x^T(t) P_d \overline{B}_d x(t) + x^T(t) \overline{B}_d x(t)
\]

\[
+ x^T(t) (1 - \tilde{d}(t)) \overline{A}_d P_d x(t) + x^T(t) \overline{A}_d x(t) + x^T(t - \tilde{d}(t)) K_d \overline{B}_d P_d x(t)
\]

\[
+ x^T(t) P_d \overline{B}_d x(t - \tilde{d}(t)) + x^T(t - \tilde{h}(t)) K_h \overline{B}_d P_d x(t)
\]

When \(w(t) = 0\), considering condition (17), if inequality (23) holds, the closed-loop system is robust asymptotically stable.

www.intechopen.com
The system (16) is robust stabilizable with

\[\text{Theorem 2} \]

such that

\[(1 - \rho_i) x^T (t - d(t)) R_i x(t - d(t)) - (1 - \rho_i) x^T (t - h(t)) R_i x(t - h(t)) < 0 \]

Rewrite inequality (23) as

\[
W = \begin{bmatrix}
\bar{A}_i^T P + P \bar{A}_i + K_i^T \bar{B}_K + R_i + R_{2i} & P \bar{A}_j & P \bar{B}_K & P \bar{B}_i & 0 \\
* & -(1 - \rho_j) R_{2j} & 0 & * & -(1 - \rho_j) R_{2j} \\
* & * & * & * & -\gamma_i^2 I \\
\end{bmatrix} < 0
\]

where

\[
W = \begin{bmatrix}
\bar{A}_i^T P + P \bar{A}_i + K_i^T \bar{B}_K + R_i + R_{2i} & P \bar{A}_j & P \bar{B}_K & P \bar{B}_i & 0 \\
* & -(1 - \rho_j) R_{2j} & 0 & * & -(1 - \rho_j) R_{2j} \\
* & * & * & * & -\gamma_i^2 I \\
\end{bmatrix} < 0
\]

By inequality (21) and Lemma 2, the following inequality follows

\[
\begin{array}{c}
\bar{C}_i^T + K_i^T \bar{B}_i^T \\
\bar{C}_j^T \\
K_i^T \bar{B}_i^T \\
\end{array} \begin{bmatrix}
\bar{C} + \bar{D} K_i & \bar{C}_j & \bar{D}_j K_i & \bar{B}_j \\
\end{bmatrix} < 0
\]

For any \(x(t), x(t - d(t)), x(t - h(t)), w(t) \), the following inequality holds

\[
\begin{bmatrix}
x(t) \\
x(t - d(t)) \\
x(t - h(t)) \\
w(t) \\
\end{bmatrix} \begin{bmatrix}
\bar{A}_i^T P + P \bar{A}_i + K_i^T \bar{B}_K + R_i + R_{2i} & P \bar{A}_j & P \bar{B}_K & P \bar{B}_i & 0 \\
* & -(1 - \rho_j) R_{2j} & 0 & * & -(1 - \rho_j) R_{2j} \\
* & * & * & * & -\gamma_i^2 I \\
\end{bmatrix} \begin{bmatrix}
x(t) \\
x(t - d(t)) \\
x(t - h(t)) \\
w(t) \\
\end{bmatrix} < 0
\]

Thus

\[
\dot{V} + z^T (t) z(t) - \gamma^2 w^T (t) w(t) < 0
\]

Under zero initial condition with \(\gamma = \max(\gamma_i), i \in M \), we have

\[
\int_0^\infty [z^T (t) z(t) - \gamma^2 w^T (t) w(t)] dt \\
\leq \int_0^\infty [\dot{V}(x(t), w(t), t) + z^T (t) z(t) - \gamma^2 w^T (t) w(t)] dt - V(x(\infty), w(\infty), +\infty) \\
= \sum_{i=1}^{M} \int_0^\infty [\dot{V}(x(t), w(t), t) + z^T (t) z(t) - \gamma^2 w^T (t) w(t)] dt - V(x(\infty), w(\infty), +\infty) < 0
\]

Therefore
Although theorem 2 presents a sufficient condition for the robust stabilization with H_{∞} performance γ, there are still uncertainties in the inequality (21).

Theorem 3 For the switched system (16) and a given positive scalar γ, if there are matrix Y_i with proper dimension, positive definite matrices X_i, Q_i, Q_2, and scalar $\alpha > 0$ such that

$$\int_0^t x^T(t)x(t)dt \leq \gamma^2 \int_0^t w^T(t)w(t)dt$$

This completes the proof.

Remark 2:

Although theorem 2 presents a sufficient condition for the robust stabilization with H_{∞} performance γ, there are still uncertainties in the inequality (21).

Theorem 3 For the switched system (16) and a given positive scalar γ, if there are matrix Y_i with proper dimension, positive definite matrices X_i, Q_i, Q_2, and scalar $\alpha > 0$ such that

$$\int_0^t x^T(t)x(t)dt \leq \gamma^2 \int_0^t w^T(t)w(t)dt$$

This completes the proof.

Remark 2:

Although theorem 2 presents a sufficient condition for the robust stabilization with H_{∞} performance γ, there are still uncertainties in the inequality (21).

Theorem 3 For the switched system (16) and a given positive scalar γ, if there are matrix Y_i with proper dimension, positive definite matrices X_i, Q_i, Q_2, and scalar $\alpha > 0$ such that

$$\int_0^t x^T(t)x(t)dt \leq \gamma^2 \int_0^t w^T(t)w(t)dt$$

This completes the proof.

For any non-zero vector ξ, by inequality (21), we have

$$\int_0^t x^T(t)x(t)dt \leq \gamma^2 \int_0^t w^T(t)w(t)dt$$

This completes the proof.

Proof: For any non-zero vector ξ, by inequality (21), we have

$$\int_0^t x^T(t)x(t)dt \leq \gamma^2 \int_0^t w^T(t)w(t)dt$$

This completes the proof.
Although theorem 2 presents a sufficient condition for the robust stabilization

Remark 2:

This completes the proof.

Proof:

where

and the switching law is

where

\begin{align}
\mathbf{H} &= \begin{bmatrix} P_{H_1} & P_{H_2}^T \\ 0 & 0 \\ 0 & 0 \end{bmatrix}
\end{align}

\begin{align}
\Delta L = [E_i + E_i K_i, E_2, E_2 K_i, E_3] \mathbf{0}^T F(t) + F(t) F^T(t) [E_i + E_i K_i, E_2, E_2 K_i, E_3] \leq \alpha L_i + \alpha^{-1} L_2
\end{align}

where \(\alpha > 0 \).

\begin{align}
L_i = \begin{bmatrix} P_{H_1} & P_{H_2}^T \\ 0 & 0 \\ 0 & 0 \end{bmatrix}
\end{align}

\begin{align}
L_2 = [E_i + E_i K_i, E_2, E_2 K_i, E_3] \mathbf{0}^T [E_i + E_i K_i, E_2, E_2 K_i, E_3] \leq \alpha L_i + \alpha^{-1} L_2
\end{align}

If

\begin{align}
L + \alpha L_i + \alpha^{-1} L_2 < 0
\end{align}

the inequality (21) follows

By Lemma 2, inequality (36) is equivalent to:

\begin{align}
\begin{bmatrix}
S_i & PA_i & PB_i K_i & PB_{i o} \mathbf{C} + K_i D_i^T + \alpha P H_i H_i^T & E_i + K_i E_i^T \\
\ast & -(1-\rho_j) R_{i o} & 0 & 0 & E_i^T \\
\ast & \ast & -(1-\rho_j) R_{i o} & 0 & K_i D_i^T \\
\ast & \ast & \ast & -\gamma_i I & K_i E_i^T \\
\ast & \ast & \ast & \ast & -I + \alpha H_i H_i^T \\
\end{bmatrix} < 0
\end{align}

Denote

\begin{align}
X_i &= P_i^{-1} Q_{i o} = X_{R_i} X_{i}, Q_{i o} = X_{R_i} X_{i},
\end{align}

and

\begin{align}
K_i = Y X_i^{-1}
\end{align}

where

\begin{align}
S_i = A_i^T P_i + P_i A_i + K_i^T B_i^T P_i + P_i B K_i + R_{i o} + R_{i o} + \alpha P H_i H_i^T P_i, \quad Y_i \text{ is an arbitrary matrix with proper dimension}, \quad Q_{i o}, Q_{i o} \text{ are positive definite matrices with proper dimensions. By right and left multiplying the following matrix to the inequality (37)}
\end{align}

www.intechopen.com
the inequality (29) follows. This completes the proof.

Example 2 Consider uncertain switched systems (16) with

\[
\begin{bmatrix}
X_1 & 0 & 0 & 0 & 0 \\
0 & X_1 & 0 & 0 & 0 \\
0 & 0 & X_1 & 0 & 0 \\
0 & 0 & 0 & I & 0 \\
0 & 0 & 0 & 0 & I
\end{bmatrix}
\]

Choose:

\[
F(t) = \sin(t), F_2(t) = \sin(t), w(t) = \cos(t), \nu(t) = \cos(t), \alpha = \alpha_2 = 0.5,
\]

\[
d(t) = 0.3 \sin(t), d_2(t) = 0.3 \sin(t), h(t) = 0.2 \sin(t),
\]

\[
h_2(t) = 0.2 \sin(t), \rho_1 = 0.3, \rho_2 = 0.2, \gamma_1 = 3, \rho_1^2 = 0.3, \rho_2^2 = 0.2, \gamma_2 = 3
\]

By Theorem 3, we have:

\[
P^1 = \begin{bmatrix} 4.0697 & 0 \\ 0 & 4.0697 \end{bmatrix}, K^1 = \begin{bmatrix} -8.6086 & -0.7780 \\ -2.3540 & -6.1658 \end{bmatrix}
\]

\[
P^2 = \begin{bmatrix} 1.9297 & 3.1929 \\ 3.1929 & 5.2830 \end{bmatrix}, K^2 = \begin{bmatrix} -0.6417 & -1.0618 \\ -3.6147 & -5.9809 \end{bmatrix}
\]

and the switching law is designed as

\[
\sigma(t) = \begin{cases} 1, & \dot{x} (P^1 - P^2) x \leq 0 \\ 2, & \dot{x} (P^1 - P^2) x > 0 \end{cases}
\]
The state response is shown in Figure 2.

![State response of Example 2](image)

x1 and x2 are system states. The initial condition is [x1, x2]=[5, -5]. The result shows the system is stable under the switching law when it is switched among the closed-loop subsystems.

5. State feedback robust H_{∞} stabilization for linear uncertain switched systems with multiple time delays

Consider the following linear switched system with multiple time delays

$$
\dot{x}(t) = (A_{\sigma(t)} + \Delta A_{\sigma(t)}) x(t) + \sum_{j \neq i} (A_{\sigma(j)} + \Delta A_{\sigma(j)}) u(t - \tau_j) \\
+ (B_{\sigma(i)} + \Delta B_{\sigma(i)}) u(t) + B_{\sigma(i)} w(t) \\
z(t) = (C_{\sigma(i)} + \Delta C_{\sigma(i)}) x(t) + \sum_{j \neq i} (C_{\sigma(j)} + \Delta C_{\sigma(j)}) u(t - \tau_j) \\
+ (D_{\sigma(i)} + \Delta D_{\sigma(i)}) u(t) + D_{\sigma(i)} w(t) \\
x(t) = \phi(t), t \in (-\max(\tau_j), 0)
$$

where $x(t) \in \mathbb{R}^n$ is the system state vector, $u(t) \in \mathbb{R}^m$ is the control input of the system, $z(t) \in \mathbb{R}^{n_z}$ is the output vector, $w(t) \in \mathbb{L}_2$ is the disturbance, $\sigma(t) : [0, \infty) \rightarrow M = \{1, 2, 3, \ldots, m\}$ is the switching signal, $A_{\sigma(i)}$, $A_{\sigma(i)}$, $B_{\sigma(i)}$, $B_{\sigma(i)}$, $C_{\sigma(i)}$, $C_{\sigma(i)}$, $D_{\sigma(i)}$, $B_{\sigma(i)}$ are known constant matrices, $\Delta A_{\sigma(i)}$, $\Delta A_{\sigma(i)}$, $\Delta B_{\sigma(i)}$, $\Delta B_{\sigma(i)}$, $\Delta C_{\sigma(i)}$, $\Delta C_{\sigma(i)}$, $\Delta D_{\sigma(i)}$, $\Delta D_{\sigma(i)}$ are bounded time-varying real functional matrices with proper dimensions, denoting the uncertainties of the switched systems. $\phi(t)$ is the initial condition of the system. τ_j is the delay of the system state.

www.intechopen.com
Denote
\[\overline{A} = A_0 + \Delta A_{\text{det}}, \quad \overline{B} = B_0 + \Delta B_{\text{det}}, \]
\[\overline{C} = C_0 + \Delta C_{\text{det}}, \quad \overline{D} = D_0 + \Delta D_{\text{det}} \]
(40)
and suppose:
\[\begin{bmatrix} \Delta A_{\text{det}} & \Delta A_{\text{det}} & \Delta B_{\text{det}} \\ \Delta C_{\text{det}} & \Delta C_{\text{det}} & \Delta D_{\text{det}} \end{bmatrix} \begin{bmatrix} H_{1r} \\ H_{2r} \end{bmatrix} = E_{\text{det}} \begin{bmatrix} E_{1r} \\ E_{2r} \\ E_{\text{det}} \end{bmatrix} \]
(41)
where \(H_{1r}, H_{2r}, E_{1r}, E_{2r}, E_{\text{det}}\) are real constant matrices with proper dimensions, and \(E_{\text{det}}\) satisfies:
\[F_{\text{det}}^T F_{\text{det}} \leq I \]
(42)

Theorem 4. For a given scalar \(\gamma_i > 0\), if there are positive definite matrices \(P_i, Q_i, \ldots, Q_N \in \mathbb{R}^{n_{x_i}}\), such that:
\[S_i \begin{bmatrix} P_i(\overline{A}_i + \overline{B}_K) & \ldots & P_i(\overline{A}_i + \overline{B}_K_n) & P_iB_i & \overline{C}_i^T + \overline{K}_i^T \overline{D}_i^T \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \overline{C}_i^T + \overline{K}_i^T \overline{D}_i^T \\ 0 \end{bmatrix} \begin{bmatrix} \overline{C}_i + \overline{K}_i \overline{D}_i \\ 0 \end{bmatrix} < 0 \]
(43)
where \(S_i = (\overline{A}_i + \overline{K}_i \overline{D}_i)^T P_i + P_i(\overline{A}_i + \overline{B}_K) + \sum_{j=1}^{N} Q_j\), the system (39) is robust stabilizable with \(H_{\infty}\) performance \(\gamma_i\), \(\gamma = \max(\gamma_i)\). The state feedback switched \(H_{\infty}\) control with memory is
\[u(t) = K_i x(t) + \sum_{j=1}^{N} K_{ij} x(t - \tau_j) \]

Proof: Suppose there are positive definite matrices \(P_i, Q_i, \ldots, Q_N \in \mathbb{R}^{n_{x_i}}\) and matrices \(K_i, K_j \in \mathbb{R}^{n_{x_i}}\), such that the inequality (43) holds. The state feedback control is
\[u(t) = K_i x(t) + \sum_{j=1}^{N} K_{ij} x(t - \tau_j) \]. Choose the Lyapunov function as
\[V(x(t), u(t), t) = x^T(t) P_i x(t) + \sum_{j=1}^{N} \int_{t-\tau_j}^{t} x^T(s) Q_j x(s) ds \]
The derivative of the Lyapunov function is:
\[\dot{V}(x(t), u(t), t) = x^T(t) P_i \dot{x}(t) + \dot{x}^T(t) P_i x(t) + \sum_{j=1}^{N} \dot{x}^T(t) Q_j x(t) - \sum_{j=1}^{N} \int_{t-\tau_j}^{t} x^T(s) Q_j x(s) ds \]
(44)
When \(w(t) = 0\), if the following inequality holds, the closed-loop is asymptotically stable.
\[x^T(t)[P(\tilde{A} + \tilde{B}K) + (\tilde{A} + \tilde{B}K)^T P + \sum_{i=1}^{N} Q_i]x(t) + \sum_{j=1}^{N} x^T(t - \tau_j)k_i(A_i + \tilde{B}_iK) + \tilde{B}_iK)P x(t) \]

\[+ \sum_{j=1}^{N} x^T(t)P(\tilde{A}_j + \tilde{B}_jK)x(t) - \sum_{j=1}^{N} x^T(t - \tau_j)Q_jx(t - \tau_j) < 0 \]

(45)

Rewrite the above inequality as

\[
\begin{bmatrix}
 x(t) \\
 x(t - \tau_n) \\
 \vdots \\
 x(t - \tau_1) \\
 \end{bmatrix}
\begin{bmatrix}
 S_1 & P(\tilde{A}_1 + \tilde{B}_1K) & \cdots & P(\tilde{A}_N + \tilde{B}_NK) & P_B \end{bmatrix}
\begin{bmatrix}
 x(t) \\
 x(t - \tau_n) \\
 \vdots \\
 x(t - \tau_1) \\
 \end{bmatrix}
\begin{bmatrix}
 C_i + K_i^T \tilde{D}_i \\
 \vdots \\
 C_i + K_i^T \tilde{D}_i \\
 \end{bmatrix} < 0
\]

(46)

For any \(x(t), x(t - \tau_n), \ldots, x(t - \tau_1), w(t) \), the following inequality holds.

\[
\begin{bmatrix}
 x(t) \\
 x(t - \tau_n) \\
 \vdots \\
 x(t - \tau_1) \\
 w(t) \\
 \end{bmatrix}
\begin{bmatrix}
 S_1 & P(\tilde{A}_1 + \tilde{B}_1K) & \cdots & P(\tilde{A}_N + \tilde{B}_NK) & P_B \end{bmatrix}
\begin{bmatrix}
 x(t) \\
 x(t - \tau_n) \\
 \vdots \\
 x(t - \tau_1) \\
 w(t) \\
 \end{bmatrix}
\begin{bmatrix}
 C_i + K_i^T \tilde{D}_i \\
 \vdots \\
 C_i + K_i^T \tilde{D}_i \\
 \end{bmatrix} < 0
\]

(47)

Thus

\[\dot{V}(x(t), w(t), t) + z^T(t)z(t) - \gamma^2w^T(t)w(t) < 0 \]

Under the zero initial condition, by setting \(\gamma = \max(\gamma_i, i \in M) \), we have

\[
\int_0^T [z^T(t)z(t) - \gamma^2w^T(t)w(t)]dt \\
\leq \int_0^T [\dot{V}(x(t), w(t), t) + z^T(t)z(t) - \gamma^2w^T(t)w(t)]dt - V(x(\infty), w(\infty), \infty) \\
= \sum_{j=1}^{M} \int_{\tau_j}^{T} [\dot{V}(x(t), w(t), t) + z^T(t)z(t) - \gamma^2w^T(t)w(t)]dt - V(x(\infty), w(\infty), \infty) < 0
\]

Therefore

\[
\int_0^T z^T(t)z(t)dt \leq \gamma^2 \int_0^T w^T(t)w(t)dt
\]

This completes the proof.
Remark 3. Theorem 4 presents a sufficient condition for robust stabilization with H_∞ performance γ. Since there are uncertainties in inequality (43), it cannot be solved directly.

Lemma 5: For system (39), and given positive scalar γ, if there are matrices $Y_i, Y, ..., Y_N$, positive definite matrices $X_i, R_i, ..., R_N$ with proper dimensions, and scalar $\alpha > 0$, such that the following inequality holds

$$\begin{bmatrix} S & A_{i_1}X + BY_i & ... & A_{i_N}X + BY_N & B_i & \varphi & X_iE_i + Y_iE_i^T \\ * & -R_i & 0 & 0 & 0 & 0 & X_iC_i + Y_iD_i \\ * & * & ... & 0 & 0 & ... & 0 \\ * & * & * & -R_i & 0 & X_iC_i + Y_iD_i & X_iE_i + Y_iE_i^T \\ * & * & * & * & -\gamma^2I & B_i & 0 \\ * & * & * & * & 0 & -I + \alpha HH_i & 0 \end{bmatrix} < 0$$

(48)

where $S = X_iA^T + AX_i + Y_iB^T + BY_i + \sum_{j=1}^{N} R_j + \alpha HH_i^T$, $\varphi = X_iC_i + Y_iD_i$, and the system (39) is robust stabilizable with H_∞ performance $\gamma = \max(\gamma_i)$. The robust H_∞ control is given by

$$u(t) = K_ix(t) + \sum_{j=1}^{N} K_jx(t-\tau_j), \quad x_i = Y_iX_i^{-1}, \quad K_j = Y_jX_j^{-1}, \quad i \in M, \quad j \in N$$

The switching law is $\sigma(t) = \arg \min_{i \in M} \{x_i^T(t)X_i^{-1}x(t)\}$.

Proof. The proof is similar to Theorem 3, and is omitted.

Example 3 The linear uncertain switched system (39) with multiple delays is given below.

$$A_i = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}, \quad A_i^T = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \quad B_i = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$C_i = \begin{bmatrix} 0.2 & 0.1 \\ 0.1 & 0 \end{bmatrix}, \quad D_i = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$H_i = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad E_i = \begin{bmatrix} 0.5 & 0.2 \\ 0 & 0 \end{bmatrix}, \quad E_i^T = \begin{bmatrix} 0.5 & 0 \\ 0 & 0 \end{bmatrix}$$

and $\gamma = \sqrt{3}$, $\alpha(t) = 1$, $\beta(t) = \sin(t), \gamma = 0.5, \tau_i = \frac{\pi}{2} = 0.02$
and $\gamma^2 = 1$, $w^2(t) = \cos(t)$, $F^2(t) = \sin(t)$, $\alpha^2 = 0.5$, $\tau^2 = \tau^3 = 0.02$

![Fig. 3. State response of Example 3](image)

By Lemma 5, the state feedback gain for system stabilization with H_∞ performance are

$$P = X_i = \begin{bmatrix} 0.0352 & 0.2345 \\ 0.2345 & 1.5610 \end{bmatrix}, \quad K^1 = \begin{bmatrix} -0.0171 & -0.1135 \\ -0.3927 & -2.6146 \end{bmatrix}, \quad K^2 = \begin{bmatrix} 0.0559 & 0.3723 \\ -1.0425 & -6.9413 \end{bmatrix}$$

$$P^* = X_i^* = \begin{bmatrix} 0.0025 & -0.0842 \\ -0.0842 & 2.6723 \end{bmatrix}, \quad K^1 = \begin{bmatrix} -0.0075 & 0.2345 \\ 0.1130 & -3.6644 \end{bmatrix}, \quad K^2 = \begin{bmatrix} -0.0714 & 2.3169 \\ 0.2707 & -8.7784 \end{bmatrix}$$

The switching law is:

$$\sigma(t) = i \begin{array}{l} 1, x^T (P^1 - P^2) x \leq 0 \\ 2, x^T (P^1 - P^2) x > 0 \end{array}$$

The state responses are shown in Figure 3. x_1 and x_2 are system states, the initial condition is $[x_1,x_2]=[5,-5]$. The result shows the system is stable under the switching law when it is switched among the closed-loop subsystems.

6. Conclusion

This chapter studies the robust H_∞ control for linear switched systems with time delay. After introducing robust H_∞ stability and stabilization of linear switched systems, we firstly analyzed robust H_∞ control for general linear switched systems with time delay. Based on the multi-Lyapunov-Function method, a sufficient condition is derived in terms of LMI. The robust H_∞ control and the switching law design are also given.

www.intechopen.com
By involving uncertainties and time-varying delay, the robust H_{∞} control for uncertain linear switched systems with time varying delay is studied. Through the multi-Lyapunov-Function approach, a sufficient condition is given in LMI formulation. The robust switched H_{∞} control and the the switching law design are presented as well.

The state feedback robust H_{∞} control with memory is also studied for uncertain linear switched systems with multiple time delays. A sufficient condition is given as well as the robust switched H_{∞} control and the switching law.

Illustrative examples are given to show the effectiveness of the proposed methods.

7. References

This book presents selected issues related to switched systems, including practical examples of such systems. This book is intended for people interested in switched systems, especially researchers and engineers. Graduate and undergraduate students in the area of switched systems can find this book useful to broaden their knowledge concerning control and switching systems.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
