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Multi-Automata Learning 
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2 COMO Vrije Universiteit Brussel, Belgium  

1. Introduction 

It is well known that Reinforcement Learning (RL) techniques are able to solve Markovian 
stationary decision problems (MDP) with delayed rewards. However, not much is known 
yet about how these techniques can be justified in non-stationary environments. In a non-
stationary environment, system characteristics such as probabilities of state transitions 
and reward signals may vary with time. This is the case in systems where multiple agents 
are active, the so called Multi-Agent Systems (MAS). The difficulty in a MAS is that an 
agent is not only subject to external environmental changes, (like for instance load 
changes in a telecommunication network setting) but, also to the decisions taken by other 
agents, with whom the agent might have to cooperate, communicate or compete. So a key 
question in multi-agent Reinforcement Learning (MARL) is how multiple reinforcement 
learning agents can learn optimal behavior under constraints such as high communication 
costs. In order to solve this problem, it is necessary to understand what optimal behavior 
is and how can it be learned. 
In a MAS rewards are sensed for combinations of actions taken by different agents, and 
therefore agents are actually learning in a product or joint action space.  Moreover, due to 
the existence of different reward functions, it usually is impossible to find policies which 
maximize the expected reward for all agents simultaneously. The latter is possible in the 
so-called team games or multi-agent MDP's (MMDP's). In this case, the MAS is purely 
cooperative and all agents share the same reward function. In MMDP's the agents should 
learn how to find and agree on the same optimal policy. In general, an equilibrium point 
is sought; i.e. a situation in which no agent on its own can change its policy to improve its 
reward when all other agents keep their policy fixed. 
In addition, agents in a MAS face the problem of incomplete information with respect to 
the action choice.  One can assume that the agents get information about their own choice 
of action as well as that of the others. This is the case in what is called joint action 
learning, (Littman, 2001),(Claus & Boutilier, 1998), (Hu & Wellman, 2003). Joint action 
learners are able to maintain models of the strategy of others and explicitly take into 
account the effects of joint actions. In contrast, independent agents only know their own 
action. The latter is often a more realistic assumption since distributed multi-agent 
applications are typically subject to limitations such as partial or non observability, 
communication costs, asynchronism and stochasticity. 
Our work in MARL is mainly motivated by the early results achieved by simple learning 

automata (LA) that can be interconnected in games, networks and hierarchies. A learning 
Source: Reinforcement Learning: Theory and Applications, Book edited by Cornelius Weber, Mark Elshaw and Norbert Michael Mayer
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automaton describes the internal state of an agent as a probability distribution according 

to which actions should be chosen. These probabilities are adjusted with some 

reinforcement scheme according to the success or failure of the actions taken. Important to 

note is that LA are updated strictly on the basis of the response of the environment, and  

not on the basis of any knowledge regarding other automata, i.e. nor their strategies, nor 

their feedback. As such LA agents are very simple. Moreover, LA can be treated 

analytically, from a single automaton model acting in a simple stationary random 

environment to a distributed automata model interacting in a complex environment.  

The past few years, a substantial amount of research has focused on comprehending 

(Tuyls & Nowé 2005) and solving single-stage multi-agent problems,  modeled as normal 

form games from game theory e.g. joint-action learners (Claus & Boutilier, 1998); ESRL 

(Verbeeck et al, 2007 (b)) or Commitment Sequences (Kapetanakis et al, 2003). Recently, 

more researchers focus on solving the more challenging multi-stage game or sequential 

games where the agents have to take a sequence of actions. These can be modeled as 

Markov Games (Shapley, 1953). Many real-world problems are naturally translated into 

multi-stage problems. The expressiveness of multi-stage games allows us to create more 

realistic simulation models with less abstraction. This brings us closer to the application 

level. Moreover, we argue that multi-stage games help to improve the scalability of an 

agent system. 

Here we present a summary of current LA-based approaches to MARL. We especially 

focus on multi-stage multi-agent decision problems of the following type : ergodic 

Markov Games, partial observable ergodic Markov Games and episodic problems that 

induce tree-based Markov games. We describe both their analytical as well as their 

experimental results, and we discuss their contributions to the field. As in single agent 

learning, we consider the different updating mechanisms relevant to sequential decision 

making; i.e. using global reward signals for updating called Monte Carlo updating, versus 

using intermediate rewards to update strategies, the so-called Bootstrapping methods. 

First we start with a short description of the underlying mathematical material for 

analyzing multi-agent, multi-stage learning schemes. 

2. Markov decision processes and Markov games 

In this section we briefly explain the formal frameworks used in single and multi-agent 

learning. 

2.1 The Markov property 

A Stochastic process {X(t)|t ┺ T} is a system that passes from one state to another governed 

by time.  Both the state space  ┻ as the index set (time) T can be either discrete or continuous.  

A Markov process is a stochastic process that satisfies the Markov property. This property 

states that the future behavior of the process given its path only depends on its current state. 

A Markov process whose state space is discrete is also called a Markov chain, whereas a 

discrete-time chain is called stationary or homogenous when the probability of going from 

one state to another in a single step is independent of time. So, if the current state of the 
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Markov chain at time t is known, transitions to a new state at time t + 1 are independent of 

any of the previous states. 

One of the most important questions in the theory of Markov chains is how the chain will be 
distributed among the states after a long time.  In case the Markov chain is ergodic,  a 
unique stationary probability distribution exists. However the process can also be absorbed 
into a closed set of states. An absorbing state is a state from which there is a zero probability 
of exiting. An absorbing Markov system is a Markov system that contains at least one 
absorbing state, and possesses the property that it is possible to get from each non-absorbing 
state to some absorbing state in one or more time-steps. More information on the properties 
of Markov processes can be found in (Puterman,  1994). 

2.1 Definition of an MDP 

A Markov Decision Process (MDP) is a  discrete-time Markov process characterized by a set 
of states; each having several actions from which a decision maker must choose.  The 
decision maker earns a reward for each state visited. The problem of controlling an MDP for 
which transition probabilities and rewards are unknown can be stated as follows. Let S= {s1, 
… , sN } be the state space of a finite Markov chain {Xt}t ≥0  and Ai = {ai1, . . . , ail} the action set 
available in state si. Each starting state si, action choice ai ┺ Ai and ending state sj has an 
associated transition probability Ti->j (ai) and reward Ri->j (ai). The overall goal is to learn a 
policy  , or a set of actions,  = (a1, . . . , aN) with aj  ┺ Aj so that the expected average reward 
for policy  :  J() is maximized:  
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The policies we consider, are limited to stationary, nonrandomized policies. Under the 
assumption that the Markov chain corresponding to each policy  is ergodic, it can be 
shown that the best strategy in any state is a pure strategy, independent of the time at which 
the state is occupied (Wheeler & Narendra, 19986). Assume the limiting distribution of the 
Markov chain to be ┨(┙) = (┨1(┙), . . ., ┨N(┙)) with forall i,  ┨i(┙) > 0 as n -> ∞.  Thus, there are 
no transient states and the limiting distribution ┨(┙) can be used to rewrite Equation 1 as: 
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1 1
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2.2 Definition of a Markov game  
An extension of single agent Markov decision problems to the multi-agent case is 
straightforward and can be defined by Markov Games (Shapeley, 1953). In a Markov Game, 
actions are the joint result of multiple agents choosing an action separately. Note that Ai,k = 
{ai,k1, . . ., ai,kl} is now the action set available in state si for agent k, with k: 1 . . . n, n being the 
total number of agents present in the system. Transition probabilities Ti->j (ai) and rewards   
Ri->j (ai) now depend on a starting state si, ending state sj  and a joint action ai from state si, i.e. 
ai = (ai1, . . ., ain) with aik ┺ Ai,k . The reward function  Ri->j (ai) is now individual to each agent 

k, indicated as 
ij

kR . Different agents can receive different rewards for the same state 

transition. Since each agent k has its own individual reward function, defining a solution 
concept becomes non-trivial.   
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Again we will only treat non-randomized policies and we will assume that the Markov 
Game is ergodic in the sense that there are no transient states present and a limiting 
distribution on the joint policies exists. We can now use Equation 2 to define the expected 
reward for agent k , for a given joint policy . 

  ( ) ( ) ( ) ( )∑ ∑
= =

≡
N

i

N

j

ij

k

ij

ik RTJ
1 1

αααπα  (3) 

Due to the existence of different reward functions, it is in general impossible to find an 
optimal policy for all agents simultaneously. Instead, equilibrium points are sought.  In an 
equilibrium, no agent can improve its reward by changing its policy if all other agents keep 
their policy fixed. In the case of single state multi-agent problems, the equilibrium strategies 
coincides with the Nash equilibria of the corresponding normal form game. In the case of 
multi stage problems, limiting games can be used as analysis tool. The limiting game of a 
corresponding multi-agent multi-state problem can be defined as follows:  each joint agent 
policy is viewed as a single play between players using the agent's policies as their 
individual actions. The payoff given to each player is the expected reward for the 
corresponding agent under the resulting joint policy. Analyzing the multi state problem 
now boils down to explaining the behaviour of the multi-agent learning technique in terms 
of Nash equilibriums in this limiting game. 

  

 
Fig. 1. A Markov Game Problem and its corresponding limiting game 

  Agent 2 

  (0,0) (0,1) (1,0) (1,1) 
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Figure 1 shows an example Markov game with 4 states and 2 agents. States s0 and s1 are the 
only action states, with  2 possible actions (0 and 1) for each each agent. Joint actions and 
nonzero rewards (R) associated with the state transitions are indicated in the figure. All 
transitions are deterministic, except in the non-action states s2 and s3 where the process goes 
to any other state with equal probability (1/4). The corresponding limiting game for this 
problem is shown in the accompanying table. Equilibria in this game are indicated in bold. 
In a special case of the general Markov game framework, the so-called team games or multi-
agent MDP's (MMDP's) (Boutilier, 1999) optimal policies are proven to exist.  In this case, 
the Markov game is purely cooperative and all agents share the same reward function. This 
specialization allows us to define the optimal policy as the joint agent policy, which 
maximizes the payoff of all agents. An MMDP can therefore also be seen as an extension of 
the single agent MDP to the cooperative multi-agent case. 

 3. Learning automata as simple policy iterators 

The study of learning automata started in the 1960's by Tsetlin and his co-workers  
(Tsetlin, 1973). The early models were examples of fixed-structure stochastic automata. In its 
current form, LA are closely related to a Reinforcement Learner of the policy iteration type. 
Studying learning automata theory is very relevant for multi-agent reinforcement learning,  
since learning is treated analytically not only in the single automaton setting, but also in the 
case of distributed interconnected automata and hierarchies of automata interacting in 
complex environments (Narendra & Thathachar, 1989) . In this section, we only discuss the 
single automaton case in stationary environments. More complicated LA models and their 
behaviour will be discussed in the following sections. 
A variable structure learning automaton formalizes a general stochastic system in terms  
of actions, action probabilities and environment responses. The action probabilities, which 
make the automaton mathematically very tractable, are updated on the basis of the 
environment input. Formally, the automata can be defined as follows: a quadruple { A, r, p, 
U } for which : A = {a1, …, al } is the action or output set of the automaton, r(t) is an element 
of the set {0,1} and denotes the environment response at instant t, p(t) = (p1(t), … , pl(t)) is the 
action probability vector of the automaton, with pi(t) = Prob(a(t) = ai)  and which satisfies the 
condition that  Σli=1 pi(t)=1  for all t and U is called the learning algorithm and denotes the 
schema with which the action probabilities are updated on the basis of the environment 
input. The output a of the automaton is actually the input to the environment. The input r of 
the automaton is the output of the environment. In general the environment refers to all 
external conditions and influences affecting life and development of an organism. In the P-
model learning automaton, the output r(t) of the environment is considered to be binary. 
The output set of the environment is the set {0,1} so that output signal r = 0 is identified with 
a failure or an unfavourable response, while r = 1 denotes a success or a favourable 
response. Static environments are characterized by penalty probabilities ci . They represent 
the probability that the application of action ai will be successful or not, i.e. Prob(r = 0 | a = 
ai) = ci . Knowing ci , the reward probability di for action ai is given by: di  = 1 - ci . Other 
environment models exist, depending on the nature of the environment response. In the Q-
model the environment response is an element of a discrete, finite set of possible responses 
which has more than 2 elements, while in the S-model the environment response r is a real 
number in the interval [0,1]. 
Important examples of linear update schemes are linear reward-penalty, linear 
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reward-inaction and linear reward-ε-penalty. The philosophy of those schemes is essentially 
to increase the probability of an action when it results in a success and to decrease it when 
the response is a failure.  The general algorithm is given by: 

 

( ) ( ) ( )( ) ( )( ) ( ) ( )
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with l the number of actions of the action set A. The constants r and p are the reward and 
penalty parameters respectively. When r = p  the algorithm is referred to as linear reward-
penalty L R-P, when p = 0  it is referred to as linear reward-inaction 
L R-I and when p is small compared to r it is called linear reward-ε-penalty L R-εP. In the 
above, it is assumed that ci and di are constants. This implies that the environment is 
stationary and that the optimal action am can be identified. The goal of the learning 
automaton is to find this optimal action, without knowing the environments' reward or 
penalty probabilities. The penalty probability cm of the optimal action has the property that 
cm = mini { ci }. Optimality of the learning automaton can then be defined using the quantity  
M(t) = E[r(t) = 0 | p(t)] which is the average penalty for a given action probability vector. 
Consider for instance a pure-chance automaton, i.e. the action probability vector p(n) is 
given by: pi(n) = 1 / l  for all i: 1, … , l. Then M(t) is a constant (denoted by M0) and given by: 

∑
=

=
l

i
iclM

1
0 1  

Definition 1 

A learning automaton is called optimal if  ( )[ ] mt ctME =∞→lim  

While optimality is desirable in stationary environments, practically it may not be achieved 
in a given situation. In this case, ε-optimality may be reached. So, put differently, the 
objective of the learning scheme is to maximize the expected value of reinforcement received 
from the environment, i.e. E[r(t) | p(t) = p] by searching the space of all possible action 
probability vectors. Stated as above, a learning automata algorithm can be viewed as a 
policy iteration approach. 
In arbitrary environments and for arbitrary initial conditions, optimality or ε-optimality may 
be hard to reach. Some form of desired behaviour in these cases can be specified by 
expediency and absolute expediency. 
Definition 2 
A learning automaton is called expedient if it performs better than a pure-chance automaton, i.e.  

( ) 0lim MtMt <∞→  

Definition 3 

A learning automaton is said to be absolutely expedient if ( ) ( )[ ] ( )tMtptME <+ 1  

Absolute expediency imposes an inequality on the conditional expectation of M(t) at each 
instant. In (Narendra & Thathachar, 1989) it is shown that in stationary environments 
absolute expediency implies ε-optimality. 
The reinforcement learning algorithms given above, i.e. the L R-P , L R-I and L R-εP schemes 
show the following asymptotic behaviour: the L R-I scheme is proved to be absolutely 
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expedient and thus ε-optimal in stationary environments. The L R-P scheme is found to be 
expedient, while the L R-εP scheme is also ε-optimal, (Narendra & Thathachar, 1989). 
Another classification used for reinforcement schemes is made on the basis of the properties 
of the induced Markov process {p(t)}{t>0} . If the penalty probabilities ci of the environment 
are constant, the probability p(t+1) is completely determined by p(t) and hence {p(t)}{t>0} is a 
discrete-time homogeneous Markov process. The L R-P and L R-εP  schemes result in Markov 
processes that are ergodic, the action probability vector p(t) converges in distribution to a 
random variable p*, which is independent of the initial conditions. In case of the L R-εP  
scheme, the mean value of p* can be made as close as desired to the optimal unit vector by 
choosing r and p sufficiently small. The Markov process generated by the L R-I scheme is 
non-ergodic and converges to one of the absorbing states with probability 1. 
Choosing parameter r sufficiently small can make the probability of convergence to the 
optimal action as close to 1 as desired. More on the convergence of learning schemes can be 
found (Narendra & Thathachar, 1989). 

4. Interconnected learning automata for ergodic Markov games 

It is well known that Reinforcement Learning techniques (Sutton & Barto, 1998) are able to 
solve single-agent Markovian decision problems with delayed rewards. In the first 
subsection we focus on how a set of interconnected LA is able to control an MDP (Wheeler 
& Narendra, 1986) . In the next subsection, we show how to extend this result to the multi-
agent case in a very natural way.  

4.1 Control of MDP’s 

The problem of controlling a Markov chain can be formulated as a network of automata in 
which control passes from one automaton to another. In this set-up every state in the 
Markov chain has a LA that tries to learn the optimal action probabilities in that state with 
learning scheme given in Equation 4. Only one LA is active at each time step and transition 
to the next state triggers the LA from that state to become active and take some action. LA 
LAi active in state si is not informed of the one-step reward Ri->j(ai) resulting from choosing 
action ai ЄAi in si and leading to state sj.  However when state si is visited again, LAi 
receives two pieces of data: the cumulative reward generated by the process up to the 
current time step and the current global time. From these, LAi computes the incremental 
reward generated since this last visit and the corresponding elapsed global time. The 
environment response or the input to LAi is then taken to be: 

 ( ) ( )
( )1

1
1

+
+

=+
i

i

i
i

i
i

t

t
t

η
ρβ  (5) 

where ┩i(ti + 1) is the cumulative total reward generated for action ai in state si and ┟i(ti + 1) 
the cumulative total time elapsed. The authors in (Wheeler & Narendra, 1986) denote 
updating scheme as given in Equation 4 with environment response as in Equation 5 as 
learning scheme T1. The following results were proved: 
Lemma1  (Wheeler & Narendra, 1986) 
The Markov chain control problem can be asymptotically approximated by an identical 
payoff game of N automata.   
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Theorem 1 (Wheeler & Narendra, 1986) 
Let for each action state si of an N state Markov chain, an automaton LAi using the Monte 
Carlo updates as described above and having ri actions be associated with. Assume that the 
Markov Chain, corresponding to each policy α is ergodic. Then the decentralized adaptation 
of the LA is globally ε-optimal with respect to the long-term expected reward per time step, 
i.e. J(α). 
The principal result derived is that, without prior knowledge of transition probabilities or 
rewards, the network of independent decentralized LA controllers is able to converge to the 
set of actions that maximizes the long-term expected reward (Narendra & Thathachar, 1989). 
Moreover instead of one agent visiting all states and keeping a model for all the states in the 
system as in traditional RL algorithms such as Q-learning; in this model there are some non-
mobile LA agents who do not move around the state space but stay in their own state 
waiting to get activated and learn to take actions only in their own state. The intelligence of 
one mobile agent is now distributed over the states of the Markov chain, more precisely 
over the non-mobile LA agents in those states.   

4.2 Control of Markov games 

In a Markov Game the action chosen at any state is the joint result of individual action 
components performed by the agents present in the system. The LA network of the previous 
section can be extended to the  framework of  Markov Games just by putting a simple 
learning automaton for every agent in each state (Vrancx et al., 2007) Instead of putting a 
single learning automaton in each action of the system, we propose to put an automaton 
LAi,k in each state si with i: 1 . . . N and for each agent k, k: 1 . . . n. At each time step only the 
automata of one state are active; a joint action triggers the LA from that state to become 
active and take some joint action. 
As before, LA LAi,k active for agent k in state si is not informed on the one-step reward Ri->j,k 

(ai) resulting from choosing joint action  ai = (ai1, . . ., ain) with aik ┺ Ai,k in si and leading to 
state sj. When state si is visited again, all automata  LAi,k with k: 1 . . . n receive two pieces of 
data: the cumulative reward generated for agent k by the process up to the current time step 
and the current global time. From these, all LAi,k compute the incremental reward generated 
since this last visit and the corresponding elapsed global time. The environment response or 
the input to LAi,k  is exactly the same as in Equation 6. The following result was proven in 
(Vrancx et al., 2007) :  
Theorem 2 (Vrancx et al, 07) 
The Learning Automata model proposed for ergodic Markov games with full state observability is able 
to find an equilibrium point in pure strategies for the underlying limited game. 
The behaviour of the LA learning model on the sample problem described in section 2.2 is 
demonstrated in Figure 2. We show the average reward over time for both agents. 
Since we are interested in the long term convergence we show a typical run, rather than an 
average over multiple runs. To demonstrate convergence to the different equilibria, we use a 
single very long run in which the automata are allowed to converge and are then restarted. 
After every restart the automata are initialized with random action probabilities in order to 
allow them to converge to different equilibria. 
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Fig. 2. Experimental results on the example Markov game of Figure 1. 

5. Interconnected learning automata for partially observable ergodic Markov 
games  

The main difference with the previous setup for learning Markov games (Vrancx et al., 2007) 
is that here we do not assume that agents can observe the complete system state. Instead, 
each agent learns directly in its own observation space, by associating a learning automaton 
with each distinct state it can observe. Since an agent does not necessarily observe all state 
variables, it is possible that it associates the same LA with multiple states, as it cannot 
distinguish between them. For example, in the 2-state problem of Figure X, an agent 
associates a LA with each location  it can occupy, while the full system state consists of the 
joint locations of all agents. As a consequence, it is not possible for the agents to learn all 
policies. For instance in the 2-state problem, the automaton associated by agent x with 
location L1 is used in state s1 ={L1,L1} as well as state s2 ={L1,L2}. Therefore it is not possible 
for agent x to learn a different action in state s1  and s2. This corresponds to the agent 
associating actions with locations, without modelling the other agents. 
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Fig. 3.  A 2-location grid-world problem and its corresponding Markov game. 

So the definition of the update mechanism here is exactly the same as in the previous model, 
the difference is that here agents only update their observable states which we will call 
locations to differentiate with the notion of a Markov game state. This will give the 
following:  a LA  LAi,k active for agent k in location Li is not informed on the one-step reward 
Ri->j,k (ai) resulting from choosing joint action  ai = (ai1, . . ., ain) with aik ┺ Ai,k in si and leading 
to state Lj. Instead, when location Li is visited again,  automaton LAi,k receives two pieces of 
data: the cumulative reward generated for agent k by the process up to the current time step 
and the current global time. From these, automaton LAi,k compute the incremental reward 
generated since this last visit and the corresponding elapsed global time. 
The environment response or the input to LAi,k   is then taken to be: ┚i,k (ti + 1) = ┩i,k (ti + 1) /    
┟i,k (ti + 1) where ┩i,k (ti + 1) is the cumulative total reward generated for action ai,k in location 
Li and ηi,k (ti + 1)  the cumulative total time elapsed. We still assume that the Markov chain 
of system states generated under each joint agent policy ┙ is ergodic. In the following we 
will show that even when the agents have only knowledge of their own location, in some 
situations it is still possible to find an equilibrium point of the underlying limiting game. 
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Table 1. Limiting game for the 2-location grid world experiment of Figure 3. 

Theorem 3 (Verbeeck et al, 2007( a)) 
The network of LA that was proposed here for myopic agents in Markov Games, converges to a pure 
equilibrium point of the limiting game provided that the Markov chain of system states generated 
under each joint agent policy is ergodic and agents' transition probabilities do not depend on other 
agents' activities. 

 

Fig. 4. Average Reward for the 2-location grid-world problem of Figure 3 . 

Figure 4 shows experimental results of the LA network approach on the grid world problem 
of Figure 3.  In these experiments both agents were given an identical reward based on their 
joint location after acting. The agents receive rewards 1.0 and 0.5 for joint locations {L1,L2} 
and {L2,L1} respectively and reward 0.01 when both agents are in the same location. The 
resulting limiting game matrix for this reward function is shown in Table 1. In  Figure 4 we 
show the average reward over time for both agents, during a single  long run of the 
algorithm, in which agents are allowed to converge and are then randomly re-initialised. We 
can observe that the agents move to either the optimal or the suboptimal equilibrium of the 
underlying limiting game, depending on their initialisation. 

  Agent 2 

  (0,0) (0,1) (1,0) (1,1) 

(0,0) 0.38 0.28 0.48 0.38 

(0,1) 0.48 0.14 0.82 0.48 

(1,0) 0.28 0.42 0.14 0.28 

 A
g

e
n

t 
1

 

(1,1) 0.38 0.28 0.28 0.38 
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6. Hierarchical learning automata for episodic problems 

Until now we only considered ergodic Markov games, which excludes problems that have a 
periodic nature or absorbing states such as finite episodic tasks. To this end we study agents 
constructed with hierarchical learning automata. An agent here is more complex than a 
simple learning automaton in the sense that the agents’ internal state is now a hierarchy of 
learning automata. The idea is that in each step of the episode the agent chooses to activate 
an automaton of the next level of its hierarchy. The numbers of steps of the episodic task 
defines the size of the internal LA hierarchy. In (Narendra & Parthasarathy, 1991),  
hierarchical learning automata were introduced for multi-objective optimization. A simple 
problem of consistently labelling images was given. At a first stage, the object had to be 
recognized and in a second stage the background of the image was determined. 
When several hierarchical agents play an episodic multi-agent task a corresponding Markov 
game can be determined as follows: at each time step, there is a new state available for each 
joint action possible. The resulting state space is then a tree, so no loops or joining branches 
are allowed.  Similar to the previous section,, it is the case that learning automata can belong 
to different states, and we could call this setting an POMarkov game (in analogy with 
POMDP’s). Note that in this section we only consider cooperative tasks. 

6.1 Hierarchical LA agents 

Learning automata can be combined into more complex structures such as hierarchies. 
Figure 5 shows an interaction between such hierarchies. 

 

Fig. 5. An interaction between two agents constructed with a hierarchy of learning 
automata. 
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A hierarchical LA works as follows. The first automaton that is active is the root at the top of 
the hierarchy: LA A This automaton selects one of its l actions. If, for example, the 
automaton selects action 2, the learning automaton that will become active is learning 
automaton LA A2. Then this active learning automaton is eligible for selecting an action. 
Based on this action, another learning automaton at the next level will become active. This 
process repeats itself until one of the learning automata at the bottom of the hierarchy is 
reached. 
The interaction of the two hierarchical agents of Figure 5 goes as follows. At the top level (or 
in the first stage) Agent 1 and Agent 2 meet each other in a game with stochastic rewards. 
They both take an action using their top level learning automata, respectively A and B. 
Performing actions ai by A and bk by B is equivalent to choosing automata Ai and Bk to take 
actions at the next level. The response of environment E1 : rt ┺ {0,1}, is a success or failure, 
where the probability of success is given by c1ik . At the second level the learning automata 
Ai and Bk choose their actions aij and bkl respectively and these will elicit a response from the 
environment E2 of which the probability of getting a positive reward is given by c2ij,kl. At the 
end of the episode all the automata that were involved in one of the games, update their 
action selection probabilities based on the actions performed and the responses of the 
environments. 

6.2 Monte Carlo updating 

In the Monte Carlo method, the updating of the probabilities is based on the averaged 
sample returns. This averaged return is usually generated at the end of an episode. Each 
time such a clear end state is reached, an averaged return is generated by calculating a 
weighted sum of all the returns obtained. This sum is then given to all learning automata 
that were active during the last episode in order to update their action probabilities. Thus 
when we reach an end stage at time step t we generate the following sum: R = ┠1 r1 + ┠2 r2 + . 
. . + ┠t rt where ri is the reward generated at time step i. Note that the weights ┠i should sum 
up to 1 and 0 ≤ ┠i ≤ 1 for all ┠i. 
Theorem 4 (Narendra & Parthasarathy, 1991) 
 If all the automata of the hierarchical learning automata update their action probabilities at each stage 
using the L R-I update scheme and if the composite reward is constructed as a Monte Carlo reward and 
at each level the step sizes of the automata are chosen sufficiently small then the overall system is 
absolutely expedient. 
Stated differently, this means that the overall performance of the system will improve at 
each time step and convergence is assured toward a local optimum. The optima of the 
dynamical system under consideration, are the pure equilibrium points of the 
corresponding limiting single stage game. 
Using a careful exploration strategy called exploring selfish reinforcement learning which is 
used in combination with hierarchical LA, it was shown in (Verbeeck et al., 2007) that the 
optimal equilibrium path can be learned.  

7. Monte Carlo updating versus bootstrapping 

Standard single agent reinforcement learning techniques, such as Q-learning (Watkins & 
Dayan, 1992), which are by nature designed to solve sequential decision problems, use the 
mechanism of bootstrapping to handle non-episodic tasks. Bootstrapping means that values 
or estimates are learned on the basis of other estimates (Sutton & Barto, 1998). The use of 
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next state estimates allows reinforcement learning to be applied to non-episodic tasks. 
Another advantage of bootstrapping over Monte Carlo methods include the fact that the 
former can be naturally implemented in an on-line, fully incremental fashion. As such, these 
methods can learn from each transition, which can sometimes speed-up learning time. 
For instance the Q-learning algorithm, which is a value iteration method (see (Sutton & 
Barto, 1998); (Tsitsiklis, 1994)) bootstraps its estimate for the state-action value Qt+1(s,a) at 
time t+1 upon the estimate for Qt(s',a') with s' the state where the learner arrives after taking 
action a in state s : 

 ( ) ( ) ( ) ( )⎟
⎠
⎞⎜

⎝
⎛ ′′++−←

′+ asQrasQasQ t
a

ttt ,max,1,1 γαα  (6) 

With ┙ the usual step size parameter,  ┛ ┺ [0,1] a discount factor and rt the immediate 
reinforcement received at time step t. Non-bootstrapping evaluation methods such as Monte 
Carlo methods update their estimates based on actual returns. For instance the every-visit 
Monte Carlo method updates a state-action value Q(s,a) at time t+n (with n the time for one 
episode to finish) based on the actual return Rt and the previous value: 

 ( ) ( ) ( ) ( )ttnt RasQasQ αα +−←+ ,1,  (7) 

With Rt =   rt+1 + γ rt+2 + γ2 rt+3 + . . .  + γn-1 rn   and t is the time at which (s,a) occurred.    
Methods that learn their estimates, to some extend, on the basis of other estimates, i.e. they 
bootstrap are called Temporal Difference Learning Methods. The Q-learning algorithm seen 
in Equation 7 can be classified as a TD(0) algorithm. The back-up for each state is based on 
the immediate reward, and the estimation of the remaining rewards which is given by the 
value of the next state. One says that Q-learning is therefore a one-step TD method. 
However, one could also consider backups based on a weighted combination as follows:  

 ( )11
1

2
2

21 +++++
−

+++ +++++= ktkt
k

kt
k

tttt sVrrrrR γγγγ L  (8) 

In the limit, all real rewards up-until-termination are used, meaning there is no 
bootstrapping, this is the Monte Carlo method. So, there is a spectrum ranging from using 
simple one-step returns to using full-backup returns. Some of them were implemented in 
the set-up of section 5. The Monte Carlo technique, which was described there and which is 
commonly used in a LA setting, is compared with the following variations: intermediate 
rewards, one-step updating, n-step updating.  

7.1 Intermediate rewards 

In (Peeters et al., 2006) an update mechanism based on Intermediate Rewards was 

introduced. With this technique the learning automata at level l only get informed about the 
immediate reward and the rewards on the remainder of the path. The LA does not get 
informed about the rewards that are given to automata on the levels above because the 
learning automaton at this level has no direct influence over rewards depending on higher 
level actions and they would clutter up its combined reward. In (Van de Wege, 2006) a 
theoretical proof that hierarchical learning automata using only the rewards of the 
remainder of the path will converge to an equilibrium path in an identical pay-off multi-
stage game (under the same conditions we described above for the traditional Monte Carlo 
technique) is given. The complete algorithm can be found in Figure 6. Because the learning 
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automata get updated at the end of an episode, the intermediate rewards technique is still 
an off-line algorithm. 
 
 

 

 

 

Fig. 6.  The pseudo code of the Intermediate Rewards algorithm. 

7.2 One-step returns 

In the One-Step Estimates technique, introduced in (Peeters et al., 2007), the updating of the 
learning automata will no longer take place at an explicit end-stage. The automata get 
informed immediately about the local or immediate reward they receive for their actions. In 
addition each automaton has estimates about the long term reward for each of its actions. 
These estimates are updated by combing the immediate rewards with an estimate of 
possible rewards that this action might give on the remainder of the path, similar to TD(0) 
methods. The behavior of the algorithm is controlled by three parameters: α, γ and ρ. Here, 
α is the step size parameter from the LR-I update scheme (Equation 8), γ is the discount 
factor as used in traditional bootstrapping (Equation 9), and ρ controls the influence of the 
difference between the combined reward and the old-estimate on the new-estimate (Note: in 
standard Q-learning notation this parameter is denoted by α). 

7.3 n-step returns 

The 1-step algorithm described above can easily be extended to the general n-step case. This 
creates a whole range of updating algorithms for multi-stage games, similar to the range of 
algorithms that exist for the single agent case. Figures 7 to 9 show the general n-step 
updating algorithm for pursuit learning automata. The parameters α, γ and ρ are equivalent 
to those of the 1-step algorithm, described above.  
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Fig. 7  Pseudo code of the n-step algorithm. This part of the n-step algorithm shows how to 
handle immediate rewards. 

 

 

Fig. 8 Pseudo code of the n-step algorithm. This part of the n-step algorithm computes the 
complete n-step reward and shows how to update the estimates. 

 

 

Fig. 9 Pseudo code of the n-step algorithm. This part of the n-step algorithm handles the 
updating of the estimates of the parents in the hierarchy. 

The interaction between the hierarchies remains the same as for the Monte Carlo case (and 
the 1-step case). The learning automata at the top of the hierarchies start by selecting an 
action. Based on this joint-action the environment generates a reward and this reward is 
handed to the automata. Since this is the immediate reward, the automata cannot yet 
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generate the n-step truncated return (if n > 1) instead they propagate this reward to their 
parents (Figure 7  line 10). The automata that receive this reward check whether this is the 
nth reward they have received (Figure 8 line 1). If so, they compute the n-step truncated 
return (Figure 8 line 2), update the estimates of the long term reward of their own actions 
(Figure 8 line 3), update their probabilities (Figure 8 line 4) and keep their nth-level-
grandparents up to date by providing them with the updated estimates (Figure 8 line 5). If 
the parents didn't receive the nth reward yet (thus they can't compute the n-step reward yet), 
they just propagate the reward to their parents (Figure 8 lines 6 and 7).  
In addition to propagating the immediate rewards, the automata also propagate their 
updated estimates. The parents receiving an estimate from their children check whether it is 
the estimate they need to compute the n-step truncated return (i.e. the estimate coming from 
level (n+1)th and they adjust the estimates of their nth-level-grandchildren if necessary. This 
process continues for each level that gets activated in the hierarchies. 

7.4 Empirical results 

For the Monte Carlo updating and the Intermediate Rewards method, there are theoretical 
proofs guaranteeing that the learning automata converge to an equilibrium path in any 
multi-stage game. This can be proved under the assumptions that the learning automata use 
the LR-I update scheme and the step sizes are chosen small enough. We have however no 
guarantee that the automata will converge to the optimal equilibrium path. Therefore it is 
useful the compare the practical performance of the different update techniques. A thorough 
comparison can be found in Peeters et al. 2007 (b).  
Here we show experiments of a series of 1000 Random Games. For each value of the 
learning rate we considered in our experiments, we averaged the obtained reward over 1000 
randomly generated games. Thus after each of the 1000 runs, we reset the values of the 
reward matrices to a random number in [0,1]. In the experiment we used 2 hierarchies of 8 
levels, with 2 actions per automaton. This gives a total of (28)2 = 65.563 solution paths.  
Figure 10 shows the results for the Monte Carlo algorithm and the 4-step reward. 
The average reward when using the Monte Carlo algorithm is systematically lower 
compared to the average reward of any of the n-step algorithms (the plot shown is for the 4-
step algorithm, but this is observed for the whole tested range of 1-step to 8-step, although 
the performance differs). All of our results demonstrate that the performance increases 
when the hierarchical learning automata use an n-step updating algorithm. 

 

Fig. 10 The average reward using Monte Carlo (left) and the 4-step rewards for various 
learning rates. The rewards are averaged over 1000 runs. 
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In general, using the Intermediate Reward technique, the average reward increases, 
compared to the Monte Carlo approach, however the variance of the rewards to which the 
hierarchies converge, remains the same (these results are not shown here). The results of the 
n-step algorithm show that the average convergence can remain at the same high level 
(compared to Monte Carlo updating) while the variance of the solution-paths is much less. 
This means that if the hierarchies converge to a sub-optimal solution, they are more likely to 
converge to a sub-optimal solution with an average reward that is almost as good as the 
optimal. 

8. Conclusion 

In this chapter we have demonstrated that Learning Automata are interesting building 
blocks for multi-agent Reinforcement learning algorithms. LA can be viewed as policy 
iterators, that update their action probabilities based on private information only. Even in 
multi-automaton settings, each LA is updated using only the environment response, and not 
on the basis of any knowledge regarding the other automata, i.e. nor their strategies, nor 
their feedback.  
As such LA based agent algorithms are relatively simple and the resulting multi-automaton 
systems can still be treated analytically. Convergence proofs already exist for a variety of 
settings ranging from a single automaton model acting in a simple stationary random 
environment to a distributed automata model interacting in a complex environment.  
The above properties make LA attractive design tools for multi-agent learning applications, 
where communication is often expensive and payoffs are inherently stochastic. They allow 
to design multi-agent learning algorithms with different learning objectives. Furthermore, 
LA have also proved to be able to work in asynchronous settings, where the actions of the 
LA are not taken simultaneously and where reward comes with delay.  
We have demonstrated this design approach in 2 distinct multi-agent learning settings. In 
ergodic markov games each agent defers its action selection  to a local automaton, associated 
with the current system state. Convergence to an equilibrium between agent policies can be 
established by approximating the problem by a limiting normal form game. In episodic 
multi-stage learning problems agents were designed as tree-structured hierarchies of 
automata, mimicking the structure of the environment. Convergence of this algorithm can 
again be established based on existing automata properties. By using Intermediate Rewards 
instead of Monte Carlo rewards, the hierarchical learning automata are shown (both 
empirically and theoretically) to have a faster and more accurate convergence by even using 
less information. However, the Intermediate Rewards update mechanism is still an off-line 
algorithm in which the updating happens at explicit end-states.  The general n-step 
algorithm solves this problem by handing immediate rewards to the automata which use 
bootstrapping to compensate for the absence of reward of the remainder of the path. 
Empirical experiments show that the n-step rewards (with an appropriate value for n) 
outperform both the Monte Carlo technique as well as the Intermediate Rewards.   
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