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1. Introduction 

The great majority of current Augmented Reality (AR) applications are built using general 
purpose processors as development platforms where the processing tasks are executed in 
software. However, software execution is not always the best solution for the high intensive 
requirements of the many processing tasks involved in AR, and it inevitably constrains 
frame rate and latency, which compromises real time operation, and magnifies size and 
power consumption, hindering mobility. These limitations make the spread of AR 
applications more difficult. This is particularly remarkable in the case of mobile real time 
applications. 
To overcome the aforementioned constraints in the design of embedded AR systems, this 
chapter presents a hardware/software co-design strategy based on Field Programmable 
Gate Array (FPGA) devices and Electronic System-Level (ESL) description tools as an 
alternative to the traditional software-based approach. Modern FPGAs feature millions of 
gates of programmable logic, with dedicated hardware resources and with the widest range 
of connectivity solutions. FPGA internal structure makes itself perfectly suitable for 
exploiting parallelism at several levels. Moreover, because of its flexibility, it is possible to 
implement not only specific algorithms, but also AD/DA interfaces, controllers, and even 
several microprocessors, what makes it feasible to build more complex and powerful 
Systems on a Chip (SoC) with improved performance and reduced costs, size and power 
consumption. FPGA (re)programmability is also a key factor, which provides not just 
reduced time to market and design flexibility, but also in-the-field upgradability and 
intellectual property protection. Thanks to these characteristics, FPGAs are giving rise to a 
new paradigm in computation named Reconfigurable Computing. ESL, on the other hand, 
is an emerging electronic design methodology that focuses on building models of the entire 
system with a high-level language such as C, C++, or MATLAB, which are later used by 
improved electronic design tools to generate an automated and correct-by-construction 
implementation of the system.  ESL codesign tools allow for developers with little or no 
prior hardware design skills to implement complex systems composed of mixed software 
and application-specific hardware modules.  
The objective of this chapter is to provide a clear vision of the possibilities of FPGA devices 
and the new development methodologies for embedded AR systems. To do it so, the 
authors explain the FPGAs key features which make them suitable for the implementation 
of AR applications. The design flow and tools for hardware description and 

Source: Augmented Reality, Book edited by: Soha Maad,  
 ISBN 978-953-7619-69-5, pp. 230, January 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com



 Augmented Reality 

 

32 

hardware/software co-design from low to the highest level are described. A survey of the 
most noteworthy FPGA-based works in image processing, computer vision, computer 
graphics, multimedia, communications and wearable computing is presented. Finally, the 
chapter is completed with an example which illustrates the advantages of the FPGA-based 
approach as platform for developing AR applications: a portable real time system for 
helping visually impaired people. This system enhances the patient’s knowledge of the 
environment with additional video information using a see-through head mounted display.  
The description of its main processing cores for video acquisition and processing, for hand 
recognition, for the user interface, etc. and the evaluation of their performances highlight the 
advantages of the FPGA-based design and reveal the key topics for the implementation of 
AR systems. 

2. On the suitability of reconfigurable hardware for mobile AR applications 

After a successful decade of exploration and consolidation of fields and applications, it is 
time for AR to break the border of the research domain and reach the common people 
domain. For it, the user needs to feel AR as a part of his own body, not as an external an 
uncomfortable artefact. Inevitably, this entails ubiquity and mobility. For such a qualitative 
jump, one of the major challenges that AR has to face is the hardware under applications 
and the development of new platforms for interaction (Veas & Kruijff, 2008). It is the key to 
find the optimum solution to the complicated trade-off between quality, speed, power and 
size. Most AR research published to date relies on the use of general purpose computing 
hardware to perform computations, render computer graphics and provide video overlay 
functionality. Systems that rely on general purpose computing hardware are larger in size 
and consume more power than those which have devices customised for specific tasks. 
When working in indoor environments, such issues are rarely considered since the systems 
are not normally required to be mobile, but the challenge of ubiquity and mobility raises a 
new scenario. In it, doubtlessly, computer processing hardware is one of the research topics 
where an extra development effort must be done in order to provide a more effective AR 
experience (Zhou et al, 2008).  
Over the last years, several hardware platforms have been introduced to support mobile AR 
in two different directions: the head-mounted display direction using laptops in backpack 
systems, and the handheld direction using lightweight portable devices. Both directions 
share a design feature: the great majority of AR applications consist of software being 
executed on general purpose processors. However, not all applications can be solved 
through the use of the traditional software-based approach since it imposes limitations that 
force the designer to choose between robustness/compactness, power consumption and 
processing power, what, in last term, difficult the spread of AR. 
In spite of their importance, only a minority of papers describing AR mobile systems report 
on features such as timing performance, frame rates, power consumption, size, weight, etc., 
which, in the last instance, determine the viability of the AR application. When these data 
are provided, they show important weak points, like in the case of the ArcheoGuide 
application described in (Dähne & Kariginannis, 2002), where the incapability of the 
hardware platform of the system of parallelizing processing tasks causes that authors rule 
out a gesture recognizer based on interaction due to its interference with the video tracking 
performance. This is also the case of the video see-through AR system on cellphone 
described in (Möhring et al, 2004), which hardly can manage four 160×120 12-bit colour 
frames per second. 
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Such limitations lead to approaches where the AR device tends to be ‘dumb’, acting simply 
as a viewport of the AR application with the largest part of the processing taking place in 
remote servers. This is the philosophy behind the AR-phone (Assad et al, 2003). In it, the 
system performance relies on the wireless networking. Without reporting frame rates, the 
authors admit the convenience of moving some parts of the processing into the user 
interface module with the aim of avoiding the overload in the communication that ruins the 
performance. The mobile phone-based AR application for assembly described in 
(Billinghurst et al, 2008) is also a client/server architecture where the complex processing is 
executed on a PC. It works with still images instead of video and the virtual model is quite 
simple, but the data transmission between the phone and the PC over the WLAN rises the 
time to send and receive an image up to 3.4 seconds. A similar client/server implementation 
is presented in (Passman & Woodward, 2003) for running AR on a PDA device. It uses a 
compression algorithm developed by the authors to relieve the communication of the 
rendering data overhead, but the best case refresh rate hardly reaches two frames per 
second. Another interesting approach can be found in (Wagner et al, 2005), where the 
authors present a system architecture for interactive, infrastructure-independent multi-user 
AR applications which runs on a PDA (personal digital assistance). 
Due to these limitations, some applications resign to video processing on behalf of usability. 
AR on-demand (Riess & Stricker, 2006) presents a practicable solution on low-end handheld 
devices where images of the real scene are taken only when needed, superposing real-time 
virtual animations on that single still image. The information is not blended in the field of 
view of the user, but can be easily watched over the display of a PDA or a head worn 
display beside the eye. The goal of this approach is to develop a system which does not 
dominate the user, but offers support when required. 
The use of image sensors is probably the most common way to capture the real environment 
and enhance it with virtual objects, i.e. to create augmented reality. For this reason, it can 
serve us well to understand the role of FPGAs and custom-made hardware platforms for AR 
applications. In the cases where designs must be prepared to meet frame rate, image 
resolution, algorithm performance, power consumption and size requirements, traditional 
platforms based on desktop computers and their corresponding slight variations based on 
laptops are unsuitable. Some examples of these works can be found in (Piekarski et al., 2001; 
Feiner et al, 1997; Hoellerer et al, 1999). Although these works may be interesting for 
validating their respective systems for their corresponding intended applications, the 
proposed devices appear to be complex, heavy, expensive and fragile. Developments made 
in standard microprocessors-based units are not efficient or inconvenient for the purpose of 
unconstrained mobility. The authors of (Piekarski et al., 2004) noticed this fact, and 
proposed modifications in backpack designs which aim to improve its size, weight and 
power consumption. The authors conclude that FPGAs and specialized video overlay units 
result beneficial to minimize power and to accelerate computation. In (Johnston et al., 2003), 
the authors point to FPGAs and developments in hardware for embedded systems as the 
most likely alternative platform for real-time performance of AR devices. Indeed, 
parallelism and concurrency can be exploited for image processing while keeping power 
consumption low, bringing a solution to the challenge of embedded image processing. 
A good example of exploiting FPGAs with an image sensor can be found in (Matsushita et 
al, 2003), where a FGPA device controls a fast CMOS image sensor for ID recognition. In 
(Foxlin & Harrington, 2000), a self-reference head and hand tracker is presented and its 
applicability in a wearable computer is shown. Smith and colleagues in (Smith et al, 2005) 
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improved the work presented in (Piekarski et al, 2001) by migrating the proposed hand-
tracking algorithm from the laptop to an FPGA. Indeed, this new development allows a 
further miniaturization of the system and minimizes power consumption. In (Luk et al, 
1998; Luk et al., 1999), some good initial examples of the use of reconfigurable computing 
for AR are shown. In concrete, video mixing, image extraction and object tracking are run on 
an FPGA-based platform. In this line, our group presented in (Toledo et al, 2005) a fully 
FPGA based AR application for visual impaired individuals affected by tunnel vision. A 
Cellular Neural Network extracts the contour information and superimposes it on the 
patient’s view. Finally, the authors of (Guimaraes et al, 2007) present an interesting platform 
which aims to help developers on the construction of embedded AR applications. The 
infrastructure is based on FPGA and enables the creation of hardware based AR systems. 
This short review is enough to come to the conclusion that mobile AR applications are 
severely constrained by the up to date usual software-based approach and that many real-
time applications require algorithmic speedup that only dedicated hardware can provide. 
Hardware implementation of algorithms and processing tasks can considerably improve the 
performance and by the hence the utility/viability of the AR system. 

3. FPGA characteristics and architectures 

The introduction of the Field-Programmable Gate Array (FPGA) devices about 25 years ago 
gave rise to the reconfigurable computing concept. Early FPGA generations were quite 
limited in their capacities. Nowadays, the most advanced manufacturing technologies are 
used to feature devices with millions of gates of programmable logic, with dedicated 
hardware resources, with the widest range of system connectivity solutions, enabling more 
complex and powerful systems on a single chip. 
Reconfigurable hardware offers a trade-off between the very specialized solution of 
application specific integrated circuits (ASIC) and the inefficiency of general purpose 
processor (GPP), combining the desirable high performance of ASICs with the characteristics 
of system flexibility of GPPs. Like ASICs, it involves hardware implementation and 
consequently parallelism and high performance. Like GPPs, it provides reconfigurability, and 
hence, flexibility and rapid prototyping. The key of reconfigurable hardware lies on that the 
flexibility is provided by the hardware design rather than by software-programmable 
hardware. With clock frequencies an order of magnitude lower than that of typical 
microprocessors, FPGAs can provide greater performance when executing real-time video or 
image processing algorithms as they take advantage of their fine-grained parallelism. 
There are several companies that produce diverse flavours of FPGAs: Xilinx, Altera, Atmel, 
Lattice Semiconductor, Actel, SiliconBlue Technologies, Achronix or QuickLogic                          
are the main competitors. At an architectural level, however, all of them share some 
common characteristics, which define an FPGA as a regular structure of programmable 
modules, including three types of resources: 
1. Logic Blocks (LB), used to implement small parts of the circuit logical functions. 
2. Input/Output Blocks (IOBs) that connect internal resources with the device pins, and 

usually adapt the electrical characteristics of the signals to interface the output world. 
3. Routing channels with programmable Interconnect Blocks (IBs), which allow the 

connection between LBs or between these and the IOBs. 
In an FPGA, both the connection of the wire resources and the functionality of the logic 
blocks can be programmed by the user. Logic blocks and routing architectures differ from 
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vendor to vendor, but their regular distribution make all of them well suited for highly 
parallelizable algorithms, composed of bit-level operations that can be distributed in regular 
structures. Nevertheless, they are ill suited to high precision arithmetic operations, such as 
large operand multiplication or floating-point calculations. The presence of on-chip memory 
is also limited, thus many applications require the existence of an external RAM chip. The 
data transfer increases circuit delays, and increases power consumption and board area.  
To overcome these difficulties, researchers and manufacturers proposed new architectures 
with specific purpose resources and advanced configuration characteristics. Up to Several 
hundred dedicated MACs (Multiply and Accumulate) modules are included in the larger 
devices for fast DSP calculations. To increase data storage capabilities, RAM blocks are 
distributed over the circuit, providing several Mbits of dedicated memory. Recently some 
devices come with dedicated interface controllers, such as Ethernet MAC, USB or PCI 
bridges. The list includes also AD/DA converters, PLLs for highly customizable clock 
generators, or hard-core microprocessors (with much better performance than their soft-core 
counterparts). As an example, Xilinx’s latest Virtex 5 chips include one or two embedded 
PowerPC™ 405 processors. These 32-bit RISC processors from IBM Corporation are 
included as hard-cores, making them run at around 450MHz, without decreasing the 
number of user (LB) resources. Several real-time operating systems (RTOS), included 
different Linux porting are available for this processor, allowing the designer to centre his 
efforts in the application-specific parts of the project. 
Devices can be classified with respect to their granularity, which is a measure of the number 
of resources that the logic block incorporates. Fine-grain devices consist of small cells 
containing for example a single NAND gate and a latch, or a multiplexer-based function 
generator and a flip-flop, like Actel IGLOO™ devices. In a medium-grain device, the typical 
LB consists of two or three function generators (called look-up tables, LUT), each one being 
able to implement any combinational function from 2 to 6 inputs, and (typically) two flip-
flops. A LUT can also be configured as a small memory or as a shift register. The LUT’s 
output can be connected to a flip-flop or routed directly to the cell’s port. Finally, the logic 
block can include logic-specific resources, such as fast carry generators. Xilinx’s Spartan and 
Virtex series are a typical example.  
IOBs can be configured as input, output or bidirectional ports. They frequently include on-
chip pull-up/down resistors and tri-state buffers. Connectivity is guarantied by supporting 
main standards, including 3GIO, Infiniband, Gigabit Ethernet, RapidIO, HyperTransport, 
PCI, Fibre Channel, Flexbus 4, between others. Some chips, like the Virtex 6 family, 
accommodate several multi-gigabit transceivers to perform serial I/O from 3.125, up to 
11Gbps. 
Most devices can be programmed by downloading a single-bit stream into the configuration 
memory. The device’s configuration is typically memory-based, using any of the SRAM, 
EPROM, EEPROM or the most recent flash technologies. Other OTP (one-time 
programmable) devices use fuse or antifuse technologies (for a detailed description of the 
different technologies and chip characteristics, the interested reader is referred to 
companies’ web pages).  
SRAM devices are the dominant technology nowadays. However, SRAM cells are volatile, 
meaning that the stored information is lost when power is not applied. These devices 
require and external “boot”, and are typically programmed from a host processor or a non-
volatile memory after chip reset. Memory-based FPGAs have the advantage of been re- and 
in-system programmable. Devices can be soldered directly to the PCB, without using special 
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sockets. If the design changes, there is no need to remove the device from the board, but it 
can be simply re-programmed in-system, using typically a JTAG interface. On the other 
hand, the non-volatile EEPROM and flash devices are better protected against unauthorized 
use and reverse-engineering, because the programming information is not downloaded to 
the device at power up. 

3.1 Dynamic reconfiguration 

The re- and in-system programmability of the memory based FPGAs has opened a broad 
area of new application scenarios. The term (Re-) Configurable Computing refers to 
computers that can modify their hardware circuits during system execution. The key for this 
new computing paradigm has been the development of new FPGAs with extremely quickly 
configuration rates. While first devices required several seconds to get programmed, in 
newer FPGAs the configuration download can be done in about one millisecond, and 

devices with configuration times of about 100 μs are expected in the next years. 
Dynamic reconfiguration can be used in a number of ways. The least demanding technique 
consists of switching between several different configurations that are prepared beforehand, 
what enables to perform more computational algorithms than those permitted by the 
physical hardware resources. This could be seen as the hardware equivalent of quitting one 
program and running another. When faster programming times are available, 
reconfiguration can be done in a kind of context swapping: the FPGA reconfigures itself 
time-sharing the execution of different tasks, making the illusion that it is performing all its 
functions at once (multi-tasking). An example of this techniques was used in (Villasenor et 
al., 1996) to build a single-chip video transmission system that reconfigures itself four times 
per video frame, requiring just a quarter of the hardware needed by an equivalent fixed 
ASIC. 
The most challenging approach to dynamic reconfiguration, and surely the most powerful, 
involves chips that reconfigure themselves on the fly, as a function of requirements emerged 
during algorithm execution. In this computing system, if a functional unit is missed, it is 
recovered from the resources store and placed on the chip, in some cases replacing the space 
occupied by another not-in-use circuit. The problem here is double: loading the proper 
configuration bitstream in the device and finding an appropriate location for the unit, what 
gives an idea of the complexity of the task. To support this kind of applications, some 
commercial devices (VirtexII, Virtex4) are now offering dynamic partial-reconfiguration 
capabilities. These devices allow reprogramming only part of the configuration memory, in 
order to update just a selected area of the circuit. 
Partial reconfiguration enables the remote upgrade of hardware across a network, by 
delivering new bitstreams and software drivers to the remote hardware. The benefits of this 
methodology include shortening time to market, because the hardware can be shipped 
sooner with a subset of the full functionality, and performance/corrections upgrading 
without the need for returns. This methodology has been proved in the Australian satellite 
FedSat launched on December 14, 2002, featuring a configurable computer (HPC-I) that 
enables the satellite to be rewired without having to be retrieved, thus drastically reducing 
cost and development time (Dawood et al., 2002). 
With their re-configurability characteristics and the introduction of new special-purpose 
resources blocks, FPGAs offer a number of advantages over classical design methodologies 
based on general purpose processors or even the more specialized Digital Signal Processors 
(DSP), such as unmatched parallelism, versatility, and short time to market. Moreover, Re-
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configurable Computing has been presented as a promising paradigm that will compete 
against the traditional von Newmann architecture and its parallel enhancements 
(Hartenstein, 2002), (Hartenstein, 2004). Augmented Reality applications and, particularly, 
embedded ones, can take huge benefits from these emerging so called config-ware 
technologies.  

4. Tools and design flows for reconfigurable hardware 

From a historical point of view, the first FPGA design tools where traditional schematic 
based editors coupled with a physical design software that performed the place and route of 
the architecture-specific components (or primitive cells) in which the circuit is decomposed 
for a particular FPGA device. Schematic-based tools had however several disadvantages. 
Firstly, the enormous number of sheets that a large design can consist of made it difficult to 
handle or update, with changes in one area propagating from sheet to sheet. Secondly, the 
design methodology proposed by the schematic tools consisted of structural descriptions of 
the circuit; that is, a system was described in base to the entities that composed it. However, 
in most cases, a system is more naturally described in base to its expected behaviour or 
functionality. The aforementioned limitations are the cause of the wide adoption of 
Hardware Description Languages (HDL), such as VHDL and Verilog, during the last 
decade. 

4.1 Hardware description languages 

Been textual, HDLs are more manageable than schematics. One the other hand, both of them 
support structural descriptions, however, only HDLs allow for higher-level “behavioural” 
descriptions. Finally, HDLs have specific constructions for modular design and component 
re-usability. This last characteristic has become crucial, as the size of the standard design has 
grown from ten or cents of k-gates to several million-gates. 
Another important characteristic is that high-level HDL descriptions, contrary to schematic 
descriptions, are technology independent, what allows the designer to synthesize his project 
over a number of FPGA devices with minor changes at the description level. Different FPGA 
vendors and architectures can be benchmarked until an optimal implementation is met, 
with little impact on the design time. 
Despite of the use of HDLs, the current design tools and methodologies have became 
inadequate to effectively manage the tens of millions gates that the silicon technology allows 
gather together in a single chip, furthermore when the pressure to reduce the design cycle 
increases continuously. 
The tendency has been towards the use of pre-designed and pre-verified cores trying to 
bridge the gap between available gate-count and designer productivity. Instead of 
developing a system from scratch, designers are looking at effective methodologies for 
creating well-verified reusable modules that can be incorporated in a “mix & match” style to 
the application-specific blocks. These reusable hardware modules are called cores or 
Intellectual Property (IP). To face the design reuse challenge, IP cores must be designed not 
just application independent, but also technology independent and synthesis/simulator tool 
independent (Keating & Bricaud, 1999). Beyond typical basic blocks, modules are being 
designed specifically to be sold as independent articles. These include microprocessors 
(ARM, MIPS, PowerPC), communication interfaces (PCI, USB, Ethernet), DSP algorithms 
(FIR/IIR filters, FFT, wavelets), memory elements (SDRAM, FIFO), etc. One of the more 
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complete on-line IP repositories can be found in (Design & Reuse, 2009). OpenCores is 
another important repository, based the concept of freely usable open source hardware 
(OpenCores, 2009). 

4.2 System level specification and codesign 

The design process based on HDLs like VHDL, Verilog, etc., is not exempt of difficulties, as 
these traditional methodologies still require deep hardware skills from the designer. 
Moreover, the high integration levels of current chips have transformed the concept of 
System On a Chip (SoC) into reality, increasing design complexity up to an unprecedented 
level. A typical SoC consists of one or several microprocessors/microcontrollers, multiple 
SRAM/DRAM, CAM or flash memory blocks, PLL, ADC/DCA interfaces, function-specific 
cores, such as DSP or 2D/3D graphics, and interface cores such as PCI, USB and UART (Fig. 
1).  
The intensive use of predesigned IP cores can just mitigate the problem, but in a SoC project, 
designers can not describe the hardware-specific modules at the Register Transfer Level 
(RTL), as the HDL methodologies propose, and then wait for a hardware prototype before 
interacting with the software team to put the design together. New EDA (Electronic Design 
Automation) tools must incorporate system-level modelling capabilities, such that the whole 
system, software and hardware, can be verified against its specifications right from the 
beginning of the design process. This requires an integrated hardware-software co-
simulation platform that permits to confer hardware engineers the same level of 
productivity of software engineers. 
To meet the challenges posed by the SoC complexity, new languages, tools and 
methodologies with greater modelling capabilities are been developed. In the area of design 
languages, there has been a lot of discussion about the role and applicability area of the 
various existing and new languages. SystemC, SytemVerilog, Verilog 2005, Analogue and 
Mixed-Signal versions of Verilog and VHDL, or Vera are some of the new proposals. 
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Fig. 1. Structure of core-based system on a chip 

One of the most promising alternatives is been developed by the Open SystemC Initiative 
(OSCI), a collaborative effort launched in 1999 among a broad range of companies to 
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establish the new standard for system-level design. SystemC (OSCI, 2006) (Black & 
Donovan, 2004) is a modelling platform consisting of C++ class libraries and a simulation 
kernel for design at the system and register transfer levels. Been a C-based language, 
SystemC can bring the gap between software engineers used to work with C and C++, and 
hardware engineers, that use other languages such as Verilog or VHDL. Furthermore, a 
common specification language would favour the creation of design tools that allow 
designers to easily migrate functions from hardware into software and vice versa. 
Following this approach, a new generation of tools for highly complex circuit design is been 
developed. This new methodology, known as ESL (Electronic System Level), aims to target 
the problem of hardware-software co-design from system-level untimed descriptions, using 
different flavours of High Level Languages (HLLs), such as C, C++ or Matlab. The main 
difference between tools is the projection methodology used to implement a given 
algorithm, that is, the approach used to partition and accelerate that algorithm; some tools 
used a fixed processor based architecture that can be expanded with custom application-
specific coprocessors; other are best tailored to create just custom hardware IP modules that 
could be later integrated in larger systems; some provide a flexible processor architecture 
whose instruction set can be expanded with application specific instructions supported by 
custom ALUs/coprocessors; finally, some of them are intended to provide a complete SoC 
design environment, giving support for custom hardware modules design, standard 
microprocessors, application software and the necessary hw-to-hw and hw-to-sw interfaces. 
A detailed review of these tools is beyond the scope of this chapter, so we will just 
summarize some of them in no particular order, in Table 1. The interested reader can find an 
exhaustive taxonomy of the design methodologies and ESL design environments 
commercially or educationally available in (Densmore & Passerone, 2006). 
 

Company  Web page Product 

Bluespec www.bluespec.com 
Bluespec Development 
Workstation 

CriticalBlue www.criticalblue.com Cascade 

Codetronix www.codetronix.com Mobius, XPSupdate 

Impulse Accelerated Tech. www.impulseaccelerated.com CoDeveloper 

Mitrionics www.mitrionics.com 
Mitrion Software Development 
Kit 

Nallatech www.nallatech.com DIME-C 

Poseidon Design Systems www.poseidon-systems.com Triton Builder 

System Crafter www.systemcrafter.com SystemCrafter SC 

ARC International www.teja.com ARChitect, others 

Xilinx Inc. www.xilinx.com AccelDSP, System Generator 

Mentor Graphics www.mentor.com Catapult C 

Cadence Design System www.cadence.com C-to-Silicon Compiler 

Table 1. Some companies providing ESL tools. 

4.3 ImpulseC programming model  

In this section, we analyze the main features and workflow of CoDeveloper™, an ESL tool 
from Impulse Accelerated Technologies, Inc. (Impulse, 2009) used for hardware-software co-
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design, to evaluate its suitability for the non-hardware specialist scientist in general, as in 
the case of most AR researches. From our experience, we then provide some keys to get 
better results with this tool, which may be easily generalized for similar tools, with the aim 
of making the reconfigurable hardware approach for embedded AR solutions a bit closer for 
a broaden number of researchers. 
ImpulseC compiler uses the communicating sequential process (CSP) model. An algorithm 
is described using ANSI C code and a library of specific functions. Communication between 
processes is performed mainly by data streams or shared memories. Some signals can be 
transferred also to other processes like flags, for non continuous communication. The API 
provided contains the necessary functions to express process parallelization and 
communication, as standard C language does not support concurrent programming. 
Once the algorithm has been coded, it can be compiled using any standard C compiler. Each 
of the processes defined is translated to a software thread if the operating system supports 
them (other tools do not have this key characteristic, and can only compile to hardware). 
The entire application can then be executed and tested for correctness. Debugging and 
profiling the algorithm is thus straightforward, using standard tools. Then, computing 
intensive processes can be selected for hardware synthesis, and the included compiler will 
generate the appropriate VHDL or Verilog code for them, but also for the communication 
channels and synchronization mechanisms. The code can be generic of optimized for a 
growing number of commercially available platforms. Several pragmas are also provided 
that can be introduced in the C code to configure the hardware generation, for example, to 
force loop unrolling, pipelining or primitive instantiation. 
The versatility of their model allows for different uses of the tool. Let us consider a simple 
example, with 3 processes working in a dataflow scheme, as shown in Fig. 2. In this case, 
Producer and Consumer processes undertake just the tasks of extracting the data, send them 
to be processed, receive the results and store them. The computing intensive part resides in 
the central process, which applies a given image processing algorithm. A first use of the tool 
would consist in generating application specific hardware for the filtering process that 
would be used as a primitive of a larger hardware system. The Producer and Consumer 
would then be “disposable”, and used just as a testbench to check, first, the correct 
behaviour of the filtering algorithm, and second, the filtering hardware once generated. 
 

INPUT

IMAGE PRODUCER IMAGE FILTER CONSUMER

OUTPUT

IMAGE

C PROCESS C PROCESS C PROCESS

 

 SOFTWARE

SOFTWARE/

HARDWARE SOFTWARE

 

Fig. 2. Typical CoDeveloper model 

A different way of using the tool could consist in generating an embedded CPU accelerated 
by specific hardware. In this case, Producer and Consumer would be used during the 
normal operation of the system, and reside in an embedded microprocessor. The filter 
would work as its coprocessor, accelerating the kernel of the algorithm. CoDeveloper 
generates the hardware, and resolves the software-to-software and hardware-to-hardware, 
communication mechanisms, but also the software-to-hardware and hardware-to-software 
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interfaces, for a number of platforms and standard buses. This is a great help for the 
designer that gets free of dealing with the time-consuming task of interface design and 
synchronization. 
Finally, the objective can be accelerating an external CPU by means of a FPGA board. In this 
case, the software processes would reside on the host microprocessors, which would 
communicate to the application specific hardware on the board by means of a high 
performance bus (HyperTransport, PCI, Gigabit Ethernet, etc.). As in the previous case, 
software, hardware and proper interfaces between them (in the form of hardware 
synchronization modules and software control drivers) are automatically generated for 
several third party vendors. 

4.4 Key rules for a successful system-level design flow   
The results obtained in our experiments with different applications shown that AR-like 
algorithms can benefit from custom hardware coprocessors for accelerating execution, as 
well as for rapid prototyping from C-to-hardware compilers. However, to obtain any 
advantage, both, an algorithm profiling and a careful design are mandatory. These are the 
key aspects we have found to be useful: 

• The algorithm should make an intensive use of data in different processing flows, to 
make up for the time spent in the transfer to/from the accelerator. 

• The algorithm should make use of several data flows, taking advantage of the massive 
bandwidth provided by the several hundred o I/O bits that FPGA devices include. 

• The working data set should be limited to 1-2MB, so that it may be stored in the internal 
FPGA memory, minimizing access to external memory. 

• The algorithm should use integer or fixed point arithmetic when possible, minimizing 
the inference of floating point units that reduce the processing speed and devour FPGA 
resources. 

• The algorithm must be profiled to identify and isolate the computational intensive 
processes. All parallelizing opportunities must be identified and explicitly marked for 
concurrent execution. Isolation of hardware processes means identifying the process 
boundaries that maximize concurrency and minimize data dependencies between 
processes, to optimize the use of onchip memory. 

• Maximize the data-flow working mode. Insert FIFO buffers if necessary to adjust clock 
speeds and/or data widths. This makes automatic pipelining easier for the tools, 
resulting in dramatic performance improvement. 

• Array partitioning and scalarizing. Array variables usually translate to typical 
sequential access memories in hardware, thus if the algorithm should use several data 
in parallel, they must be allocated in different C variables, to grant the concurrent 
availability of data in the same clock cycle. 

• Avoiding excessive nested loops. This could difficult or avoid correct pipelining of the 
process. Instead, try partitioning the algorithm in a greater number of flattened processes. 

5. FPGA applications  

5.1 FPGA applications in image processing and computer vision  

The nature of image processing demands the execution of intensive tasks that in many cases 
(as it is AR) must meet the requirement of high frame rate. This encourages the use of 
specific hardware in order to improve the performance of the intended applications. Indeed, 
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the correct choice of hardware can raise dramatically the system performance. Current 
systems offer different benefits and limitations depending on the type of processing 
performed and its implementation. In this sense, general-purpose CPUs are the best 
alternative for sequential tasks where it is necessary to perform complex analysis of images 
and to run highly branched algorithms. However, in applications of 3D image processing 
and fast rendering scenes, the Graphics Proccesor Units (GPU) are more suitable because 
they have specific processing architectures designed to perform vector operations on large 
amounts of data. FPGAs are especially suitable for performing pre-processing tasks like 
colour format conversion, image filtering, convolution, and more in general, any repetitive 
operation that does not require highly complex algorithms, even in those cases when these 
algorithms are parallelizable and can benefit from the use of unconventional specific 
architectures. The large number of memory blocks available on FPGAs provides parallel 
processing support and enables very fast access to data stored in these caches. Developers 
can leverage the high bandwidth I/O on these devices and thus increase the speed of the 
functions and data rate that traverse the FPGA on GPUs or CPUs. Thanks to the versatility 
to develop dedicated circuits and the high degree of parallelism, FPGAs can achieve 
performances similar to some other hardware alternatives that run at higher frequencies of 
operation. These reasons explain why the implementation of many algorithms is the focus of 
a wide number of works since the last decade, and why from early stages of the evolution of 
reconfigurable hardware, several FPGA-based custom computing machines have been 
designed to execute image processing or computer vision algorithms (Arnold et al., 1993; 
Drayer at al., 1995). 
Of high interest for AR applications is the implementation of object tracking algorithms, 
where different approaches have been followed. For example, the authors in (Dellaert & 
Tarip, 2005) present an application where a multiple camera environment is used for real 
time tracking with the aim of assisting visually impaired persons by providing them an 
auditory interface to their environment through sonification. For this purpose an octagonal 
board can support up to 4 CMOS cameras, an Xscale processor and a FPGA which handles 
the feature detection in parallel for all cameras. Another FPGA-based application for 
counting people using a method to detect different size heads appears in (Vicente et al., 
2009). More examples of FPGA-based approaches to object tracking can be found in the 
literature: for colour segmentation (Garcia et al., 1996; Johnston et al., 2005); for 
implementing an artificial neural network for specifically hand tracking (Krips et al., 2002; 
Krips et al., 2003); for recognizing hand gestures (In et al., 2008); and for increasing pixel rate 
to improve real-time objects tracking by means of a compression sensor together with an 
FPGA (Takayuki et al., 2002). 
Similarly, the human exploration in virtual environments requires technology that can 
accurately measure the position and the orientation of one or several users as they move and 
interact in the environment. For this purpose a passive vision FPGA-based system has been 
proposed by Johnston et al. (Johnston et al., 2005). The aim of this system is to produce a 
generalised AR system in the sense that accurate estimation of a mobile user’s position 
relative to a set of indoor targets is accomplished in real time. FPGA-based systems are also 
used to develop a system for tracking multiple users in controlled environments (Tanase et 
al., 2008).   
Vision-based algorithms for motion estimation, optical flow, detection of features like lines 
or edges, etc. are also widely used in AR. Recently, several motion estimation alternatives 
have been proposed to be implemented on a FPGA platform. Some of them are compared in 
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(Olivares et al., 2006). Some other good examples interest of the recent literature on this 
issue can be found in (Yu et al., 2004), where mobile real-time video applications with good 
trade-off between the quality of motion estimation and the computational complexity are 
presented, and (Akin et al., 2009), that focuses on the reduction of the computational 
complexity of a full search algorithm from 8 bits pixel resolution to one. Optical flow can 
also be used to detect independent moving objects in the presence of camera motion. 
Although many flow-computation methods are complex and currently inapplicable in real-
time, different reliable FPGA-based Real-time Optical-flow approaches have been proposed 
in the recent years (Martin et al., 2005; Diaz et al., 2006). Furthermore, other processing 
image techniques like super resolution, atmospheric compensation and compressive 
sampling may be useful in enhancing the images and to reconstruct important aspect of the 
scenes. These techniques are highly complex and the use of FPGAs is encouraged to achieve 
the necessary acceleration. These topics are covered in detail in several articles dedicated to 
reconfigurable computing (Bowen et al., 2008; Bodnar et al., 2009; Ortiz et al., 2007).  

5.2 FPGA applications in computer graphics and multimedia 

Computer graphics is another field that can benefit from the flexibility of software 
programmable devices. This explains the increasing attention paid to FGPAs in the last 
years for the purpose of graphics acceleration, traditionally assigned to GPUs or graphics 
cards. 
The suitability of FPGAs for the implementation of graphic algorithms has been analysed 
since the mid 90s. Singh and Bellec (Singh & Bellec, 1994) introduce the notion of virtual 
hardware, a methodology to execute complex processes on limited physical resources, using 
the dynamic reconfigurability of FPGAs. More recently, Howes (Howes., 2006) compare the 
performance of different architectures based on FPGAs, GPUs, CPUs and Sony Playsation 2 
vector units on different graphic algorithms using a unified description based on A Stream 
Compiler (ASC). This work shows how the FPGAs provide fast execution of the graphics 
algorithm with clocks at lower frequencies than its competitors. Nevertheless, performances 
are particularly dependent on the possibilities of optimization for each design. 
Radiosity high computational cost has been improved using FPGA devices by Styles et al. 
(Styles & Luk., 2002). Ye and Lewis (Ye & Lewis, 1999) proposed a new architecture for a 3D 
computer graphic rendering system which synthesizes 3D procedural textures in an FPGA 
device, enhancing the visual realism of computer rendered images, while achieving high 
pixel rate and small hardware cost. In order to improve the efficiency of 3D geometric 
models represented by a triangle mesh, some mesh compression/decompression algorithms 
were developed. Mitra and Chiueh (Mitra & Chiueh, 2002) proposed the BFT algorithm and 
presented a novel FPGA-based mesh decompressor.  
Styles and Luk. (Styles & Luk., 2000) analyzed the customization of architectures for 
graphics applications for both general and specific purposes, and prototyping them using 
FPGAs. Based on their results, the authors remark the suitability of FPGAs. In the same 
work an API that allows the execution of OpenGL graphics applications on their 
reconfigurable architecture is also presented. 

5.3 FPGA applications in computer graphics and multimedia 

Computer graphics is another field that can benefit from the flexibility of software 
programmable devices. This explains the increasing attention paid to FGPAs in the last 
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years for the purpose of graphics acceleration, traditionally assigned to GPUs or graphics 
cards. 
The suitability of FPGAs for the implementation of graphic algorithms has been analysed 
since the mid 90s. Singh and Bellec (Singh & Bellec, 1994) introduce the notion of virtual 
hardware, a methodology to execute complex processes on limited physical resources, using 
the dynamic reconfigurability of FPGAs. More recently, the authors of (Howes at al., 2006) 
compare the performance of different architectures based on FPGAs, GPUs, CPUs and Sony 
Playsation 2 vector units on different graphic algorithms using a unified description based 
on A Stream Compiler (ASC). This work shows how the FPGAs provide fast execution of 
the graphics algorithm with clocks at lower frequencies than its competitors. Nevertheless, 
performances are particularly dependent on the possibilities of optimization for each design. 
Radiosity high computational cost has been improved using FPGA devices by Styles et al. 

(Styles at al., 2002). Ye and Lewis (Ye & Lewis, 1999) proposed a new architecture for a 3D 

computer graphic rendering system which synthesizes 3D procedural textures in an FPGA 

device, enhancing the visual realism of computer rendered images, while achieving high 

pixel rate and small hardware cost. In order to improve the efficiency of 3D geometric 

models represented by a triangle mesh, some mesh compression/decompression algorithms 

were developed. Mitra and Chiueh (Mitra & Chiueh, 2002) proposed an algorithm and 

presented a novel FPGA-based mesh decompressor. Styles et al. (Styles at al., 2000) analyzed 

the customization of architectures for graphics applications for both general and specific 

purposes, and prototyping them using FPGAs. Based on their results, the authors remark 

the suitability of FPGAs. In the same work an API that allows the execution of OpenGL 

graphics applications on their reconfigurable architecture is also presented. 

5.4 FPGA applications in communications 

FPGA technology has appeared to be also very useful for communication systems. Two 
important factors encourage its expansion in this field: the falling prices of the devices and 
the inclusion of DSP capabilities. Typical communication problems such as data formatting, 
serial to parallel conversion, timing and synchronization can be faced naturally in a FGPA 
device thanks to its specific features. Furthermore, FPGAs are convenient for the 
development of the necessary glue logic for the interconnection of processors, modems, 
receivers, etc.  Several examples can be found in the literature of the field. In (Ligocki et al, 
2004) the authors describe the prototype development of a flexible communication system 
based on a FPGA. The main focus of this work is on software concerns, considering that 
FPGA technologies are the core of the project. Other authors exploited the spatial/parallel 
computation style of FPGAs for wireless communications. Due to the computational 
complexity of WLAN (Wireless local area network), and taking into account the capabilities 
of modern microprocessors, an implementation based exclusively on microprocessors is not 
convenient, requiring a large number of components. Parallel computation allows 
improving the efficiency of the implementation of the discrete components, and makes it 
possible to accelerate some complex parts of WLANs (Masselos & Voros, 2007). 
Of special interest results the benefits of FPGAs for embedded software radio devices. In 
(Hosking, 2008), it is shown how its inherent flexibility makes of FGPA devices an excellent 
choice for coping with the increasing diverse array of commercial, industrial, and military 
electronic systems. Additionally, the large number of available IP cores offer optimized 
algorithms, interfaces and protocols which can shorten significantly the time-to-market. 
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5.5 FPGA applications in wearable computing 

It is a common understanding that the concept of wearable computing comes from the tools 
developed to intensify the experience of seeing, what led to augmented reality. However, it 
can be noticed that in the literature different authors understand the concept of wearable 
systems in very different manners. Some authors claim that a system is wearable as long as 
it can be transported by a human. According to this, some authors present wearable 
solutions based on small variations of desktop applications in a back-up with a laptop 
(Feiner et al, 1997; Hoellerer et al, 1999). However, let us focus in this chapter on only 
wearable devices which do not constraint the mobility of the user. For this purpose, the use 
of FPGAs results of the highest interest. In wearable systems, the problem of combining 
simultaneously high performance and low power consumption requirements in small 
dimensions can be overcome with FPGAs. Contrary to ASICs (application specific 
integrated circuit), reconfigurable logic offers more flexibility to adapt dynamically the 
processes and the possibility of integrating different processing units in only one device. 
This way, it is possible to reduce the number of chips in a system, which can be an 
important advantage. 
An interesting study on the improvements regarding energy saving when implementing 
critical software processes on reconfigurable logic can be found in (Stitt et al, 2002). The 
LART board, presented in (Bakker et al, 2001) combines a low-power embedded 
StrongARM CPU with an FPGA device, which offers a better power/MIPS ratio, pursuing 
power consumption reduction. The FPGA is used for dedicated data processing and for 
interconnecting several LARTs working in parallel. In a step forward, the authors in (Enzler 
et al, 2001) analyze the applications of dynamically reconfigurable processors in handheld 
and wearable computing. They consider a novel benchmark which includes applications 
from multimedia, cryptography and communications. Based on that work, the authors of 
(Plessl et al, 2003) presented the concept of an autonomous wearable unit with 
reconfigurable modules (WURM), which constitutes the basic node of a body area 
computing system. The WURM hardware architecture includes reconfigurable hardware 
and a CPU. In the prototype, the implementation is done on only one FPGA, including the 
CPU as a soft core. 
Finally, let us remark the importance of networking for wearable computing. Indeed, the 
constraints in power consumption, size and weight of wearable computers increase the need 
for network capabilities to communicate with external units. A study about the interest of 
FPGA approaches for network on chip implementations across various applications and 
network loads is presented in (Schelle & Grunwald, 2008). Recently, several authors have 
followed FPGA-based approaches in their solutions. In (Munteanu & Williamson, 2005), an 
FPGA is exploited to provide consistent throughput performance to carry out IP packet 
compression for a network processor. (Wee et al, 2005) presents a network architecture that 
processes in parallel cipher block chaining capable 3DES cores by using about the 10% of the 
resources of an FPGA Xilinx Virtex II 1000-4. Within the frame of the European Diadem 
Firewall Project, IBM suggests the use of standalone FPGA-based firewalls in order to 
achieve an accelerated network architecture (Thomas, 2006). 

6. FPGA-based platform for the development of AR applications 

We have proposed a platform for developing fully FPGA-based embedded systems aimed 
for image and video processing applications. It is a hardware/software system created for 

www.intechopen.com



 Augmented Reality 

 

46 

speeding up and facilitating the development of embedded applications. As the survey of 
works in previous sections highlights, FPGA devices are very suitable for the 
implementation of the processing tasks involved in AR. The adoption of an FPGA-based 
approach allows executing different tasks and algorithms in parallel, which ensures the best 
performance and the optimum power consumption. The platform acquires video in 
standard analogue formats, digitizes, and stores it in external memory devices. In order to 
confer versatility to the embedded system, the platform includes as a key component an 
interface which allows for user interaction. This interface makes it possible to display text 
and, by means of hand pose recognition or voice recognition, to choose options and 
configure parameters. Thanks to it, the user can customize the functionality of the hardware 
at run-time. 

6.1 Frame grabber 

Video is a primary input to AR systems and can be typically used to develop video see-
through systems, to execute vision-based tracking algorithms or as input to a user interface. 
In order to process video we have developed a frame grabber which accepts standard 
analogue video signal, converts it into digital and stores it in memory.  
The frame grabber is based on the SAA7113 video input processor, from Philips 
Semiconductors, which is able to decode PAL, SECAM and NTSC from different sources 
(CVBS, S-video) into ITU-R BT 601. It is configured and controlled through I2C bus, so an 
I2C controller module must be included to properly manage the SAA7113. The SAA7113 
presents video data at an 8 bit digital video port output, with 720 active pixels per line in 
YUV 4:2:2 format and a number of lines in a frame depending on the video standard (PAL, 
NTSC). The 4:2:2 output format implies that there is a luminance Y value for each pixel, but 
only a chrominance pair UV for two pixels. The YUV colorspace is used by the PAL and 
NTSC colour video standards. However, RGB is the most prevalent choice for computer 
graphics. Therefore, we have included a converter from YUV to RGB in the design. It just 
implements the corresponding linear equations, which can be found, e.g., in (Jack, 2005). 
The image from the SAA7113 must be stored in a frame buffer. In our platform it is made of 
external asynchronous SRAM memory devices. A memory interface for generating the 
memory control signals and read /write operations was implemented on the FPGA. 
Colour data stored in the memory is in YUV format since it optimizes the space and the 
access to memory. While in RGB format a pixel is defined with 24 bits, the YUV format from 
the video codec uses 32 bits to define two pixels, with exactly the same colour information in 
both RGB and YUV colorspaces. As physically each frame buffer consists of a 32 bit 256 KB 
SRAM, it is more efficient to store colour information in YUV colorspace, since it is possible 
to store two pixels in just one address, and so halving the number of access to the memory. 

6.2 General purpose user interface 

Unlike PC-based solutions, where visualization of text information is completely usual, this 
is not so natural in hardware-based solutions. Most of the present FPGA-based embedded 
systems do not offer an interface to the user. Sometimes they just consider a UART to 
connect with a computer and transfer some information. However, the use of a PC simply 
for running the software that manages the communications and the interface is a poor, very 
low efficient solution, even unfeasible in embedded systems. With the aim of overcoming 
this drawback of FPGA-based embedded systems, we have designed a hardware core which 
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facilitates the addition of a user interface to FPGA-based systems. The core is based on 
MicroBlaze, a standard 32 bit RISC Harvard-style soft processor developed for Xilinx FPGA 
devices. This gives flexibility and versatility, and ensures fast re-design of the hardware 
architecture for enhanced or new applications. The core is made up of hardware 
components and software functions in different levels. Thanks to the core it is possible to 
present text information in a VGA monitor to the user, who can navigate through menus, 
select options and configure parameters by means of a pointer device. So, it provides the 
flexibility of adapting the systems to the user requirements or preferences. Next, its basic 
modules are described. 

Display of text and text fonts 

In order to display text, all the bitmaps associated to the font characters were previously 
defined and stored in a ROM memory using FPGA internal logic resources. The ROM works 
as a MicroBlaze peripheral, using a dedicated Fast Simplex Link (FSL) channel.  
To display text, we have considered a text screen, which manages the visualization of the 
strings. In the default mode, it is a 640×480 array, whose elements correspond to the pixels 
in the VGA output. A 64 colours palette has been considered, which implies 6 bits for each 
pixel. Due to its size, the array is stored in external SRAM.  
The text screen is defined as a peripheral and connected to the MicroBlaze microprocessor 
by means of the On-chip Peripheral Bus (OPB). The hardware of this peripheral includes the 
SRAM memory interface to control write and read operations and the logic to interpret the 
data from MicroBlaze into address and data buses values. It carries out two different tasks: 

• it receives data from MicroBlaze, and manages the write operations in the SRAM 
memory just when a modification in the text information displayed is done. 

• it reads data from the memory to show the text screen in the VGA monitor. These data 
are sent to the VGA Generator module. This process is independent on MicroBlaze.  

In order to create the interface presented to the user, the function mb_OutTextXY has been 

prototyped to be instantiated in the software application running in MicroBlaze. It is similar 

to the equivalent standard C function, and it allows to define a text string and to specify its 

colour and position in the screen. When the mb_OutTextXY function is executed, the writing 

instruction of the text screen peripheral is called to write in the SRAM the colour values of 

the pixels which correspond to each element of the string, according to its position and its 

colour. 

Once the strings are stored in the text screen, the basic user application waits for an 
interrupt from pointer device. When it happens, an interrupt handler classifies the interrupt 
and reads the coordinates of the pointer position. Since the position of each text string is 
known, it is possible to determine in the software application which one has been selected 
by the user, and then to reply with the desired actions. 

The pointing device 

A pointing device is required to interact within the user interface. With this aim, we have 
proposed a hand-based interface designed for mobile applications. It detects the user hand 
with a pointing gesture in images from a camera, and it returns the position in the image 
where the tip of the index finger is pointing at. In an augmented reality application the 
camera will be placed on a head mounted display worn by the user. A similar system is 
proposed in (Piekarski et al, 2004), but our approach is based on skin colour, without the 
need of glove or coloured marks. Our hand-based interface is aimed for performing 
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pointing and command selection in the platform for developing FPGA-based embedded 
video processing systems herein described. 
Vision-based algorithms have been used to build the hand and the pointing gesture 
recognizers. The image from the camera, once acquired, digitalized and stored by the 
previously described frame grabber, is segmented using an ad-hoc human skin colour 
classifier.  Human skin colour has proven to be useful in applications related to face and 
hands detection and tracking. With this colour skin approach we try to generalize the use by 
eliminating external accessories, what reduces costs. The skin colour classifier is made of 
sub-classifiers, each one defined as a rule-based algorithm built from histograms in a 
colourspace. The rules in each colourspace define a closed region in the corresponding 
histogram: a pixel of an image is classified as skin if its colour components values satisfy the 
constraints established by the rules. Classifiers in the YIQ, YUV and YCbCr colorspaces 
have been considered, so three sub-classifiers have been implemented. To generate a unique 
output image, their outputs are merged using logical functions. The use of different 
colorspaces is aimed at achieving invariance to skin tones and lighting conditions. Further 
details can be found in (Toledo et al, 2006). 
Once the image has been segmented the next processing task is to look for the pointing 

gesture. The solution adopted consists of convoluting the binary image from the skin 

classifier with three different templates: one representing the forefinger, other the thumb 

and the third the palm (Toledo et al, 2007). This modularity makes easier the addition of 

new functionality to the system through the recognition of more gestures. Due to the size of 

the hand and the templates, an optimized solution for the FPGA-based implementation of 

large convolution modules has been specifically developed. It can convolve binary images 

with a three-value template in one clock cycle independently of the template size. It is based 

on distributed arithmetic and has been designed using specific resources available in Xilinx 

FPGAs. The maximum size of the template depends on the FPGA device. In this application 

images are convoluted with 70×70 templates. Each convolution module sends to the 

MicroBlaze soft processor its maximum value and its coordinates on the image. A software 

algorithm running on MicroBlaze decides that a hand with the wanted gesture is present 

when the maximum of each convolution reaches a threshold and their relative positions 

satisfy some constraints derived from training data. Then, the algorithm returns the position 

of the forefinger. Otherwise, it reports that no pointing hand is detected.  

The software application on MicroBlaze also includes an algorithm for dynamically 
adapting the skin classification and the parameters for hand recognition. Taking into 
account the number of pixels classified as skin in the image, the maximum value and the 
coordinates of each convolution and the detection or not of the pointing hand pose, it tunes 
each skin classifier and the merging of their binary output images in order to achieve the 
optimum classification rates, and it also tunes the values of the different constraints to their 
right values in order to find the desired hand posture. The FPGA implementation of these 
tasks allows taking advantage of parallelism in each processing stage at different levels.  For 
example, the three classifiers for skin recognition are executed at the same time on an input 
pixel. Since the constraints of a classifier are all evaluated at the same time, the time required 
to classify a pixel is just the maximum delay associated to a constraint, three clock cycles in 
our case. Besides, the three convolutions that look for the hand position are performed in 
parallel, and the operations involved in each convolution are all executed at the same time 
in only one clock cycle. Meanwhile, the software application in MicroBlaze is using the 
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information extracted by the hardware modules as input parameters to the algorithm which 
estimates the presence and position of the hand. Thanks to exploiting the parallelism 
inherent to FPGA devices, the hand detection algorithm can process 640×480 pixel images at 
more than 190 frames per second with a latency of one frame. It also makes it feasible that 
new processing cores can be added to the system with small performance penalty. 
In addition to the hand-based interface, a controller for a generic PS/2 mouse has been 
implemented and added to the MicroBlaze system as an OPB peripheral. 

6.3 Generation of video signals 

The platform can generate signals for displaying video on monitors and analog screens. The 
generation of the synchronization and RGB signals for a VGA monitor is carried out by the 
VGA generator module, which can be configured to generate different resolutions. The 
platform also includes the SAA7121, an integrated circuit from Philips which encodes digital 
video into composite and S-video signals. The video generator module also deals with the 
mixing of the video from the different sources included in the platform.  

7. Portable real time system for helping visually impaired people 

We have validated the usefulness of the described platform in an application for people 
affected by a visual disorder known as tunnel vision. It consists in the loss of the peripheral 
vision, while retaining clear and high resolution central vision. As shown in Fig. 3, it is like 
looking through a keyhole or a ring in the mid-periphery. Tunnel vision is associated to 
several eyes diseases, mainly glaucoma and retinitis pigmentosa, and reduces considerably 
the patient’s ability to localize objects, which inevitably affects the patient’s relationship 
with people and the environment.  
 

 

 

Fig. 3. Simulation of patient affected by tunnel vision view. A residual 10º field of view has 
been considered to simulate the tunnel vision effect. The severe reduction of the visual field 
(right) can be observed comparing with the normal vision (left).  

To aid affected people, it is necessary to increase the patient’s field of view without reducing 
the usefulness of the high resolution central vision. With this aim, (Vargas-Martín & Peli, 
2001) proposed an augmented view system where the contour information obtained from 
the image of a camera is superimposed on the user’s own view. In their work, contours are 
generated by an edge detection algorithm performed by a four-pixel neighborhood gradient 
filter and a threshold function, running on a laptop PC (Vargas-Martín & Peli, 2002). They 
draw the conclusion that, although patients consider the system useful for navigating and 
obstacle avoiding, a specifically designed system to perform image processing and increase 
frame rate is necessary. Obviously, an effective improvement of the user’s environment 
perception requires real time processing. To achieve it, we have used our FPGA-based 
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hardware platform, which ensures the video frame rate and the low latency that the 
mobility of the application required.  
 

 

Fig. 4. Simulation of patient’s view through the HMD for outdoor and indoor environments. 
A residual 10º field of view has been considered to simulate the tunnel vision effect. 
 

 

Fig. 5. Overall system schematic showing the main modules and the output view presented 
to the user. 

In our system, the image acquired with the frame grabber is processed to extract contour 
information and it is used to enhance the user’s perception of the environment by the 
superimposition on his own view of the entourage seen with a see-through head mounted 
display. To carry out the required processing we proposed the use of a Cellular Neural 
Network (CNN), which can be tuned to produce customized results and allows increasing 
the versatility of the system through the possibility of using different templates. The 
difficulties that rise when designing digital hardware implementation of CNNs are 
addressed in (Martínez et al, 2007; Martínez et al, 2008), where a novel approach is also 
proposed. It has been later optimized in (Martínez et al, 2009).  After processed, the image 
from the camera must be properly zoomed out in order to be shown to the user in his 
residual central vision. A digital zooming algorithm has been included in the design with 
this purpose. It has been designed to minimize the number of access to the external memory 
where the original input data are stored. 
The image resulting from the processing with the CNN, suitably minified, is sent to the VGA 
output available in the hardware platform.  Fig. 4 shows some examples of the system output.  
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Due to the special characteristics of the target application, a vision-based interface such as 
the described in the previous section is not a suitable approach for interacting with this 
system. Instead, we have developed a voice recognition system which, as the whole of the 
herein described system, is implemented in FPGA. Since the aid device is conceived as a 
personal system, an easy and high-reliable speaker dependent recognition algorithm has 
been designed. In a simple and fast initial step, the user records a customized set of 
keywords. They are stored in external non-volatile flash memory, so the user only has to do 
it for the first time use. Later, in operating mode, the algorithm detects when the user says a 
word and convolves it with all the previously recorded ones. The latency response depends 
on the number of key words, but it is typically in the order of the milliseconds, fast enough 
to not appreciating any significant delay. 
This user interface makes it feasible to adapt the functionality to the user preferences 
through, for example, basic modifications in the CNN processing, the minification factor or 
the colour and intensity of the contour information superimposed in his view. 
The great amount of resources available in FPGA devices and their inherent parallelism 
make it possible to fulfill the requirements of the application without compromising the 
performance in speed, size and power consumption. 
A simplified diagram of the whole system is shown in Fig. 5. The current prototype has been 
built with boards from Avnet, which populates Xilinx devices and the additional integrated 
circuits mentioned. The prototype also uses a Sony Glasstron PLMS700E as head mounted 
display to superimpose the video output on the user view. At the present moment, the 
system is under test and validation by visually impaired people, offering very successful 
initial results and improving the patients’ ability to localize objects, orientate and navigate. 
Once passed the tests, a commercial device will be manufactured and packed into a small 
shoulder bag or belt bag. 
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