
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

3

Design of Embedded Augmented
Reality Systems

J. Toledo, J. J. Martínez, J. Garrigós, R. Toledo-Moreo and J. M. Ferrández
Universidad Politécnica de Cartagena

Spain

1. Introduction

The great majority of current Augmented Reality (AR) applications are built using general
purpose processors as development platforms where the processing tasks are executed in
software. However, software execution is not always the best solution for the high intensive
requirements of the many processing tasks involved in AR, and it inevitably constrains
frame rate and latency, which compromises real time operation, and magnifies size and
power consumption, hindering mobility. These limitations make the spread of AR
applications more difficult. This is particularly remarkable in the case of mobile real time
applications.
To overcome the aforementioned constraints in the design of embedded AR systems, this
chapter presents a hardware/software co-design strategy based on Field Programmable
Gate Array (FPGA) devices and Electronic System-Level (ESL) description tools as an
alternative to the traditional software-based approach. Modern FPGAs feature millions of
gates of programmable logic, with dedicated hardware resources and with the widest range
of connectivity solutions. FPGA internal structure makes itself perfectly suitable for
exploiting parallelism at several levels. Moreover, because of its flexibility, it is possible to
implement not only specific algorithms, but also AD/DA interfaces, controllers, and even
several microprocessors, what makes it feasible to build more complex and powerful
Systems on a Chip (SoC) with improved performance and reduced costs, size and power
consumption. FPGA (re)programmability is also a key factor, which provides not just
reduced time to market and design flexibility, but also in-the-field upgradability and
intellectual property protection. Thanks to these characteristics, FPGAs are giving rise to a
new paradigm in computation named Reconfigurable Computing. ESL, on the other hand,
is an emerging electronic design methodology that focuses on building models of the entire
system with a high-level language such as C, C++, or MATLAB, which are later used by
improved electronic design tools to generate an automated and correct-by-construction
implementation of the system. ESL codesign tools allow for developers with little or no
prior hardware design skills to implement complex systems composed of mixed software
and application-specific hardware modules.
The objective of this chapter is to provide a clear vision of the possibilities of FPGA devices
and the new development methodologies for embedded AR systems. To do it so, the
authors explain the FPGAs key features which make them suitable for the implementation
of AR applications. The design flow and tools for hardware description and

Source: Augmented Reality, Book edited by: Soha Maad,
 ISBN 978-953-7619-69-5, pp. 230, January 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

 Augmented Reality

32

hardware/software co-design from low to the highest level are described. A survey of the
most noteworthy FPGA-based works in image processing, computer vision, computer
graphics, multimedia, communications and wearable computing is presented. Finally, the
chapter is completed with an example which illustrates the advantages of the FPGA-based
approach as platform for developing AR applications: a portable real time system for
helping visually impaired people. This system enhances the patient’s knowledge of the
environment with additional video information using a see-through head mounted display.
The description of its main processing cores for video acquisition and processing, for hand
recognition, for the user interface, etc. and the evaluation of their performances highlight the
advantages of the FPGA-based design and reveal the key topics for the implementation of
AR systems.

2. On the suitability of reconfigurable hardware for mobile AR applications

After a successful decade of exploration and consolidation of fields and applications, it is
time for AR to break the border of the research domain and reach the common people
domain. For it, the user needs to feel AR as a part of his own body, not as an external an
uncomfortable artefact. Inevitably, this entails ubiquity and mobility. For such a qualitative
jump, one of the major challenges that AR has to face is the hardware under applications
and the development of new platforms for interaction (Veas & Kruijff, 2008). It is the key to
find the optimum solution to the complicated trade-off between quality, speed, power and
size. Most AR research published to date relies on the use of general purpose computing
hardware to perform computations, render computer graphics and provide video overlay
functionality. Systems that rely on general purpose computing hardware are larger in size
and consume more power than those which have devices customised for specific tasks.
When working in indoor environments, such issues are rarely considered since the systems
are not normally required to be mobile, but the challenge of ubiquity and mobility raises a
new scenario. In it, doubtlessly, computer processing hardware is one of the research topics
where an extra development effort must be done in order to provide a more effective AR
experience (Zhou et al, 2008).
Over the last years, several hardware platforms have been introduced to support mobile AR
in two different directions: the head-mounted display direction using laptops in backpack
systems, and the handheld direction using lightweight portable devices. Both directions
share a design feature: the great majority of AR applications consist of software being
executed on general purpose processors. However, not all applications can be solved
through the use of the traditional software-based approach since it imposes limitations that
force the designer to choose between robustness/compactness, power consumption and
processing power, what, in last term, difficult the spread of AR.
In spite of their importance, only a minority of papers describing AR mobile systems report
on features such as timing performance, frame rates, power consumption, size, weight, etc.,
which, in the last instance, determine the viability of the AR application. When these data
are provided, they show important weak points, like in the case of the ArcheoGuide
application described in (Dähne & Kariginannis, 2002), where the incapability of the
hardware platform of the system of parallelizing processing tasks causes that authors rule
out a gesture recognizer based on interaction due to its interference with the video tracking
performance. This is also the case of the video see-through AR system on cellphone
described in (Möhring et al, 2004), which hardly can manage four 160×120 12-bit colour
frames per second.

www.intechopen.com

Design of Embedded Augmented Reality Systems

33

Such limitations lead to approaches where the AR device tends to be ‘dumb’, acting simply
as a viewport of the AR application with the largest part of the processing taking place in
remote servers. This is the philosophy behind the AR-phone (Assad et al, 2003). In it, the
system performance relies on the wireless networking. Without reporting frame rates, the
authors admit the convenience of moving some parts of the processing into the user
interface module with the aim of avoiding the overload in the communication that ruins the
performance. The mobile phone-based AR application for assembly described in
(Billinghurst et al, 2008) is also a client/server architecture where the complex processing is
executed on a PC. It works with still images instead of video and the virtual model is quite
simple, but the data transmission between the phone and the PC over the WLAN rises the
time to send and receive an image up to 3.4 seconds. A similar client/server implementation
is presented in (Passman & Woodward, 2003) for running AR on a PDA device. It uses a
compression algorithm developed by the authors to relieve the communication of the
rendering data overhead, but the best case refresh rate hardly reaches two frames per
second. Another interesting approach can be found in (Wagner et al, 2005), where the
authors present a system architecture for interactive, infrastructure-independent multi-user
AR applications which runs on a PDA (personal digital assistance).
Due to these limitations, some applications resign to video processing on behalf of usability.
AR on-demand (Riess & Stricker, 2006) presents a practicable solution on low-end handheld
devices where images of the real scene are taken only when needed, superposing real-time
virtual animations on that single still image. The information is not blended in the field of
view of the user, but can be easily watched over the display of a PDA or a head worn
display beside the eye. The goal of this approach is to develop a system which does not
dominate the user, but offers support when required.
The use of image sensors is probably the most common way to capture the real environment
and enhance it with virtual objects, i.e. to create augmented reality. For this reason, it can
serve us well to understand the role of FPGAs and custom-made hardware platforms for AR
applications. In the cases where designs must be prepared to meet frame rate, image
resolution, algorithm performance, power consumption and size requirements, traditional
platforms based on desktop computers and their corresponding slight variations based on
laptops are unsuitable. Some examples of these works can be found in (Piekarski et al., 2001;
Feiner et al, 1997; Hoellerer et al, 1999). Although these works may be interesting for
validating their respective systems for their corresponding intended applications, the
proposed devices appear to be complex, heavy, expensive and fragile. Developments made
in standard microprocessors-based units are not efficient or inconvenient for the purpose of
unconstrained mobility. The authors of (Piekarski et al., 2004) noticed this fact, and
proposed modifications in backpack designs which aim to improve its size, weight and
power consumption. The authors conclude that FPGAs and specialized video overlay units
result beneficial to minimize power and to accelerate computation. In (Johnston et al., 2003),
the authors point to FPGAs and developments in hardware for embedded systems as the
most likely alternative platform for real-time performance of AR devices. Indeed,
parallelism and concurrency can be exploited for image processing while keeping power
consumption low, bringing a solution to the challenge of embedded image processing.
A good example of exploiting FPGAs with an image sensor can be found in (Matsushita et
al, 2003), where a FGPA device controls a fast CMOS image sensor for ID recognition. In
(Foxlin & Harrington, 2000), a self-reference head and hand tracker is presented and its
applicability in a wearable computer is shown. Smith and colleagues in (Smith et al, 2005)

www.intechopen.com

 Augmented Reality

34

improved the work presented in (Piekarski et al, 2001) by migrating the proposed hand-
tracking algorithm from the laptop to an FPGA. Indeed, this new development allows a
further miniaturization of the system and minimizes power consumption. In (Luk et al,
1998; Luk et al., 1999), some good initial examples of the use of reconfigurable computing
for AR are shown. In concrete, video mixing, image extraction and object tracking are run on
an FPGA-based platform. In this line, our group presented in (Toledo et al, 2005) a fully
FPGA based AR application for visual impaired individuals affected by tunnel vision. A
Cellular Neural Network extracts the contour information and superimposes it on the
patient’s view. Finally, the authors of (Guimaraes et al, 2007) present an interesting platform
which aims to help developers on the construction of embedded AR applications. The
infrastructure is based on FPGA and enables the creation of hardware based AR systems.
This short review is enough to come to the conclusion that mobile AR applications are
severely constrained by the up to date usual software-based approach and that many real-
time applications require algorithmic speedup that only dedicated hardware can provide.
Hardware implementation of algorithms and processing tasks can considerably improve the
performance and by the hence the utility/viability of the AR system.

3. FPGA characteristics and architectures

The introduction of the Field-Programmable Gate Array (FPGA) devices about 25 years ago
gave rise to the reconfigurable computing concept. Early FPGA generations were quite
limited in their capacities. Nowadays, the most advanced manufacturing technologies are
used to feature devices with millions of gates of programmable logic, with dedicated
hardware resources, with the widest range of system connectivity solutions, enabling more
complex and powerful systems on a single chip.
Reconfigurable hardware offers a trade-off between the very specialized solution of
application specific integrated circuits (ASIC) and the inefficiency of general purpose
processor (GPP), combining the desirable high performance of ASICs with the characteristics
of system flexibility of GPPs. Like ASICs, it involves hardware implementation and
consequently parallelism and high performance. Like GPPs, it provides reconfigurability, and
hence, flexibility and rapid prototyping. The key of reconfigurable hardware lies on that the
flexibility is provided by the hardware design rather than by software-programmable
hardware. With clock frequencies an order of magnitude lower than that of typical
microprocessors, FPGAs can provide greater performance when executing real-time video or
image processing algorithms as they take advantage of their fine-grained parallelism.
There are several companies that produce diverse flavours of FPGAs: Xilinx, Altera, Atmel,
Lattice Semiconductor, Actel, SiliconBlue Technologies, Achronix or QuickLogic
are the main competitors. At an architectural level, however, all of them share some
common characteristics, which define an FPGA as a regular structure of programmable
modules, including three types of resources:
1. Logic Blocks (LB), used to implement small parts of the circuit logical functions.
2. Input/Output Blocks (IOBs) that connect internal resources with the device pins, and

usually adapt the electrical characteristics of the signals to interface the output world.
3. Routing channels with programmable Interconnect Blocks (IBs), which allow the

connection between LBs or between these and the IOBs.
In an FPGA, both the connection of the wire resources and the functionality of the logic
blocks can be programmed by the user. Logic blocks and routing architectures differ from

www.intechopen.com

Design of Embedded Augmented Reality Systems

35

vendor to vendor, but their regular distribution make all of them well suited for highly
parallelizable algorithms, composed of bit-level operations that can be distributed in regular
structures. Nevertheless, they are ill suited to high precision arithmetic operations, such as
large operand multiplication or floating-point calculations. The presence of on-chip memory
is also limited, thus many applications require the existence of an external RAM chip. The
data transfer increases circuit delays, and increases power consumption and board area.
To overcome these difficulties, researchers and manufacturers proposed new architectures
with specific purpose resources and advanced configuration characteristics. Up to Several
hundred dedicated MACs (Multiply and Accumulate) modules are included in the larger
devices for fast DSP calculations. To increase data storage capabilities, RAM blocks are
distributed over the circuit, providing several Mbits of dedicated memory. Recently some
devices come with dedicated interface controllers, such as Ethernet MAC, USB or PCI
bridges. The list includes also AD/DA converters, PLLs for highly customizable clock
generators, or hard-core microprocessors (with much better performance than their soft-core
counterparts). As an example, Xilinx’s latest Virtex 5 chips include one or two embedded
PowerPC™ 405 processors. These 32-bit RISC processors from IBM Corporation are
included as hard-cores, making them run at around 450MHz, without decreasing the
number of user (LB) resources. Several real-time operating systems (RTOS), included
different Linux porting are available for this processor, allowing the designer to centre his
efforts in the application-specific parts of the project.
Devices can be classified with respect to their granularity, which is a measure of the number
of resources that the logic block incorporates. Fine-grain devices consist of small cells
containing for example a single NAND gate and a latch, or a multiplexer-based function
generator and a flip-flop, like Actel IGLOO™ devices. In a medium-grain device, the typical
LB consists of two or three function generators (called look-up tables, LUT), each one being
able to implement any combinational function from 2 to 6 inputs, and (typically) two flip-
flops. A LUT can also be configured as a small memory or as a shift register. The LUT’s
output can be connected to a flip-flop or routed directly to the cell’s port. Finally, the logic
block can include logic-specific resources, such as fast carry generators. Xilinx’s Spartan and
Virtex series are a typical example.
IOBs can be configured as input, output or bidirectional ports. They frequently include on-
chip pull-up/down resistors and tri-state buffers. Connectivity is guarantied by supporting
main standards, including 3GIO, Infiniband, Gigabit Ethernet, RapidIO, HyperTransport,
PCI, Fibre Channel, Flexbus 4, between others. Some chips, like the Virtex 6 family,
accommodate several multi-gigabit transceivers to perform serial I/O from 3.125, up to
11Gbps.
Most devices can be programmed by downloading a single-bit stream into the configuration
memory. The device’s configuration is typically memory-based, using any of the SRAM,
EPROM, EEPROM or the most recent flash technologies. Other OTP (one-time
programmable) devices use fuse or antifuse technologies (for a detailed description of the
different technologies and chip characteristics, the interested reader is referred to
companies’ web pages).
SRAM devices are the dominant technology nowadays. However, SRAM cells are volatile,
meaning that the stored information is lost when power is not applied. These devices
require and external “boot”, and are typically programmed from a host processor or a non-
volatile memory after chip reset. Memory-based FPGAs have the advantage of been re- and
in-system programmable. Devices can be soldered directly to the PCB, without using special

www.intechopen.com

 Augmented Reality

36

sockets. If the design changes, there is no need to remove the device from the board, but it
can be simply re-programmed in-system, using typically a JTAG interface. On the other
hand, the non-volatile EEPROM and flash devices are better protected against unauthorized
use and reverse-engineering, because the programming information is not downloaded to
the device at power up.

3.1 Dynamic reconfiguration

The re- and in-system programmability of the memory based FPGAs has opened a broad
area of new application scenarios. The term (Re-) Configurable Computing refers to
computers that can modify their hardware circuits during system execution. The key for this
new computing paradigm has been the development of new FPGAs with extremely quickly
configuration rates. While first devices required several seconds to get programmed, in
newer FPGAs the configuration download can be done in about one millisecond, and

devices with configuration times of about 100 μs are expected in the next years.
Dynamic reconfiguration can be used in a number of ways. The least demanding technique
consists of switching between several different configurations that are prepared beforehand,
what enables to perform more computational algorithms than those permitted by the
physical hardware resources. This could be seen as the hardware equivalent of quitting one
program and running another. When faster programming times are available,
reconfiguration can be done in a kind of context swapping: the FPGA reconfigures itself
time-sharing the execution of different tasks, making the illusion that it is performing all its
functions at once (multi-tasking). An example of this techniques was used in (Villasenor et
al., 1996) to build a single-chip video transmission system that reconfigures itself four times
per video frame, requiring just a quarter of the hardware needed by an equivalent fixed
ASIC.
The most challenging approach to dynamic reconfiguration, and surely the most powerful,
involves chips that reconfigure themselves on the fly, as a function of requirements emerged
during algorithm execution. In this computing system, if a functional unit is missed, it is
recovered from the resources store and placed on the chip, in some cases replacing the space
occupied by another not-in-use circuit. The problem here is double: loading the proper
configuration bitstream in the device and finding an appropriate location for the unit, what
gives an idea of the complexity of the task. To support this kind of applications, some
commercial devices (VirtexII, Virtex4) are now offering dynamic partial-reconfiguration
capabilities. These devices allow reprogramming only part of the configuration memory, in
order to update just a selected area of the circuit.
Partial reconfiguration enables the remote upgrade of hardware across a network, by
delivering new bitstreams and software drivers to the remote hardware. The benefits of this
methodology include shortening time to market, because the hardware can be shipped
sooner with a subset of the full functionality, and performance/corrections upgrading
without the need for returns. This methodology has been proved in the Australian satellite
FedSat launched on December 14, 2002, featuring a configurable computer (HPC-I) that
enables the satellite to be rewired without having to be retrieved, thus drastically reducing
cost and development time (Dawood et al., 2002).
With their re-configurability characteristics and the introduction of new special-purpose
resources blocks, FPGAs offer a number of advantages over classical design methodologies
based on general purpose processors or even the more specialized Digital Signal Processors
(DSP), such as unmatched parallelism, versatility, and short time to market. Moreover, Re-

www.intechopen.com

Design of Embedded Augmented Reality Systems

37

configurable Computing has been presented as a promising paradigm that will compete
against the traditional von Newmann architecture and its parallel enhancements
(Hartenstein, 2002), (Hartenstein, 2004). Augmented Reality applications and, particularly,
embedded ones, can take huge benefits from these emerging so called config-ware
technologies.

4. Tools and design flows for reconfigurable hardware

From a historical point of view, the first FPGA design tools where traditional schematic
based editors coupled with a physical design software that performed the place and route of
the architecture-specific components (or primitive cells) in which the circuit is decomposed
for a particular FPGA device. Schematic-based tools had however several disadvantages.
Firstly, the enormous number of sheets that a large design can consist of made it difficult to
handle or update, with changes in one area propagating from sheet to sheet. Secondly, the
design methodology proposed by the schematic tools consisted of structural descriptions of
the circuit; that is, a system was described in base to the entities that composed it. However,
in most cases, a system is more naturally described in base to its expected behaviour or
functionality. The aforementioned limitations are the cause of the wide adoption of
Hardware Description Languages (HDL), such as VHDL and Verilog, during the last
decade.

4.1 Hardware description languages

Been textual, HDLs are more manageable than schematics. One the other hand, both of them
support structural descriptions, however, only HDLs allow for higher-level “behavioural”
descriptions. Finally, HDLs have specific constructions for modular design and component
re-usability. This last characteristic has become crucial, as the size of the standard design has
grown from ten or cents of k-gates to several million-gates.
Another important characteristic is that high-level HDL descriptions, contrary to schematic
descriptions, are technology independent, what allows the designer to synthesize his project
over a number of FPGA devices with minor changes at the description level. Different FPGA
vendors and architectures can be benchmarked until an optimal implementation is met,
with little impact on the design time.
Despite of the use of HDLs, the current design tools and methodologies have became
inadequate to effectively manage the tens of millions gates that the silicon technology allows
gather together in a single chip, furthermore when the pressure to reduce the design cycle
increases continuously.
The tendency has been towards the use of pre-designed and pre-verified cores trying to
bridge the gap between available gate-count and designer productivity. Instead of
developing a system from scratch, designers are looking at effective methodologies for
creating well-verified reusable modules that can be incorporated in a “mix & match” style to
the application-specific blocks. These reusable hardware modules are called cores or
Intellectual Property (IP). To face the design reuse challenge, IP cores must be designed not
just application independent, but also technology independent and synthesis/simulator tool
independent (Keating & Bricaud, 1999). Beyond typical basic blocks, modules are being
designed specifically to be sold as independent articles. These include microprocessors
(ARM, MIPS, PowerPC), communication interfaces (PCI, USB, Ethernet), DSP algorithms
(FIR/IIR filters, FFT, wavelets), memory elements (SDRAM, FIFO), etc. One of the more

www.intechopen.com

 Augmented Reality

38

complete on-line IP repositories can be found in (Design & Reuse, 2009). OpenCores is
another important repository, based the concept of freely usable open source hardware
(OpenCores, 2009).

4.2 System level specification and codesign

The design process based on HDLs like VHDL, Verilog, etc., is not exempt of difficulties, as
these traditional methodologies still require deep hardware skills from the designer.
Moreover, the high integration levels of current chips have transformed the concept of
System On a Chip (SoC) into reality, increasing design complexity up to an unprecedented
level. A typical SoC consists of one or several microprocessors/microcontrollers, multiple
SRAM/DRAM, CAM or flash memory blocks, PLL, ADC/DCA interfaces, function-specific
cores, such as DSP or 2D/3D graphics, and interface cores such as PCI, USB and UART (Fig.
1).
The intensive use of predesigned IP cores can just mitigate the problem, but in a SoC project,
designers can not describe the hardware-specific modules at the Register Transfer Level
(RTL), as the HDL methodologies propose, and then wait for a hardware prototype before
interacting with the software team to put the design together. New EDA (Electronic Design
Automation) tools must incorporate system-level modelling capabilities, such that the whole
system, software and hardware, can be verified against its specifications right from the
beginning of the design process. This requires an integrated hardware-software co-
simulation platform that permits to confer hardware engineers the same level of
productivity of software engineers.
To meet the challenges posed by the SoC complexity, new languages, tools and
methodologies with greater modelling capabilities are been developed. In the area of design
languages, there has been a lot of discussion about the role and applicability area of the
various existing and new languages. SystemC, SytemVerilog, Verilog 2005, Analogue and
Mixed-Signal versions of Verilog and VHDL, or Vera are some of the new proposals.

PLL ROM ROM

RAM RAM

RAM RAM

JTAG

FIFO

PCI

Microprocessor

3D Graphics

AD/DA

DSP

Glue

Logic

Fig. 1. Structure of core-based system on a chip

One of the most promising alternatives is been developed by the Open SystemC Initiative
(OSCI), a collaborative effort launched in 1999 among a broad range of companies to

www.intechopen.com

Design of Embedded Augmented Reality Systems

39

establish the new standard for system-level design. SystemC (OSCI, 2006) (Black &
Donovan, 2004) is a modelling platform consisting of C++ class libraries and a simulation
kernel for design at the system and register transfer levels. Been a C-based language,
SystemC can bring the gap between software engineers used to work with C and C++, and
hardware engineers, that use other languages such as Verilog or VHDL. Furthermore, a
common specification language would favour the creation of design tools that allow
designers to easily migrate functions from hardware into software and vice versa.
Following this approach, a new generation of tools for highly complex circuit design is been
developed. This new methodology, known as ESL (Electronic System Level), aims to target
the problem of hardware-software co-design from system-level untimed descriptions, using
different flavours of High Level Languages (HLLs), such as C, C++ or Matlab. The main
difference between tools is the projection methodology used to implement a given
algorithm, that is, the approach used to partition and accelerate that algorithm; some tools
used a fixed processor based architecture that can be expanded with custom application-
specific coprocessors; other are best tailored to create just custom hardware IP modules that
could be later integrated in larger systems; some provide a flexible processor architecture
whose instruction set can be expanded with application specific instructions supported by
custom ALUs/coprocessors; finally, some of them are intended to provide a complete SoC
design environment, giving support for custom hardware modules design, standard
microprocessors, application software and the necessary hw-to-hw and hw-to-sw interfaces.
A detailed review of these tools is beyond the scope of this chapter, so we will just
summarize some of them in no particular order, in Table 1. The interested reader can find an
exhaustive taxonomy of the design methodologies and ESL design environments
commercially or educationally available in (Densmore & Passerone, 2006).

Company Web page Product

Bluespec www.bluespec.com
Bluespec Development
Workstation

CriticalBlue www.criticalblue.com Cascade

Codetronix www.codetronix.com Mobius, XPSupdate

Impulse Accelerated Tech. www.impulseaccelerated.com CoDeveloper

Mitrionics www.mitrionics.com
Mitrion Software Development
Kit

Nallatech www.nallatech.com DIME-C

Poseidon Design Systems www.poseidon-systems.com Triton Builder

System Crafter www.systemcrafter.com SystemCrafter SC

ARC International www.teja.com ARChitect, others

Xilinx Inc. www.xilinx.com AccelDSP, System Generator

Mentor Graphics www.mentor.com Catapult C

Cadence Design System www.cadence.com C-to-Silicon Compiler

Table 1. Some companies providing ESL tools.

4.3 ImpulseC programming model

In this section, we analyze the main features and workflow of CoDeveloper™, an ESL tool
from Impulse Accelerated Technologies, Inc. (Impulse, 2009) used for hardware-software co-

www.intechopen.com

 Augmented Reality

40

design, to evaluate its suitability for the non-hardware specialist scientist in general, as in
the case of most AR researches. From our experience, we then provide some keys to get
better results with this tool, which may be easily generalized for similar tools, with the aim
of making the reconfigurable hardware approach for embedded AR solutions a bit closer for
a broaden number of researchers.
ImpulseC compiler uses the communicating sequential process (CSP) model. An algorithm
is described using ANSI C code and a library of specific functions. Communication between
processes is performed mainly by data streams or shared memories. Some signals can be
transferred also to other processes like flags, for non continuous communication. The API
provided contains the necessary functions to express process parallelization and
communication, as standard C language does not support concurrent programming.
Once the algorithm has been coded, it can be compiled using any standard C compiler. Each
of the processes defined is translated to a software thread if the operating system supports
them (other tools do not have this key characteristic, and can only compile to hardware).
The entire application can then be executed and tested for correctness. Debugging and
profiling the algorithm is thus straightforward, using standard tools. Then, computing
intensive processes can be selected for hardware synthesis, and the included compiler will
generate the appropriate VHDL or Verilog code for them, but also for the communication
channels and synchronization mechanisms. The code can be generic of optimized for a
growing number of commercially available platforms. Several pragmas are also provided
that can be introduced in the C code to configure the hardware generation, for example, to
force loop unrolling, pipelining or primitive instantiation.
The versatility of their model allows for different uses of the tool. Let us consider a simple
example, with 3 processes working in a dataflow scheme, as shown in Fig. 2. In this case,
Producer and Consumer processes undertake just the tasks of extracting the data, send them
to be processed, receive the results and store them. The computing intensive part resides in
the central process, which applies a given image processing algorithm. A first use of the tool
would consist in generating application specific hardware for the filtering process that
would be used as a primitive of a larger hardware system. The Producer and Consumer
would then be “disposable”, and used just as a testbench to check, first, the correct
behaviour of the filtering algorithm, and second, the filtering hardware once generated.

INPUT

IMAGE PRODUCER IMAGE FILTER CONSUMER

OUTPUT

IMAGE

C PROCESS C PROCESS C PROCESS

 SOFTWARE

SOFTWARE/

HARDWARE SOFTWARE

Fig. 2. Typical CoDeveloper model

A different way of using the tool could consist in generating an embedded CPU accelerated
by specific hardware. In this case, Producer and Consumer would be used during the
normal operation of the system, and reside in an embedded microprocessor. The filter
would work as its coprocessor, accelerating the kernel of the algorithm. CoDeveloper
generates the hardware, and resolves the software-to-software and hardware-to-hardware,
communication mechanisms, but also the software-to-hardware and hardware-to-software

www.intechopen.com

Design of Embedded Augmented Reality Systems

41

interfaces, for a number of platforms and standard buses. This is a great help for the
designer that gets free of dealing with the time-consuming task of interface design and
synchronization.
Finally, the objective can be accelerating an external CPU by means of a FPGA board. In this
case, the software processes would reside on the host microprocessors, which would
communicate to the application specific hardware on the board by means of a high
performance bus (HyperTransport, PCI, Gigabit Ethernet, etc.). As in the previous case,
software, hardware and proper interfaces between them (in the form of hardware
synchronization modules and software control drivers) are automatically generated for
several third party vendors.

4.4 Key rules for a successful system-level design flow
The results obtained in our experiments with different applications shown that AR-like
algorithms can benefit from custom hardware coprocessors for accelerating execution, as
well as for rapid prototyping from C-to-hardware compilers. However, to obtain any
advantage, both, an algorithm profiling and a careful design are mandatory. These are the
key aspects we have found to be useful:

• The algorithm should make an intensive use of data in different processing flows, to
make up for the time spent in the transfer to/from the accelerator.

• The algorithm should make use of several data flows, taking advantage of the massive
bandwidth provided by the several hundred o I/O bits that FPGA devices include.

• The working data set should be limited to 1-2MB, so that it may be stored in the internal
FPGA memory, minimizing access to external memory.

• The algorithm should use integer or fixed point arithmetic when possible, minimizing
the inference of floating point units that reduce the processing speed and devour FPGA
resources.

• The algorithm must be profiled to identify and isolate the computational intensive
processes. All parallelizing opportunities must be identified and explicitly marked for
concurrent execution. Isolation of hardware processes means identifying the process
boundaries that maximize concurrency and minimize data dependencies between
processes, to optimize the use of onchip memory.

• Maximize the data-flow working mode. Insert FIFO buffers if necessary to adjust clock
speeds and/or data widths. This makes automatic pipelining easier for the tools,
resulting in dramatic performance improvement.

• Array partitioning and scalarizing. Array variables usually translate to typical
sequential access memories in hardware, thus if the algorithm should use several data
in parallel, they must be allocated in different C variables, to grant the concurrent
availability of data in the same clock cycle.

• Avoiding excessive nested loops. This could difficult or avoid correct pipelining of the
process. Instead, try partitioning the algorithm in a greater number of flattened processes.

5. FPGA applications

5.1 FPGA applications in image processing and computer vision

The nature of image processing demands the execution of intensive tasks that in many cases
(as it is AR) must meet the requirement of high frame rate. This encourages the use of
specific hardware in order to improve the performance of the intended applications. Indeed,

www.intechopen.com

 Augmented Reality

42

the correct choice of hardware can raise dramatically the system performance. Current
systems offer different benefits and limitations depending on the type of processing
performed and its implementation. In this sense, general-purpose CPUs are the best
alternative for sequential tasks where it is necessary to perform complex analysis of images
and to run highly branched algorithms. However, in applications of 3D image processing
and fast rendering scenes, the Graphics Proccesor Units (GPU) are more suitable because
they have specific processing architectures designed to perform vector operations on large
amounts of data. FPGAs are especially suitable for performing pre-processing tasks like
colour format conversion, image filtering, convolution, and more in general, any repetitive
operation that does not require highly complex algorithms, even in those cases when these
algorithms are parallelizable and can benefit from the use of unconventional specific
architectures. The large number of memory blocks available on FPGAs provides parallel
processing support and enables very fast access to data stored in these caches. Developers
can leverage the high bandwidth I/O on these devices and thus increase the speed of the
functions and data rate that traverse the FPGA on GPUs or CPUs. Thanks to the versatility
to develop dedicated circuits and the high degree of parallelism, FPGAs can achieve
performances similar to some other hardware alternatives that run at higher frequencies of
operation. These reasons explain why the implementation of many algorithms is the focus of
a wide number of works since the last decade, and why from early stages of the evolution of
reconfigurable hardware, several FPGA-based custom computing machines have been
designed to execute image processing or computer vision algorithms (Arnold et al., 1993;
Drayer at al., 1995).
Of high interest for AR applications is the implementation of object tracking algorithms,
where different approaches have been followed. For example, the authors in (Dellaert &
Tarip, 2005) present an application where a multiple camera environment is used for real
time tracking with the aim of assisting visually impaired persons by providing them an
auditory interface to their environment through sonification. For this purpose an octagonal
board can support up to 4 CMOS cameras, an Xscale processor and a FPGA which handles
the feature detection in parallel for all cameras. Another FPGA-based application for
counting people using a method to detect different size heads appears in (Vicente et al.,
2009). More examples of FPGA-based approaches to object tracking can be found in the
literature: for colour segmentation (Garcia et al., 1996; Johnston et al., 2005); for
implementing an artificial neural network for specifically hand tracking (Krips et al., 2002;
Krips et al., 2003); for recognizing hand gestures (In et al., 2008); and for increasing pixel rate
to improve real-time objects tracking by means of a compression sensor together with an
FPGA (Takayuki et al., 2002).
Similarly, the human exploration in virtual environments requires technology that can
accurately measure the position and the orientation of one or several users as they move and
interact in the environment. For this purpose a passive vision FPGA-based system has been
proposed by Johnston et al. (Johnston et al., 2005). The aim of this system is to produce a
generalised AR system in the sense that accurate estimation of a mobile user’s position
relative to a set of indoor targets is accomplished in real time. FPGA-based systems are also
used to develop a system for tracking multiple users in controlled environments (Tanase et
al., 2008).
Vision-based algorithms for motion estimation, optical flow, detection of features like lines
or edges, etc. are also widely used in AR. Recently, several motion estimation alternatives
have been proposed to be implemented on a FPGA platform. Some of them are compared in

www.intechopen.com

Design of Embedded Augmented Reality Systems

43

(Olivares et al., 2006). Some other good examples interest of the recent literature on this
issue can be found in (Yu et al., 2004), where mobile real-time video applications with good
trade-off between the quality of motion estimation and the computational complexity are
presented, and (Akin et al., 2009), that focuses on the reduction of the computational
complexity of a full search algorithm from 8 bits pixel resolution to one. Optical flow can
also be used to detect independent moving objects in the presence of camera motion.
Although many flow-computation methods are complex and currently inapplicable in real-
time, different reliable FPGA-based Real-time Optical-flow approaches have been proposed
in the recent years (Martin et al., 2005; Diaz et al., 2006). Furthermore, other processing
image techniques like super resolution, atmospheric compensation and compressive
sampling may be useful in enhancing the images and to reconstruct important aspect of the
scenes. These techniques are highly complex and the use of FPGAs is encouraged to achieve
the necessary acceleration. These topics are covered in detail in several articles dedicated to
reconfigurable computing (Bowen et al., 2008; Bodnar et al., 2009; Ortiz et al., 2007).

5.2 FPGA applications in computer graphics and multimedia

Computer graphics is another field that can benefit from the flexibility of software
programmable devices. This explains the increasing attention paid to FGPAs in the last
years for the purpose of graphics acceleration, traditionally assigned to GPUs or graphics
cards.
The suitability of FPGAs for the implementation of graphic algorithms has been analysed
since the mid 90s. Singh and Bellec (Singh & Bellec, 1994) introduce the notion of virtual
hardware, a methodology to execute complex processes on limited physical resources, using
the dynamic reconfigurability of FPGAs. More recently, Howes (Howes., 2006) compare the
performance of different architectures based on FPGAs, GPUs, CPUs and Sony Playsation 2
vector units on different graphic algorithms using a unified description based on A Stream
Compiler (ASC). This work shows how the FPGAs provide fast execution of the graphics
algorithm with clocks at lower frequencies than its competitors. Nevertheless, performances
are particularly dependent on the possibilities of optimization for each design.
Radiosity high computational cost has been improved using FPGA devices by Styles et al.
(Styles & Luk., 2002). Ye and Lewis (Ye & Lewis, 1999) proposed a new architecture for a 3D
computer graphic rendering system which synthesizes 3D procedural textures in an FPGA
device, enhancing the visual realism of computer rendered images, while achieving high
pixel rate and small hardware cost. In order to improve the efficiency of 3D geometric
models represented by a triangle mesh, some mesh compression/decompression algorithms
were developed. Mitra and Chiueh (Mitra & Chiueh, 2002) proposed the BFT algorithm and
presented a novel FPGA-based mesh decompressor.
Styles and Luk. (Styles & Luk., 2000) analyzed the customization of architectures for
graphics applications for both general and specific purposes, and prototyping them using
FPGAs. Based on their results, the authors remark the suitability of FPGAs. In the same
work an API that allows the execution of OpenGL graphics applications on their
reconfigurable architecture is also presented.

5.3 FPGA applications in computer graphics and multimedia

Computer graphics is another field that can benefit from the flexibility of software
programmable devices. This explains the increasing attention paid to FGPAs in the last

www.intechopen.com

 Augmented Reality

44

years for the purpose of graphics acceleration, traditionally assigned to GPUs or graphics
cards.
The suitability of FPGAs for the implementation of graphic algorithms has been analysed
since the mid 90s. Singh and Bellec (Singh & Bellec, 1994) introduce the notion of virtual
hardware, a methodology to execute complex processes on limited physical resources, using
the dynamic reconfigurability of FPGAs. More recently, the authors of (Howes at al., 2006)
compare the performance of different architectures based on FPGAs, GPUs, CPUs and Sony
Playsation 2 vector units on different graphic algorithms using a unified description based
on A Stream Compiler (ASC). This work shows how the FPGAs provide fast execution of
the graphics algorithm with clocks at lower frequencies than its competitors. Nevertheless,
performances are particularly dependent on the possibilities of optimization for each design.
Radiosity high computational cost has been improved using FPGA devices by Styles et al.

(Styles at al., 2002). Ye and Lewis (Ye & Lewis, 1999) proposed a new architecture for a 3D

computer graphic rendering system which synthesizes 3D procedural textures in an FPGA

device, enhancing the visual realism of computer rendered images, while achieving high

pixel rate and small hardware cost. In order to improve the efficiency of 3D geometric

models represented by a triangle mesh, some mesh compression/decompression algorithms

were developed. Mitra and Chiueh (Mitra & Chiueh, 2002) proposed an algorithm and

presented a novel FPGA-based mesh decompressor. Styles et al. (Styles at al., 2000) analyzed

the customization of architectures for graphics applications for both general and specific

purposes, and prototyping them using FPGAs. Based on their results, the authors remark

the suitability of FPGAs. In the same work an API that allows the execution of OpenGL

graphics applications on their reconfigurable architecture is also presented.

5.4 FPGA applications in communications

FPGA technology has appeared to be also very useful for communication systems. Two
important factors encourage its expansion in this field: the falling prices of the devices and
the inclusion of DSP capabilities. Typical communication problems such as data formatting,
serial to parallel conversion, timing and synchronization can be faced naturally in a FGPA
device thanks to its specific features. Furthermore, FPGAs are convenient for the
development of the necessary glue logic for the interconnection of processors, modems,
receivers, etc. Several examples can be found in the literature of the field. In (Ligocki et al,
2004) the authors describe the prototype development of a flexible communication system
based on a FPGA. The main focus of this work is on software concerns, considering that
FPGA technologies are the core of the project. Other authors exploited the spatial/parallel
computation style of FPGAs for wireless communications. Due to the computational
complexity of WLAN (Wireless local area network), and taking into account the capabilities
of modern microprocessors, an implementation based exclusively on microprocessors is not
convenient, requiring a large number of components. Parallel computation allows
improving the efficiency of the implementation of the discrete components, and makes it
possible to accelerate some complex parts of WLANs (Masselos & Voros, 2007).
Of special interest results the benefits of FPGAs for embedded software radio devices. In
(Hosking, 2008), it is shown how its inherent flexibility makes of FGPA devices an excellent
choice for coping with the increasing diverse array of commercial, industrial, and military
electronic systems. Additionally, the large number of available IP cores offer optimized
algorithms, interfaces and protocols which can shorten significantly the time-to-market.

www.intechopen.com

Design of Embedded Augmented Reality Systems

45

5.5 FPGA applications in wearable computing

It is a common understanding that the concept of wearable computing comes from the tools
developed to intensify the experience of seeing, what led to augmented reality. However, it
can be noticed that in the literature different authors understand the concept of wearable
systems in very different manners. Some authors claim that a system is wearable as long as
it can be transported by a human. According to this, some authors present wearable
solutions based on small variations of desktop applications in a back-up with a laptop
(Feiner et al, 1997; Hoellerer et al, 1999). However, let us focus in this chapter on only
wearable devices which do not constraint the mobility of the user. For this purpose, the use
of FPGAs results of the highest interest. In wearable systems, the problem of combining
simultaneously high performance and low power consumption requirements in small
dimensions can be overcome with FPGAs. Contrary to ASICs (application specific
integrated circuit), reconfigurable logic offers more flexibility to adapt dynamically the
processes and the possibility of integrating different processing units in only one device.
This way, it is possible to reduce the number of chips in a system, which can be an
important advantage.
An interesting study on the improvements regarding energy saving when implementing
critical software processes on reconfigurable logic can be found in (Stitt et al, 2002). The
LART board, presented in (Bakker et al, 2001) combines a low-power embedded
StrongARM CPU with an FPGA device, which offers a better power/MIPS ratio, pursuing
power consumption reduction. The FPGA is used for dedicated data processing and for
interconnecting several LARTs working in parallel. In a step forward, the authors in (Enzler
et al, 2001) analyze the applications of dynamically reconfigurable processors in handheld
and wearable computing. They consider a novel benchmark which includes applications
from multimedia, cryptography and communications. Based on that work, the authors of
(Plessl et al, 2003) presented the concept of an autonomous wearable unit with
reconfigurable modules (WURM), which constitutes the basic node of a body area
computing system. The WURM hardware architecture includes reconfigurable hardware
and a CPU. In the prototype, the implementation is done on only one FPGA, including the
CPU as a soft core.
Finally, let us remark the importance of networking for wearable computing. Indeed, the
constraints in power consumption, size and weight of wearable computers increase the need
for network capabilities to communicate with external units. A study about the interest of
FPGA approaches for network on chip implementations across various applications and
network loads is presented in (Schelle & Grunwald, 2008). Recently, several authors have
followed FPGA-based approaches in their solutions. In (Munteanu & Williamson, 2005), an
FPGA is exploited to provide consistent throughput performance to carry out IP packet
compression for a network processor. (Wee et al, 2005) presents a network architecture that
processes in parallel cipher block chaining capable 3DES cores by using about the 10% of the
resources of an FPGA Xilinx Virtex II 1000-4. Within the frame of the European Diadem
Firewall Project, IBM suggests the use of standalone FPGA-based firewalls in order to
achieve an accelerated network architecture (Thomas, 2006).

6. FPGA-based platform for the development of AR applications

We have proposed a platform for developing fully FPGA-based embedded systems aimed
for image and video processing applications. It is a hardware/software system created for

www.intechopen.com

 Augmented Reality

46

speeding up and facilitating the development of embedded applications. As the survey of
works in previous sections highlights, FPGA devices are very suitable for the
implementation of the processing tasks involved in AR. The adoption of an FPGA-based
approach allows executing different tasks and algorithms in parallel, which ensures the best
performance and the optimum power consumption. The platform acquires video in
standard analogue formats, digitizes, and stores it in external memory devices. In order to
confer versatility to the embedded system, the platform includes as a key component an
interface which allows for user interaction. This interface makes it possible to display text
and, by means of hand pose recognition or voice recognition, to choose options and
configure parameters. Thanks to it, the user can customize the functionality of the hardware
at run-time.

6.1 Frame grabber

Video is a primary input to AR systems and can be typically used to develop video see-
through systems, to execute vision-based tracking algorithms or as input to a user interface.
In order to process video we have developed a frame grabber which accepts standard
analogue video signal, converts it into digital and stores it in memory.
The frame grabber is based on the SAA7113 video input processor, from Philips
Semiconductors, which is able to decode PAL, SECAM and NTSC from different sources
(CVBS, S-video) into ITU-R BT 601. It is configured and controlled through I2C bus, so an
I2C controller module must be included to properly manage the SAA7113. The SAA7113
presents video data at an 8 bit digital video port output, with 720 active pixels per line in
YUV 4:2:2 format and a number of lines in a frame depending on the video standard (PAL,
NTSC). The 4:2:2 output format implies that there is a luminance Y value for each pixel, but
only a chrominance pair UV for two pixels. The YUV colorspace is used by the PAL and
NTSC colour video standards. However, RGB is the most prevalent choice for computer
graphics. Therefore, we have included a converter from YUV to RGB in the design. It just
implements the corresponding linear equations, which can be found, e.g., in (Jack, 2005).
The image from the SAA7113 must be stored in a frame buffer. In our platform it is made of
external asynchronous SRAM memory devices. A memory interface for generating the
memory control signals and read /write operations was implemented on the FPGA.
Colour data stored in the memory is in YUV format since it optimizes the space and the
access to memory. While in RGB format a pixel is defined with 24 bits, the YUV format from
the video codec uses 32 bits to define two pixels, with exactly the same colour information in
both RGB and YUV colorspaces. As physically each frame buffer consists of a 32 bit 256 KB
SRAM, it is more efficient to store colour information in YUV colorspace, since it is possible
to store two pixels in just one address, and so halving the number of access to the memory.

6.2 General purpose user interface

Unlike PC-based solutions, where visualization of text information is completely usual, this
is not so natural in hardware-based solutions. Most of the present FPGA-based embedded
systems do not offer an interface to the user. Sometimes they just consider a UART to
connect with a computer and transfer some information. However, the use of a PC simply
for running the software that manages the communications and the interface is a poor, very
low efficient solution, even unfeasible in embedded systems. With the aim of overcoming
this drawback of FPGA-based embedded systems, we have designed a hardware core which

www.intechopen.com

Design of Embedded Augmented Reality Systems

47

facilitates the addition of a user interface to FPGA-based systems. The core is based on
MicroBlaze, a standard 32 bit RISC Harvard-style soft processor developed for Xilinx FPGA
devices. This gives flexibility and versatility, and ensures fast re-design of the hardware
architecture for enhanced or new applications. The core is made up of hardware
components and software functions in different levels. Thanks to the core it is possible to
present text information in a VGA monitor to the user, who can navigate through menus,
select options and configure parameters by means of a pointer device. So, it provides the
flexibility of adapting the systems to the user requirements or preferences. Next, its basic
modules are described.

Display of text and text fonts

In order to display text, all the bitmaps associated to the font characters were previously
defined and stored in a ROM memory using FPGA internal logic resources. The ROM works
as a MicroBlaze peripheral, using a dedicated Fast Simplex Link (FSL) channel.
To display text, we have considered a text screen, which manages the visualization of the
strings. In the default mode, it is a 640×480 array, whose elements correspond to the pixels
in the VGA output. A 64 colours palette has been considered, which implies 6 bits for each
pixel. Due to its size, the array is stored in external SRAM.
The text screen is defined as a peripheral and connected to the MicroBlaze microprocessor
by means of the On-chip Peripheral Bus (OPB). The hardware of this peripheral includes the
SRAM memory interface to control write and read operations and the logic to interpret the
data from MicroBlaze into address and data buses values. It carries out two different tasks:

• it receives data from MicroBlaze, and manages the write operations in the SRAM
memory just when a modification in the text information displayed is done.

• it reads data from the memory to show the text screen in the VGA monitor. These data
are sent to the VGA Generator module. This process is independent on MicroBlaze.

In order to create the interface presented to the user, the function mb_OutTextXY has been

prototyped to be instantiated in the software application running in MicroBlaze. It is similar

to the equivalent standard C function, and it allows to define a text string and to specify its

colour and position in the screen. When the mb_OutTextXY function is executed, the writing

instruction of the text screen peripheral is called to write in the SRAM the colour values of

the pixels which correspond to each element of the string, according to its position and its

colour.

Once the strings are stored in the text screen, the basic user application waits for an
interrupt from pointer device. When it happens, an interrupt handler classifies the interrupt
and reads the coordinates of the pointer position. Since the position of each text string is
known, it is possible to determine in the software application which one has been selected
by the user, and then to reply with the desired actions.

The pointing device

A pointing device is required to interact within the user interface. With this aim, we have
proposed a hand-based interface designed for mobile applications. It detects the user hand
with a pointing gesture in images from a camera, and it returns the position in the image
where the tip of the index finger is pointing at. In an augmented reality application the
camera will be placed on a head mounted display worn by the user. A similar system is
proposed in (Piekarski et al, 2004), but our approach is based on skin colour, without the
need of glove or coloured marks. Our hand-based interface is aimed for performing

www.intechopen.com

 Augmented Reality

48

pointing and command selection in the platform for developing FPGA-based embedded
video processing systems herein described.
Vision-based algorithms have been used to build the hand and the pointing gesture
recognizers. The image from the camera, once acquired, digitalized and stored by the
previously described frame grabber, is segmented using an ad-hoc human skin colour
classifier. Human skin colour has proven to be useful in applications related to face and
hands detection and tracking. With this colour skin approach we try to generalize the use by
eliminating external accessories, what reduces costs. The skin colour classifier is made of
sub-classifiers, each one defined as a rule-based algorithm built from histograms in a
colourspace. The rules in each colourspace define a closed region in the corresponding
histogram: a pixel of an image is classified as skin if its colour components values satisfy the
constraints established by the rules. Classifiers in the YIQ, YUV and YCbCr colorspaces
have been considered, so three sub-classifiers have been implemented. To generate a unique
output image, their outputs are merged using logical functions. The use of different
colorspaces is aimed at achieving invariance to skin tones and lighting conditions. Further
details can be found in (Toledo et al, 2006).
Once the image has been segmented the next processing task is to look for the pointing

gesture. The solution adopted consists of convoluting the binary image from the skin

classifier with three different templates: one representing the forefinger, other the thumb

and the third the palm (Toledo et al, 2007). This modularity makes easier the addition of

new functionality to the system through the recognition of more gestures. Due to the size of

the hand and the templates, an optimized solution for the FPGA-based implementation of

large convolution modules has been specifically developed. It can convolve binary images

with a three-value template in one clock cycle independently of the template size. It is based

on distributed arithmetic and has been designed using specific resources available in Xilinx

FPGAs. The maximum size of the template depends on the FPGA device. In this application

images are convoluted with 70×70 templates. Each convolution module sends to the

MicroBlaze soft processor its maximum value and its coordinates on the image. A software

algorithm running on MicroBlaze decides that a hand with the wanted gesture is present

when the maximum of each convolution reaches a threshold and their relative positions

satisfy some constraints derived from training data. Then, the algorithm returns the position

of the forefinger. Otherwise, it reports that no pointing hand is detected.

The software application on MicroBlaze also includes an algorithm for dynamically
adapting the skin classification and the parameters for hand recognition. Taking into
account the number of pixels classified as skin in the image, the maximum value and the
coordinates of each convolution and the detection or not of the pointing hand pose, it tunes
each skin classifier and the merging of their binary output images in order to achieve the
optimum classification rates, and it also tunes the values of the different constraints to their
right values in order to find the desired hand posture. The FPGA implementation of these
tasks allows taking advantage of parallelism in each processing stage at different levels. For
example, the three classifiers for skin recognition are executed at the same time on an input
pixel. Since the constraints of a classifier are all evaluated at the same time, the time required
to classify a pixel is just the maximum delay associated to a constraint, three clock cycles in
our case. Besides, the three convolutions that look for the hand position are performed in
parallel, and the operations involved in each convolution are all executed at the same time
in only one clock cycle. Meanwhile, the software application in MicroBlaze is using the

www.intechopen.com

Design of Embedded Augmented Reality Systems

49

information extracted by the hardware modules as input parameters to the algorithm which
estimates the presence and position of the hand. Thanks to exploiting the parallelism
inherent to FPGA devices, the hand detection algorithm can process 640×480 pixel images at
more than 190 frames per second with a latency of one frame. It also makes it feasible that
new processing cores can be added to the system with small performance penalty.
In addition to the hand-based interface, a controller for a generic PS/2 mouse has been
implemented and added to the MicroBlaze system as an OPB peripheral.

6.3 Generation of video signals

The platform can generate signals for displaying video on monitors and analog screens. The
generation of the synchronization and RGB signals for a VGA monitor is carried out by the
VGA generator module, which can be configured to generate different resolutions. The
platform also includes the SAA7121, an integrated circuit from Philips which encodes digital
video into composite and S-video signals. The video generator module also deals with the
mixing of the video from the different sources included in the platform.

7. Portable real time system for helping visually impaired people

We have validated the usefulness of the described platform in an application for people
affected by a visual disorder known as tunnel vision. It consists in the loss of the peripheral
vision, while retaining clear and high resolution central vision. As shown in Fig. 3, it is like
looking through a keyhole or a ring in the mid-periphery. Tunnel vision is associated to
several eyes diseases, mainly glaucoma and retinitis pigmentosa, and reduces considerably
the patient’s ability to localize objects, which inevitably affects the patient’s relationship
with people and the environment.

Fig. 3. Simulation of patient affected by tunnel vision view. A residual 10º field of view has
been considered to simulate the tunnel vision effect. The severe reduction of the visual field
(right) can be observed comparing with the normal vision (left).

To aid affected people, it is necessary to increase the patient’s field of view without reducing
the usefulness of the high resolution central vision. With this aim, (Vargas-Martín & Peli,
2001) proposed an augmented view system where the contour information obtained from
the image of a camera is superimposed on the user’s own view. In their work, contours are
generated by an edge detection algorithm performed by a four-pixel neighborhood gradient
filter and a threshold function, running on a laptop PC (Vargas-Martín & Peli, 2002). They
draw the conclusion that, although patients consider the system useful for navigating and
obstacle avoiding, a specifically designed system to perform image processing and increase
frame rate is necessary. Obviously, an effective improvement of the user’s environment
perception requires real time processing. To achieve it, we have used our FPGA-based

www.intechopen.com

 Augmented Reality

50

hardware platform, which ensures the video frame rate and the low latency that the
mobility of the application required.

Fig. 4. Simulation of patient’s view through the HMD for outdoor and indoor environments.
A residual 10º field of view has been considered to simulate the tunnel vision effect.

Fig. 5. Overall system schematic showing the main modules and the output view presented
to the user.

In our system, the image acquired with the frame grabber is processed to extract contour
information and it is used to enhance the user’s perception of the environment by the
superimposition on his own view of the entourage seen with a see-through head mounted
display. To carry out the required processing we proposed the use of a Cellular Neural
Network (CNN), which can be tuned to produce customized results and allows increasing
the versatility of the system through the possibility of using different templates. The
difficulties that rise when designing digital hardware implementation of CNNs are
addressed in (Martínez et al, 2007; Martínez et al, 2008), where a novel approach is also
proposed. It has been later optimized in (Martínez et al, 2009). After processed, the image
from the camera must be properly zoomed out in order to be shown to the user in his
residual central vision. A digital zooming algorithm has been included in the design with
this purpose. It has been designed to minimize the number of access to the external memory
where the original input data are stored.
The image resulting from the processing with the CNN, suitably minified, is sent to the VGA
output available in the hardware platform. Fig. 4 shows some examples of the system output.

www.intechopen.com

Design of Embedded Augmented Reality Systems

51

Due to the special characteristics of the target application, a vision-based interface such as
the described in the previous section is not a suitable approach for interacting with this
system. Instead, we have developed a voice recognition system which, as the whole of the
herein described system, is implemented in FPGA. Since the aid device is conceived as a
personal system, an easy and high-reliable speaker dependent recognition algorithm has
been designed. In a simple and fast initial step, the user records a customized set of
keywords. They are stored in external non-volatile flash memory, so the user only has to do
it for the first time use. Later, in operating mode, the algorithm detects when the user says a
word and convolves it with all the previously recorded ones. The latency response depends
on the number of key words, but it is typically in the order of the milliseconds, fast enough
to not appreciating any significant delay.
This user interface makes it feasible to adapt the functionality to the user preferences
through, for example, basic modifications in the CNN processing, the minification factor or
the colour and intensity of the contour information superimposed in his view.
The great amount of resources available in FPGA devices and their inherent parallelism
make it possible to fulfill the requirements of the application without compromising the
performance in speed, size and power consumption.
A simplified diagram of the whole system is shown in Fig. 5. The current prototype has been
built with boards from Avnet, which populates Xilinx devices and the additional integrated
circuits mentioned. The prototype also uses a Sony Glasstron PLMS700E as head mounted
display to superimpose the video output on the user view. At the present moment, the
system is under test and validation by visually impaired people, offering very successful
initial results and improving the patients’ ability to localize objects, orientate and navigate.
Once passed the tests, a commercial device will be manufactured and packed into a small
shoulder bag or belt bag.

8. References

Akin, A.; Dogan, Y. & Hamzaoglu, I. (2009). High performance hardware architectures for
one bit transform based motion estimation, IEEE Transactions on Consumer
Electronics, Vol. 55, No. 2, (May 2009), pp. (941-949), 0098-3063

Arnold, J.; Buell, D. & Hoang, D. (1993). The Splash 2 Processor and Applications, Proc. of
International conference on Computer Design, pp. 482-485, 0-8186-4230-0, Los
Alamitos, USA, 1993, IEEE

Assad, M.; Carmichael, D.; Cutting, D. & Hudson, A. (2003). AR phone: Accessible
Augmented Reality in the Intelligent Environment, Proc. of Australiasian Computer
Human Interaction Conference, pp. 232-235, Queensland, Australia, 2003

Bakker, J.; Langendoen, K. & Sips, H. (2001). LART: flexible, low-power building for
wearable computers. Proc. Int. Workshop on Smart Appliances and Wearable
Computing, pp. 255–259. Scottsdale, USA

Barfield, W. & Caudell, T. (2001). Fundamentals of wearable computers and augmented reality,
Lawrence Erlbaum, 0805829016, USA

Black, D. & Donovan, J. (2004). SystemC: From the Ground Up. Kluwer Academic Publishers,
ISBN: 978-0-387-29240-3

Billinghurst, M.; Hakkarainen, M. & Woodward, C. (2008). Augmented Assembly using a
Mobile Phone, Proc. of International Conference on Mobile and Ubiquitous Multimedia,
pp. 84-87, 978-1-60558-192-7, Umea, Sweden, december 2008, ACM

www.intechopen.com

 Augmented Reality

52

Bowen, O. & Bouganis, C. (2008). Real-Time Image Super Resolution Using an FPGA, Proc.
of International Conference on Programmable Logic and Applications, pp. 89-94, 978-1-
4244-1960-9, Heidelberg, Germany, September 2008, IEEE

Bodnar, M.; Curt, P.; Ortiz, F.; Carrano, C. & Kelmelis, E. (2009). An Embedded Processor for
Real-Time Atmoshperic Compensation, Proc. of SPIE conference on Visual Information
Processing XVII, pp. 1-8, Orlando USA, April 2009, SPIE

Dähne, P. & Kariginannis, J. (2002). Archeoguide: system architecture of a mobile outdoor
AR system, Proc. of International Symposium on Mixed and Augmented Reality, pp. 263-
264, 0-7695-1781-1, Darmstadt, Germany, September 2002, IEEE CS

Dellaert, F. & D. Tarip, S. (2005). A Multi-Camera Pose Tracker for Assisting the Visually
Impaired, Proc. of IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 31–39, 0-0-7695-2372-2, San Diego, USA, June 2002, IEEE

Dawood, A.; Visser, S. & Williams, J. (2002). Reconfigurable FPGAS for real time image
processing in space. Proc. IEEE Int. Conf. Digital Signal Processing, pp. 845–848,
ISBN: 0-7803-7503-3, Greece, July 2002

Densmore, D. & Passerone, R. (2006). A Platform-Based Taxonomy for ESL Design.
IEEEDesign & Test of Computers, Vol. 23, No. 5, pp. 359–374, ISSN: 0740-7475

Design & Reuse (2009). Design & Reuse. Web page: www.design-reuse.com
Diaz, J.; Ros, E.; Pelayo, F.; Ortigosa, E. & Mota, S. (2006). FPGA-based real-time optical-flow

system, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 16, No. 2,
(Feb 2009), pp. (274-279), 1051-8215

Drayer, T.; King, W.; Tront, J. & Conners, R . (1995). A Modular and Reprogrammable Real
Time Processing Hardware, MORRPH, Proc. of IEEE Symposium on FPGA’s for
Custom Computing Machines, pp. 11–19, 0-8186-7086-X, Napa Valley, USA, 1995.

Enzler, R.; Platzner, M., Plessl, C., Thiele, L. & Tröster, G. (2001). Reconfigurable processors
for handheld and wearables: application analysis. Proc. SPIE Conf. on Reconfigurable
Technology: FPGAs and Reconfigurable Processors for Computing and Communications,
vol. 4525.

Feiner, S.; MacIntyre, B., Höllerer, T. & Webster, A. (1997). A touring machine: Prototyping
3d mobile augmented reality systems for exploring the urban environment. Proc. of
the First International Symposium on Wearable Computers (ISWC), pp. 74–81,
Cambridge, Massachusetts, USA.

Foxlin, E; & Harrington, M. (2000) WearTrack: A Self-Referenced Head and Hand Tracker
for Wearable Computers and Portable VR. Proc. of the Fourth International
Symposium on Wearable Computers (ISWC'00), pp.155.

Garcia, R.; Batlle, J. & Bischoff, R. (1996). Architecture of an Object-Based Tracking System
Using Colour Segmentation, Proc. of International conference on Image and Signal
Processing, pp. 299-302, 0-4448-2587-8, Manchester, UK, November 1996, Elsevier
Science

Guimarães, G.F.; Lima, J.P.S.M. & Teixeira, J.M.X.N., (2007). FPGA Infrastructure for the
Development of Augmented Reality Applications Proc. of the 20th annual conference
on Integrated circuits and systems design. pp. 336 – 341. Copacabana, Rio de Janeiro.
ISBN:978-1-59593-816-9.

Hartenstein, R. (2002). Configware/Software Co-Design: Be Prepared for the Next
Revolution, Proc. of the 5th IEEE Workshop Design and Diagnostics of Electronic Circuits
and Systems, pp. 19–34, ISBN: 80-214-2094-4, Brno, Czech Republic, April, 2002.

www.intechopen.com

Design of Embedded Augmented Reality Systems

53

Hartenstein, R. (2004). The digital divide of computing, Proc. of the 1st conference on
Computing frontiers, pp. 357 – 362, ISBN:1-58113-741-9, Ichia, Italy, 2004, ACM, NY

Hoellerer, T.; Feiner, S., Terauchi, T., Rashid, G. & Hallaway, D. (1999) Exploring mars:
developing indoor and outdoor user interfaces to a mobile augmented reality
system. Computers & Graphics 23 pp. 779–785.

Hosking, R.; (2008). Designing Software Radio Systems With FPGAs. www.pentek.com
Howes, L.; Price, P.; Mencer, O.; Beckmann, O. & Pell, O. (2006). Comparing FPGAs to

Graphics Accelerators and the Playstation 2 Using a Unified Source Description,
Proc. of International Conference on Field Programmable Logic and Applications, pp. 1-6,
1-4244-0312-X, Madrid, Spain, Aug 2006, IEEE

Hsiung, P.A.; Santambrogio, M.D. & Huang, C.H. (2009). Reconfigurable System Design and
Verification. CRC Press, ISBN-13: 978-1420062663

In P.; Jung K.. & Kwang H. (2008). An Implementation of an FPGA-Based Embedded
Gesture Recognizer Using a Data Glove, Proc. of the 2nd International Conference on
Ubiquitous Information Management and Communication, pp. 496-500, 978-1-59593-
993-7, Rennes, France, July 2008, ACM

ImpulseC (2009). Impulse Accelerated Technologies. Web page: www.impulseaccelerated.com
Jack, K. (2005). Video Demystified, LLH Technology, 2005, 1-878707-23-X, USA
Johnston C.; Gribbon, K. & Bailey, D. (2005). PGA Based Remote Object Tracking for Real-

Time Control, Proc. of International Conference on Sensing Technology, pp. 66–72,
Palmerston North, New Zealand, November 2005

Johnston, D.J.; Fleury, M., Downton, A.C. & Clark, A.F. (2005). Real-time positioning for
augmented reality on a custom parallel machine. Elsevier Image and Vision
Computing, No. 23 (2005) pp. 271-286, doi:10.1016/j.imavis.2003.08.002.

Keating, M. & Bricaud, P. (1999). Reuse Methodology Manual. Kluwer Academic Publishers,
ISBN-13: 978-0792381754

Krips, M.; Lammert, T. & Kummert, A. (2002). FPGA Implementation of a Neural Network
for a Real Time Hand Tracking System. Proc. of IEEE International Workshop on
Electronic Design, Test, Applications. pp. 313–317, 0-7695-1453-7, Christchurch, New
Zealand, 2002, IEEE CS

Krips, M.; Velten, J. & Kummert A. (2003). FPGA Based Real Time Hand Detection by
Means of Colour Segmentation, DOKLADY of Belarussian State University of
Informatics and Radioelectronics, (November 2003), pp. (156–162), 1729-7648

Ligocki, N.P.; Rettberg, A., Zanella, M., Hennig, A. & de Freitas, F.A.L., (2004). Towards a
Modular Communication System for FPGAs, Proc. of the Second IEEE International
Workshop on Electronic Design, Test and Applications, pp. 71.

Luk, W.; Lee, T.K., Rice, J.R., Shirazi, N. & Cheung P.Y.K. (1998). A Reconfigurable Engine
for Real-Time Video Processing. Proc. of the Seventh Annual IEEE Symposium on
Field-Programmable Custom Computing Machines pp. 136. Springer-Verlag.

Luk, W.; Lee, T.K., Rice, J.R., Shirazi, N. & Cheung, P.Y.K. (1999). Reconfigurable
Computing for Augmented Reality. FCCM archive. ISBN:0-7695-0375-6 IEEE
Computer Society Washington, DC, USA.

Martín, J.; Zuloaga, A.; Cuadrado, C.; Lázaro, J. & Bidarte, U. (2005). Hardware
Implementation of Optical Flow Constraint Equation Using FPGAs, Computer
Vision and Image Understanding, Vol. 98, No. 3, (2005), pp. (462-490)

www.intechopen.com

 Augmented Reality

54

Martínez, J.J.; Toledo, F.J. & Ferrández, J.M. (2007). Discrete-Time Cellular Neural Networks
in FPGA, Proc. of IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM07) pp. 293-294, 0-7695-2940-2, Napa, CA, USA, april 2007, IEEE CS

Martínez, J.J.; Toledo, F.J.; Fernández, E. & Ferrández, J.M. (2008). A retinomorphic
architecture based on discrete-time cellular neural networks using reconfigurable
computing, Neurocomputing, vol. 71, 2008, pp. 766-775, 0925-2312.

Martínez, J.J.; Toledo, F.J.; Fernández, E. & Ferrández, J.M. (2009). Study of the contrast
processing in the early visual system using a neuromorphic retinal architecture,
Neurocomputing, vol. 72, 2009, pp. 928-935, 0925-2312.

Masselos, K.; & Voros N. S. (2007). Implementation of Wireless Communications Systems
on FPGA-Based Platforms. Hindawi Publishing Corporation EURASIP Journal on
Embedded Systems Volume 2007, Article ID 12192, 9 pages.
doi:10.1155/2007/12192.

Matsushita, N.; Hihara, D., Ushiro, T., Yoshimura, S., Rekimoto, J. & Yamamoto, Y. (2003).
ID CAM: A Smart Camera for Scene Capturing and ID Recognition. Proc. of the
Second IEEE and ACM International Symposium on Mixed and Augmented Reality
(ISMAR ’03) pp. 227-236, Tokyo, Japan, October 7-10. IEEE CS, Los Amitos, CA.

Mitra, T. & Chiueh, T. (2002). An FPGA Implementation of Triangle Mesh Decompression,
Proc. of IEEE Symposium Symp. on Field–Programmable Custom Computing Machines,
pp. 22–31, 0-7695-1801-X, Napa, USA, April 2002, IEEE

Möhring, M.; Lessig, C. & Bimber, O. (2004). Video See-Through AR on Consumer Cell-
Phones, Proc. of IEEE/ACM International Symposium on Mixed and Augmented Reality,
pp. 252-253, 0-7695-2191-6, Arlington, USA, november 2004, IEEE CS

Munteanu, D.; & Williamson, C. (2005). An FPGA-based Network Processor for IP Packet
Compression. http://pages.cpsc.ucalgary.ca/~carey/papers/2005/FPGA.pdf

Olivares, J.; Benavides, I.; Hormigo, J.; Villalba, J. & Zapata, E. (2006). Fast Full-Search Block
Matching Algorithm Motion Estimation Alternatives in FPGA, Proc. of International
Conference on Field Programmable Logic and Applications, pp. 1-4, 1-4244-0312-X,
Madrid, Spain, Aug 2006, IEEE

OpenCores (2009). Opencores. Web page: www.opencores.org
Ortiz, F.; Kelmelis, E. & Arce G. (2007). An Architecture for the Efficient Implementation of

Compressive Sampling Reconstruction Algorithms in Reconfigurable Hardware,
Proc. of SPIE conference on Visual Information Processing XVI, pp. 1-11, 0-8194-6697-2,
Orlando USA, April 2007, SPIE

OSCI. (2009). Open SystemC Initiative. Web page: www.systemc.org
Passman, W. & Woodward, C. (2003). Implementation of an Augmented Reality System on a

PDA, Proc. of IEEE/ACM International Symposium on Mixed and Augmented Reality,
pp. 276-277, 0-7695-2006-5, Tokyo, Japan, october 2003, IEEE CS

Piekarski, W.; & Thomas, B.H. (2001). Tinmith-evo5: A software architecture for supporting
research into outdoor augmented reality environments, Technical Report, Wearable
Computer Laboratory, University of South Australia.

Piekarski, W.; Smith, R.; Wigley, G.; Thomas, B. & Kearney D. (2004). Mobile hand tracking
using FPGAs for low powered augmented reality, Proc. of 8th IEEE Int. Symposium
on Wearable Computers (ISWC04) pp. 190-191, 0-7695-2186-X, Arlington, VA, USA,
november 2004, USA

www.intechopen.com

Design of Embedded Augmented Reality Systems

55

Plessl, C.; Enzler, R., Walder, H., Beutel, J., Platzner, M., Thiele, L. & Tröster, G. (2003). The
case for reconfigurable hardware in wearable computing. Personal and Ubiquitous
Computing, vol.7, no. 5, pp. 299–308. Springer-Verlag.

Riess, P. & Stricker, D. (2006). AR on-demand: a practicable solution for augmented reality
on low-end handheld devices, Proc. of AR/VR Workshop of the German Computer
Science Society, pp. 119-130, 3-8322-5474-9, Coblence, Germany, 2006

Schelle, G.; & Grunwald, D. (2008). Exploring FPGA network on chip implementations
across various application and network loads. Proc. of the Field Programmable Logic
and Applications (FPL ’08) . pp. 41-46. Sept. 2008. ISBN: 978-1-4244-1960-9 DOI:
10.1109/FPL.2008.4629905.

Singh, S. & Bellec, P. (1994). Virtual Hardware for Graphics Applications Using FPGAs, Proc.
of IEEE Workshop FPGAs for Custom Computing Machines, pp. 49–58, 0-8186-5490-2,
Napa, USA, April 1994

Smith, R.; Piekarski, W. & Wigley, G. (2005). Hand Tracking for Low Powered Mobile AR
User Interfaces, Proc. of the Sixth Australasian User Interface Conference (AUIC ’05) pp.
7-16, Newcastle, Australia, January 31st – February 3rd, 2005, Australian CS,
Sydney, NSW.

Stitt, G.; Grattan, B., Villarreal, J. & Vahid, F. (2002). Using on-chip configurable logic to
reduce embedded system software energy. Proc. IEEE Symp. on Field–Programmable
Custom Computing Machines, pp. 143–151. Napa, USA.

Styles, H. & Luk, W. (2000). Customising Graphics Applications: Techniques and
Programming Interface, Proc. of IEEE Symposium on Field–Programmable Custom
Computing Machines, pp. 77–90, 0-7695-0871-5, Napa, USA, 2000

Styles, H. & Luk, W. (2002). Accelerating radiosity calculations using reconfigurable
platforms, Proc. of IEEE Symposium on Field–Programmable Custom Computing
Machines, pp. 279–281, 0-7695-1801-X, Napa, USA, September 2002, IEEE

Takayuki, S.N. & Aizawa, K. (2002). Real time Objects Tracking by Using Smart Image
Sensor and FPGA, Proc. of International Conference on Image Processing, pp. 441–444,
0-7803-7622-6, Rochester, New York, 2002, IEEE

Tanase, C.; Vatavu, R., Pentiuc, S. & Graur, A. (2008). Detecting and Tracking Multiple Users
in the Proximity of Interactive Tabletops, Advances in Electrical and Computer
Engineering, Vol. 8, No. 2, (2008), pp. (61-64)

Thomas D.; (2006). FPGA Network Firewalling. Report of the Diadem Firewall Project.
www.doc.ic.ac.uk/~dt10/public/diadem.ppt.

Toledo, F.J.; Martínez, J.J. & Ferrández, J.M. (2007). Hand-based Interface for Augmented
Reality, Proc. of IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM07) pp. 291-292, 0-7695-2940-2, Napa, CA, USA, april 2007, IEEE CS

Toledo, F.J.; Martinez, J.J., Garrigos, J. & Ferrandez, J. (2005). FPGA Implementation of an
Augmented Reality Application for Visually Impaired People. Proc. of the Fifteenth
International Conference on Field Programmable Logic and Applications (FPL ’05) . pp
723-724. Tampere, Finland, August 24-26, 2005. IEEE CS, Los Amitos, CA.

Toledo, F.J.; Martínez, J.J.; Garrigós, F.J., Ferrández, J.M. & Rodellar, V. (2006). Skin color
detection for real time mobile applications, Proc. of Int. Conference on Field
Programmable Logic and Applications (FPL06) pp. 271-274, 1-4244-0312-X, Madrid,
Spain, august 2006

www.intechopen.com

 Augmented Reality

56

Vargas-Martín, F. & Peli, E. (2001). Augmented view for tunnel vision: device testing by
patients in real environments, Digest of Technical Papers, Society for Information
Display International Symposium pp. 602-605, San José, CA, USA, 2001

Vargas-Martín, F. & Peli, E. (2002). Augmented-view for restricted visual field: multiple
device implementations, Optometry and Vision Science, vol. 79, no. 11, 2002, pp. 715-
723, 1040-5488

Veas, R. & Kruijff, E. (2008). Vesp’R: design and evaluation of a handheld AR device, Proc. of
IEEE/ACM International Symposium on Mixed and Augmented Reality, pp. 43-52,
Cambridge, UK, September 2008, IEEE

Vicente, A.; Munoz, I.B.; Molina, P.J. & Galilea, J.L.L. (2009). Embedded Vision Modules for
Tracking and Counting People, IEEE Transaction on Instrumentation and
Measurement, Vol. 58, No. 0, (September 2009), pp. (3004-3011), 0018-9456

Villasenor, J.; Shoner, B.; Chia, K.N.; Zapata, C.; Kim, H.J.; Jones, C.; Lansing, S. &
Mangione-Smith, B. (1996). Configurable Computing Solutions for Automatic
Target Recognition, Proc. IEEE Symp. FPGAs for Custom Computing Machines, pp. 70–
79, ISBN: 0-8186-7548-9, Napa, USA, 1996

Wagner, D.; Pintaric, T., Ledermann, F. & Schmalstieg, D. (2005). Towards Massively Multi-
user Augmented Reality on Handheld Devices. Proc. of the Third International
Conference on Pervasive Computing (PERVASIVE ’05) pp. 208-219, Munich,
Germany, May 8-13, 2005, Springer Berlin/Heidelberg, New York, NY.

Wee, C.M.; Sutton, P.R. & Bergmann, N.W. (2005). An FPGA network architecture for
accelerating 3DES - CBC. Proc. of the IEEE 15th International Conference on Field
Programmable Logic and Applications (FPL), Tampere, Finland, pp. 654-657. August
2005. ISBN: 0-7803-9362-7

Ye, A. & Lewis, D. (1999). Procedural Texture Mapping on FPGAs, Proc. of the 1999
ACM/SIGDA Seventh International Symposium on Field-Programmable Gate Arrays, pp.
112 – 120, 1-58113-088-0, Monterey, USA, 1999, ACM

Yu, N.; Kim, K. & Salcic, Z. (2004). A new motion estimation algorithm for mobile real-time
video and its FPGA implementation, Proc. of IEEE Region 10 Conference: Analog and
Digital Techniques in Electrical Engineering, pp. 383-386, 0-7803-8560-8, Chiang Mai,
Thailand, November 2004, IEEE

Zhou, F.; Been-lirn Duh, H. & Billinghurst, M. (2008). Trends in Augmented Reality
Tracking, Interaction and Display: A Review of Ten Years of ISMAR, Proc. of
IEEE/ACM International Symposium on Mixed and Augmented Reality, pp. 193-202,
Cambridge, UK, September 2008, IEEE

www.intechopen.com

Augmented Reality

Edited by Soha Maad

ISBN 978-953-7619-69-5

Hard cover, 230 pages

Publisher InTech

Published online 01, January, 2010

Published in print edition January, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Virtual Reality (VR) and Augmented Reality (AR) tools and techniques supply virtual environments that have

key characteristics in common with our physical environment. Viewing and interacting with 3D objects is closer

to reality than abstract mathematical and 2D approaches. Augmented Reality (AR) technology, a more

expansive form of VR is emerging as a cutting-edge technology that integrates images of virtual objects into a

real world. In that respect Virtual and Augmented reality can potentially serve two objectives: reflecting realism

through a closer correspondence with real experience, and extending the power of computer-based

technology to better reflect abstract experience. With the growing amount of digital data that can be stored and

accessed there is a rising need to harness this data and transform it into an engine capable of developing our

view and perception of the world and of boosting the economic activity across domain verticals. Graphs, pie

charts and spreadsheet are not anymore the unique medium to convey the world. Advanced interactive

patterns of visualization and representations are emerging as a viable alternative with the latest advances in

emerging technologies such as AR and VR. And the potential and rewards are tremendous. This book

discusses the opportunities and challenges facing the development of this technology.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

J. Toledo, J. J. Martínez, J. Garrigós, R. Toledo-Moreo and J. M. Ferrández (2010). Design of Embedded

Augmented Reality Systems, Augmented Reality, Soha Maad (Ed.), ISBN: 978-953-7619-69-5, InTech,

Available from: http://www.intechopen.com/books/augmented-reality/design-of-embedded-augmented-reality-

systems

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

