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Chapter

Speech Enhancement Using
an Iterative Posterior NMF
Sunnydayal Vanambathina

Abstract

Over the years, miscellaneous methods for speech enhancement have been pro-
posed, such as spectral subtraction (SS) and minimum mean square error (MMSE)
estimators. These methods do not require any prior knowledge about the speech
and noise signals nor any training stage beforehand, so they are highly flexible and
allow implementation in various situations. However, these algorithms usually
assume that the noise is stationary and are thus not good at dealing with
nonstationary noise types, especially under low signal-to-noise (SNR) conditions.
To overcome the drawbacks of the above methods, nonnegative matrix factoriza-
tion (NMF) is introduced. NMF approach is more robust to nonstationary noise. In
this chapter, we are actually interested in the application of speech enhancement
using NMF approach. A speech enhancement method based on regularized non-
negative matrix factorization (NMF) for nonstationary Gaussian noise is proposed.
The spectral components of speech and noise are modeled as Gamma and Rayleigh,
respectively. We propose to adaptively estimate the sufficient statistics of these
distributions to obtain a natural regularization of the NMF criterion.

Keywords: nonnegative matrix factorization (NMF), speech enhancement,
signal-to-noise ratio (SNR), expectation maximization (EM) algorithms,
posterior regularization (PR)

1. Introduction

Over the past several decades, there has been a large research interest in the
problem of single-channel sound source separation. Such work focuses on the task
of separating a single mixture recording into its respective sources and is motivated
by the fact that real-world sounds are inherently constructed by many individual
sounds (e.g., human speakers, musical instruments, background noise, etc.). While
source separation is difficult, the topic is highly motivated by many outstanding
problems in audio signal processing and machine learning, including the following:

1. Speech denoising and enhancement—the task of removing background noise
(e.g., wind, babble, etc.) from recorded speech and improving speech
intelligibility for human listeners and/or automatic speech recognizers

2. Content-based analysis and processing—the task of extracting and/or
processing audio based on semantic properties of the recording such as tempo,
rhythm, and/or pitch
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3. Music transcription—the task of notating an audio recording into a musical
representation such as a musical score, guitar tablature, or other symbolic
notations

4.Audio-based forensics—the task of examining, comparing, and evaluating
audio recordings for scientific and/or legal matters

5. Audio restoration—the task of removing imperfections such as noise, hiss,
pops, and crackles from (typically old) audio recordings

6.Music remixing and content creation—the task of creating a new musical work
by manipulating the content of one or more previously existing recordings

2. Nonnegative matrix factorization

2.1 NMF model

Nonnegative matrix factorization is a process that approximates a single non-
negative matrix as the product of two nonnegative matrices. It is defined by

V � WH (1)

V � R
N f � N t

þ is a nonnegative input matrix. W � R
N f � Nz

þ is a matrix of basis
vectors, basis functions, or dictionary elements;H � RNz� N t

þ is a matrix of
corresponding activations, weights, or gains; andN f is the number of rows of the
input matrix. N t is the number of columns of the input matrix; Nz is the number of
basis vectors [1].

V � R
N f � N t

þ —original nonnegative input data matrix

• Each column is anN f -dimensional data sample.

• Each row represents a data feature.

W � R
N f � Nz

þ —matrix of basis vectors, basis functions, or dictionary elements.

• A column represents a basis vector, basis function, or dictionary element.

• Each column is not orthonormal, but commonly normalized to one.

H � RNz� N t
þ —matrix of activations, weights, encodings, or gains.

• A row represents the gain of a corresponding basis vector.

• Each row is not orthonormal, but sometimes normalized to one.

When used for audio applications, NMF is typically used to model spectrogram
data or the magnitude of STFT data [2]. That is, we take a single-channel recording,
transform it into the time-frequency domain using the STFT, take the magnitude or
power V, and then approximate the result asV � WH . In doing so, NMF approxi-
mates spectrogram data as a linear combination of prototypical frequencies or
spectra (i.e., basis vectors) over time.

2
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This process can be seen inFigure 1 [3], where a two-measure piano passage of
“Mary Had a Little Lamb” is shown alongside a spectrogram and an NMF factori-
zation. Notice how W captures the harmonic content of the three pitches of the
passage andH captures the time onsets and gains of the individual notes. Also note
that Nz is typically chosen manually or using a model selection procedure such as
cross-validation andN f and N t are a function of the overall recording length and
STFT parameters (transform length, zero-padding size, and hop size).

This leads to two related interpretations of how NMF models spectrogram data.
The first interpretation is that the columns of V (i.e., short-time segments of the
mixture signal) are approximated as a weighted sum of basis vectors as shown in
Figure 2 and Eq. (2):

V �

j j j j

V1 V2 V3……VN t

j j j j

2

6
4

3

7
5 � � Nz

j¼1H j1W j � K
j¼1H j2W j � K

j¼1H jN t W j

h i
(2)

The second interpretation is that the entire matrix V is approximated as a sum of
matrix “ layers,” as shown inFigure 3 and Eq. (3).

Figure 1.
NMF of a piano performing“Mary had a little lamb” for two measures withNz = 3. Notice how matrixW
captures the harmonic content of the three pitches of the passage and matrixH captures the time onsets and gains
of the individual notes [3].

Figure 2.
NMF interpretation I. the columns ofV (i.e., short-time segments of the mixture signal) are approximated as a
weighted sum or mixture of basis vectorsW [3].
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V �

j j j j

V1 V2 V3……VN t

j j j j

2

6
4

3

7
5 �

j j j j

W 1 W 2 W 3……W Nz

j j j j

2

6
4

3

7
5

hT
1

hT
2

hT
3

:

hT
Nz

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

V � W 1h
T
1 þ W 2h

T
2 þ W 3h

T
3 þ ::…þ W Nzh

T
Nz

(3)

The application of NMF on noisy speech can be seen inFigure 4 .

2.2 Optimization formulation

To estimate the basis matrixW and the activation matrix H for a given input
data matrix V, NMF algorithm is formulated as an optimization problem. This is
written as:

argmin
W, H

D V WHjð Þ

W � 0, H � 0 (4)

where D V WHjð Þis an appropriately defined cost function betweenV and W H
and the inequalities � are element-wise. It is also common to add additional
equality constraints to require the columns of W to sum to one, which we enforce.
When D V WHjð Þis additively separable, the cost function can be reduced to

D V WHjð Þ¼ �
N f

f ¼1
�
N t

t¼1
d V ft WH½ �ft

�
�
�

� �
(5)

Figure 3.
NMF interpretation II. The matrix V (i.e., the mixture signal) is approximated as a sum of matrix“ layers” [3].

Figure 4.
Applying NMF on noisy speech.
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where ½�ft indicates its argument at row f and column t and D V WHjð Þis a scalar
cost function measured betweenV and WH.

Popular cost functions include the Euclidean distance metric, Kullback-Liebler
(KL) divergence, and Itakura-Saito (IS) divergence. Both the KL and IS divergences
have been found to be well suited for audio purposes. In this work, we focus on the
case whered q pjð Þis generalized (non-normalized) KL divergence:

dKL q pjð Þ ¼q�ln
q
p

� q þ p (6)

where ½�ft indicates its argument at row f and column t and d q pjð Þis a scalar cost
function measured betweenq and p.

This results in the following optimization formulation:

argmin
W , H

�
N f

f ¼1
�
N t

t¼1
� V ft �ln WH½ �ft

�
�
� þ WH½ �ft

�
�
� þ const

Subject to

W � 0, H � 0 (7)

Given this formulation, we notice that the problem is not convex in W and H,
limiting our ability to find a globally optimal solution to Eq. (7). It is, however,
biconvex or independently convex in W for a fixed value of H and convex in H for a
fixed value of W , motivating the use of iterative numerical methods to estimate
locally optimal values of W and H.

2.3 Parameter estimation

To solve Eq. (7), we must use an iterative numerical optimization technique and
hope to find a locally optimal solution. Gradient descent methods are the most
common and straightforward for this purpose but typically are slow to converge.
Other methods such as Newton’s method, interior-point methods, conjugate gradi-
ent methods, and similar [4] can converge faster but are typically much more
complicated to implement, motivating alternative approaches.

The most popular alternative that has been proposed is by Lee and Seung [1, 5]
and consists of a fast, simple, and efficient multiplicative gradient descent-based
optimization procedure. The method works by breaking down the larger optimiza-
tion problem into two subproblems and iteratively optimizes over W and then H,
back and forth, given an initial feasible solution. The approach monotonically
decreases the optimization objective for both the KL divergence and Euclidean cost
functions and converges to a local stationary point.

The approach is justified using the machinery of majorization-minimization
(MM) algorithms [6]. MM algorithms are closely related to expectation maximiza-
tion (EM) algorithms. In general, MM algorithms operate by approximating an
optimization objective with a lower bound auxiliary function. The lower bound is
then maximized instead of the original function, which is usually more difficult to
optimize.

Algorithm 1 shows the complete iterative numerical optimization procedure
applied to Eq. (7) with the KL divergence, where the division is element-wise,� is
an element-wise multiplication, and 1 is a vector or matrix of ones with appropri-
ately defined dimensions [5].
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Algorithm 1 KL-NMF parameter estimation

Procedure KL-NMF ( V � R
N f � N t

þ //input data matrix.
Nz//number of basic vectors.
)

Initialize: W � R
N f � Nz

þ , H � RNz� N t:
þ

repeat
Optimize over W

W  W �
V

WH

� �
HT

1HT (8)

Optimize over H

H  H �
W T V

WH

� �

W T1
(9)

until convergence
return : W and H

NMF is an optimization technique using EM algorithm in terms of matrix,
whereas probabilistic latent component analysis (PLCA) is also an optimization
technique using EM algorithm in terms of probability. In PLCA, we are going to
incorporate probabilities of time and frequency. In the next section, the develop-
ment of PLCA-based algorithm to incorporate time-frequency constraints is
discussed.

3. A probabilistic latent variable model with time-frequency constraints

Considering this approach, we now develop a new PLCA-based algorithm to
incorporate the time-frequency user-annotations. For clarity, we restate the form of
the symmetric two-dimensional PLCA model we use:

p f ; tð Þ ¼� zp zð Þp f zjð Þp t zjð Þ (10)

Compared to a modified NMF formulation, incorporating optimization con-
straints as a function of time, frequency, and sound source into the factorized PLCA
model is particularly interesting and motivating to our focus.

Incorporating prior information into this model, and PLCA in general, can be
done in several ways. The most commonly used methods are by direct observations
(i.e., setting probabilities to zero, one, etc.) or by incorporating Bayesian prior
probabilities on model parameters. Direct observations do not give us enough con-
trol, so we consider incorporating Bayesian prior probabilities. For the case of
Eq. (10), this would result in independently modifying the factor terms p f zjð Þ,
p t zjð Þ, or p zð Þ. Common prior probability distributions used for this purpose include
Dirichlet priors [7], gamma priors [8], and others.

Given that we would like to incorporate the user-annotations as a function of
time, frequency, and sound source, however, we notice that this is not easily
accomplished using standard priors. This is because the model is factorized, and
each factor is only a function of one variable and (possibly) conditioned by another,
making it difficult to construct a set of prior probabilities that, when jointly applied
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to p f zjð Þ, p t zjð Þ, and/or p zð Þ, would encourage or discourage one source or another
to explain a given time-frequency point. We can see this more clearly when we
consider PLCA to be the following simplified estimation problem:

X f ; tð Þ� � zð Þ� f ; zð Þ� t; zð Þ (11)

where X f ; tð Þis the observed data that we model as the product of three distinct
functions or factors � zð Þ, � f ; zð Þ, and � t; zð Þ. Note, each factor has different input
arguments and each factor has different parameters that we wish to estimate via
EM. Also, forget for the moment that the factors must be normalized probabilities.

Given this model, if we wish to incorporate additional information, we could
independently modify:

• � zð Þto incorporate past knowledge of the variable z

• � f ; zð Þto incorporate past knowledge of the variable f and z

• � t; zð Þto incorporate past knowledge of the variable t and z

This way of manipulation allows us to maintain our factorized form and can be
thought of as prior-based regularization. If we would like to incorporate additional
information/regularization that is a function of all three variables z, f, and t, then we
must do something else. The first option would be to try to simultaneously modify
all factors together to impose regularization that is a function of all three variables.
This is unfortunately very difficult —both conceptually difficult to construct and
practically difficult to algorithmically solve.

This motivates the use of posterior regularization (PR). PR provides us with an
algorithmic mechanism via EM to incorporate constraints that are complementary
to prior-based regularization. Instead of modifying the individual factors of our
model as we saw before, we directly modify the posterior distribution of our model.
The posterior distribution of our model, very loosely speaking, is a function of all
random variables of our model. It is natively computed within each E step of EM
and is required to iteratively improve the estimates of our model parameters. In
this example, the posterior distribution would be akin to � z; f ; tð Þ, which is a
function of t, f, and z, as required. We now formally discuss PR below, beginning
with a general discussion and concluding with the specific form of PR we
employ within our approach.

3.1 Posterior regularization

The framework of posterior regularization, first introduced by Graca, Ganchev,
and Taskar [9, 10], is a relatively new mechanism for injecting rich, typically
data-dependent constraints into latent variable models using the EM algorithm. In
contrast to standard Bayesian prior-based regularization, which applies constraints
to the model parameters of a latent variable model in the maximization step of EM,
posterior regularization applies constraints to the posterior distribution (distribu-
tion over the latent variables, conditioned on everything else) computation in the
expectation step of EM. The method has found success in many natural language
processing tasks, such as statistical word alignment, part-of-speech tagging, and
similar tasks that involve latent variable models.

In this case, what we do is constrain the distribution q in some way when we
maximize the auxiliary bound F q; �ð Þwith respect to q in the expectation step of an
EM algorithm, resulting in

7
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qnþ 1 ¼ argmin
q

KL q pkð Þ þ� qð Þ (12)

where � qð Þconstrains the possible space of q.
Note, the only difference between Eq. (12) and our past discussion on EM is the

added term � qð Þ. If � qð Þis set to zero, we get back the original formulation and
easily solve the optimization by setting q = p without any computation (except
computing the posterior p). Also note to denote the use of constraints in this
context, the term “weakly supervised” was introduced by Graca [11] and is simi-
larly adopted here.

This method of regularization is in contrast to prior-based regularization, where
the modified maximization step would be

� nþ 1 ¼ argmax
�

F qnþ 1; �
� �

þ � �ð Þ (13)

where � �ð Þconstrains the model parameter� .

3.2 Linear grouping expectation constraints

Given the general framework of posterior regularization, we need to define a
meaningful penalty � qð Þfor which we map our annotations. We do this by map-
ping the annotation matrices to linear grouping constraints on the latent variable z.
To do so, we first notice that Eq. (12) decouples for each time-frequency point for
our specific model. Because of this, we can independently solve Eq. (12) for each
time-frequency point, making the optimization much simpler. When we rewrite
our E step optimization using vector notation, we get

argmin
q

� qT
ft lnpft þ qT

ft lnqft

subject to
qT

ft 1 ¼ 1, qft � 0 (14)

where q andp z f; tjð Þfor a given value of f and t is written as qft and pft without

any modification; we note q is optimal when equal to p z f ; tjð Þas before.
We then apply our linear grouping constraints independently for each time-

frequency point:

argmin
q

� qT
ft lnpft þ qT

ft lnqft þ qT
ft � ft

Subject to
qT

ft 1 ¼ 1, qft � 0, (15)

where we define � ft ¼ � ft1::……� ft1� ft2………� ft2
� � T � RNz as the vector of user-

defined penalty weights, T is a matrix transpose, � is element-wise greater than or
equal to, and1 is a column vector of ones. In this case, positive-valued penalties are
used to decrease the probability of a given source, while negative-valued coeffi-
cients are used to increase the probability of a given source. Note the penalty
weights imposed on the group of values of z that correspond to a given source s are
identical, linear with respect to the z variables, and applied in the E step of EM,
hence the name“ linear grouping expectation constraints.”

8

New Frontiers in Brain-Computer Interfaces



To solve the above optimization problem for a given time-frequency point, we
form the Lagrangian

L qft ; �
� �

¼ � qT
ft ln pft þ qT

ft ln qft þ qT
ft � ft þ � 1 � qT

ft 1
� �

(16)

With � being a Lagrange multiplier, take the gradient with respect to q and� :

� qft
L qft ; �

� �
¼ � ln pft þ 1þ ln qft þ � ft � � 1 ¼ 0 (17)

� aL qft ; �
� �

¼ 1 � qT
ft 1

� �
¼ 0 (18)

set Eqs. (17) and (18) equal to zero, and solve forqft , resulting in

qft ¼
Pft � exp � � ft

� �

PT
ft exp � � ft

� � (19)

where exp{} is an element-wise exponential function.
Notice the result is computed in closed form and does not require any iterative

optimization scheme as may be required in the general posterior regularization
framework [9], minimizing the computational cost when incorporating the con-
straints. Also note, however, that this optimization must be solved for each time-
frequency point of our spectrogram data for each E step iteration of our final EM
parameter estimation algorithm.

3.3 Parameter estimation

Now knowing the posterior-regularized expectation step optimization, we can
derive a complete EM algorithm for a posterior-regularized two-dimensional PLCA
model (PR-PLCA):

p z f ; tjð Þ 
p zð Þp f zjð Þp t zjð Þ� ftz

� z0p z0ð Þp f zj 0ð Þp t zj 0ð Þ� ftz0

(20)

where � ¼ exp � �f g . The entire algorithm is outlined in Algorithm 2. Notice we
continue to maintain closed-form E and M steps, allowing us to optimize further and
draw connections to multiplicative nonnegative matrix factorization algorithms.

Algorithm 2 PR-PLCA with linear grouping expectation constraints

Procedure PLCA (

V � R
N f � N t

þ //observed normalized data
Nz//number of basis vectors
Ns//number of sources
� � RN f � N t � Nz//penalties
)
Initialize: feasiblep zð Þ,p f zjð Þand p t zjð Þ

Precompute: �  exp � �ð Þ (21)
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repeat
Expectation step
for all z, f, t do

p z f; tjð Þ 
p zð Þp f zjð Þp t zjð Þ� ftz

� z0p z0ð Þp f zj 0ð Þp t zj 0ð Þ� ftz0

(22)

end for
Maximization step
for all z, f, t do

p f zjð Þ ¼
� tV ftp z f; tjð Þ

� f 0� t0V f 0t0p z f0; t0jð Þ
(23)

p t zjð Þ ¼
� f V ftp z f; tjð Þ

� f 0� t0V f 0t0p z f0; t0jð Þ
(24)

p zð Þ ¼
� f � tV ftp z f; tjð Þ

� z0� f 0� t0V f 0t0p z f0; t0jð Þ
(25)

end for
until convergence
return: p f zjð Þ, p t zjð Þ,p zð Þand p z f ; tjð Þ

• Multiplicative Update Equations

We can rearrange the expressions in Algorithm 2 and convert to a multiplicative
form following similar methodology to Smaragdis and Raj [12].

Rearranging the expectation and maximization steps, in conjunction with Bayes’
rule, and

Z f ; tð Þ ¼� zp zð Þp f zjð Þp t zjð Þ� ftz,

we get

p z f ; tjð Þ¼
p f zjð Þp t; zð Þ� ftz

Z f ; tð Þ
(26)

p t; zð Þ ¼� f V ftq z f; tjð Þ (27)

p f zjð Þ ¼
� tV ftq z f; tjð Þ

� tp t; zð Þ
(28)

p zð Þ ¼� tp t; zð Þ (29)

Rearranging further, we get

p f zjð Þ ¼
p f zjð Þ� t

V ft � ftz

Z f ;tð Þp t; zð Þ

� tp t; zð Þ
(30)

p t; zð Þ ¼p t; zð Þ� f p f zjð Þ
V ft � ftz

Z f ; tð Þ
(31)

10
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which fully specifies the iterative updates. By putting Eqs. (30) and (31) in
matrix notation, we specify the multiplicative form of the proposed method in
Algorithm 3.

Algorithm 3. PR-PLCA with linear grouping expectation constraints in matrix
notation

Procedure PLCA (

V � R
N f � N t

þ //observed normalized data
Nz//number of basis vectors
Ns//number of sources
� s � RN f � N t , � � 1; :…Nsf g //penalties
)

Initialize: W � R
N f � Nz

þ , H � RNz� N t
þ

Precompute:
For all s do

� s  exp � � sf g (32)

Xs  V � � s (33)

End for
Repeat

�  � s W sHsð Þ� � s (34)

For all s do

Zs  
Xs

�
(35)

W sð Þ W s �
ZsHT

s

1HT
s

(36)

H sð Þ Hs � W T
s Zs

� �
(37)

End for
until convergence
return : W and H

4. An iterative posterior NMF method for speech enhancement in the
presence of additive Gaussian noise (proposed algorithm)

Over the past several years, research has been carried out in single-channel
sound source separation methods. This problem is motivated by speech denoising,
speech enhancement [13], music transcription [14], audio-based forensic, and
music remixing. One of the most effective approach is nonnegative matrix factori-
zation (NMF) [5]. The user-annotations can be used to obtain the PR terms [15]. If
the number of sources is more, then it is difficult to identify sources in the spectro-
gram. In such cases, the user interaction-based constraint approaches are inefficient.

In order to avoid the previous problem, in the proposed method, an automatic
iterative procedure is introduced. The spectral components of speech and noise are
modeled as Gamma and Rayleigh, respectively [16].
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4.1 Notation and basic concepts

Let noisy speech signal x[n] be the sum of clean speech s[n] and noise d[n] and
their corresponding magnitude spectrogram be represented as

X f ; tð Þj j ¼ S f; tð Þj j þ D f ; tð Þj j (38)

where f represents the frequency bin andt the frame number. The observed

magnitudes in time-frequency are arranged in a matrix X � R f � t
þ of nonnegative

elements. The source separation algorithms based on NMF pursue the factorization

of X as a product of two nonnegative matrices,W ¼ w1; w2; …; wR½ �� R f � R
þ in

which the columns collect the basis vectors andH ¼ hT
1 ; hT

2 ; :…; hT
R

� � T
� RR� t

þ that
collects their respective weights, i.e.,

X ¼ WH ¼ �
R

z¼1
W zHz (39)

where R denotes the number of latent components.

4.2 Proposed regularization

There are several ways to incorporate the user-annotations into latent variable
models, for instance, by using the suitable regularization functions. For expectation
maximization (EM) algorithms, posterior regularization was introduced by [9, 11].
This method is data dependent. This method gives richness and also gives the
constraints on the posterior distributions of latent variable models. The applications
of this method is used in many natural language processing tasks like statistical
word alignment, part-of-speech tagging. The main idea is to constrain on the dis-
tribution of posterior, when computing expectation step in EM algorithm.

The prior distributions for the magnitude of the noise spectral components are
modeled as Rayleigh probability density function (PDF) with scale parameter	 ,
which is fitted to the observations by a maximum likelihood procedure [16, 17], i.e.,

f x; 	ð Þ ¼
x
	 2 e� x2=2	 2

for x � 0 with 	 2 ¼
1

2N
�
N

i¼1
x2

i (40)

The above equation can be written as

f x; 	ð Þ ¼elog x
	 2

� �
e� x2=2	 2

¼ elog x
	 2

� �
� x2

2	 2 (41)

By applying negative logarithm on both sides of (41), we will get

� log f x; 	ð Þð Þ¼ � log elog x
	 2

� �
� x2

2	 2

	 

¼

x2

2	 2 � log
x
	 2

� �
(42)

Then, the regularization term for the noise is defined as

� N � � S1 ¼ � log f x; 	ð Þ ¼
x2

2	 2 � log
x
	 2 : (43)

The spectral components of speech modeled as Gamma probability density
function [16, 18]
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f x; k; 
ð Þ¼
xk� 1e

� x




 k� kð Þ
(44)

with shape parameterk>0 and scale parameter
 >0:


 ¼
1

kN
�
N

i¼1
xi �and�k �

3 � sþ
����������������������������
s� 3ð Þ2 þ 24s

q

12s
(45)

where the auxiliary variable sis defined ass¼ ln 1
N � N

i¼1xi

� �
� 1

N � N
i¼1ln xið Þ.

The regularization term for the speech samples is defined as (by applying nega-
tive logarithm in both sides of (44))

� SP � � S2 ¼ � log f x; k; 
ð Þ¼
x



� log
xk� 1


 k� kð Þ

 !

, x � 0 (46)

Special case: When we fix k = 1, the Gamma density simplifies to the exponential
density and

f x; 1; 
ð Þ¼
1



e
� x

 , � SP � � S2 ¼

x



, x � 0 (47)

The proposed multiplicative nonnegative matrix factorization method is
summarized in Algorithm 4 [16]. In general, like in the specific case of Algorithm 4,
one can only guarantee the monotonous descent of the iteration through a
majorization-minimization approach [19] or the convergence to a stationary
point [20].

The subscript(s) with parenthesis represents corresponding columns or rows of
the matrix assigned to a given source.1 is an approximately sized matrices of ones,
and � represents element-wise multiplication.

Algorithm 4 : Gamma-Rayleigh regularized PLCA method (GR-NMF)

Procedure

X � Rf � t
þ % Observed normalized data

� S � Rf � t
þ , s� 1; ::…; NSf g % � S-Penalties,NS-Number of sources

� s NEWð Þ¼ 0

� S1 ¼ � N OLDð Þ¼
X2

2	 2 � log
X
	 2 and � S2 ¼ � SP OLDð Þ¼

X



� log
Xk� 1


 k� kð Þ

 !

(48)

e� s OLDð Þ exp � � sf g (49)

Repeat
For all s do

e� s ¼ 1� �ð Þ� s OLDð Þþ �� s NEWð Þ%Update penalties using LMS (50)

� s OLDð Þ¼ � s NEWð Þ (51)
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Xs  X � e� S (52)

End for

�  � s W sð ÞH sð Þ
� �

� e� S (53)

Zs  
Xs

�
(54)

For all s do

W sð Þ W sð Þ�
ZsHT

sð Þ

1HT
sð Þ

(55)

H sð Þ H sð Þ� W T
sð ÞZs

� �
(56)

End for
Reconstruction

For all s do

Ms  
W sð ÞH sð Þ

WH
% Compute Filter (57)

X̂s  Ms � X % Filter Mixture (58)

xs  ISTFT X̂s; 	 X; P
� �

% P � STFT parameters (59)

if update k % Gamma model

s¼ ln
1
N

� X̂s

	 

�

1
N

� ln X̂s
� �

, k �
3 � sþ

����������������������������
s� 3ð Þ2 þ 24s

q

12s
(60)

else % Exponential model
k = 1,

end


 ¼
1

kN
� X̂s (61)

� S1 ¼ � N OLDð Þ¼
X̂2

s1

2	 2 � log
X̂s1

	 2

� S2 ¼ � SP OLDð Þ¼
X̂s2



� log

X̂
k� 1
s2


 k� kð Þ

0

@

1

A (62)

� s NEWð Þ¼ exp � � s OLDð Þ
� �

% � s OLDð Þrepresents both � SP and � N (63)

End for
Until Convergence
Return : Time domain signalsxs
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5. Experimental results

The speech and noise audio samples were taken from NOIZEUS [21]. Sampling
frequency is 8 KHz. The algorithm is iterated until convergence [16]. The proposed
method was compared with Euclidean NMF (EUC-NMF) [5], Itakura-Saito NMF
(IS-NMF) [22], posterior regularization NMF (PR-NMF) [15], Wiener filtering
[23], and constrained version of NMF (CNMF)[24]. These methods are
implemented by considering nonstationary noise, babble noise and street noise. The
performance of proposed method was evaluated by using perceptual evaluation of
speech quality (PESQ) [25] and source-to-distortion ratio (SDR) [26]. SDR gives
the average quality of separation on dB scale and considers signal distortion as well
as noise distortion. For PESQ and SDR, the higher value indicates the better perfor-
mance.Tables 1 and 2 show the PESQ and SDR values of different NMF algorithms
evaluated. The experimental results show that proposed method performs better
than other existing methods in terms of the PESQ and SDR indices.

6. Conclusion

A novel speech enhancement method based on an iterative and regularized NMF
algorithm for single-channel source separation is proposed. The clean speech and
noise magnitude spectra are modeled as Gamma and Rayleigh distributions,
respectively. The corresponding log-likelihood functions are used as penalties to

Table 1.
PESQ and SDR for babble noise.

Table 2.
PESQ and SDR for street noise.
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regularize the cost function of the NMF. The estimation of basis matrices and
excitation matrices are calculated by using proposed regularization of multiplicative
update rules. The experiments reveal that the proposed speech enhancement
method outperforms other existing benchmark methods in terms of SDR and PESQ
values.
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