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1. Introduction 
 

Wireless sensor networks (WSN) are composed of large numbers of small sensing self-
powered nodes which are densely deployed either inside the phenomenon or very close to it 
(Akyildiz et al., 2002; Culler et al., 2004). The capabilities of these inexpensive, low-power 
communication devices ensure serving in a wide range of application domains (Chong and 
Kumar, 2003; Haenggi, 2004). While their potential benefits are clear, a number of open 
problems must be solved in order for wireless sensor networks to become viable in practice. 
These problems include issues related to deployment, security, calibration, failure detection 
and power management. 
Recently, significant advances have been accomplished in the field of mobile robotics 
(Engelberger, 1999), and robots have become increasingly more feasible in practical system 
design. Therefore, a number of problems with wireless sensor networks can be solved by 
including a mobile robot as an integral part of the system. Specifically, the robot can be used 
to deploy and calibrate sensors, detect and react to sensor failure, deliver power to sensors, 
and otherwise maintain the overall health of the wireless sensor network. 
Energy consumption is one of the most important requirements for many WSN applications. 
Since energy resources are scarce and battery replacement is not an option for networks 
with thousands of physically embedded sensor nodes, energy optimization for individual 
nodes is required as well as the entire network. In static wireless sensor networks, it is 
observed that, as data traffic must be concentrated towards the sink (base station), the nodes 
around that sink have to forward data for other nodes whose number can be very large; this 
problem always exists, regardless of what energy conserving protocol is used for data 
transmission. As a result, those bottleneck nodes around the sink deplete their batteries 
much faster than other nodes and, therefore, their lifetime upper bounds the lifetime of the 
whole network. 
Mobile collectors (mobile robots) are utilized to act as mechanical data carriers taking 
advantage of mobility capacity (Grossglauser and Tse, 2002) and physically approaching the 
sensors for collecting their data using single hop communication. This approach trades data 
delivery latency for the reduction of energy consumption of sensors; however, it shows 
remarkable enhancement in the network lifetime. Still, the data delivery latency depends 
mainly on the mobility regime applied by the collector. 
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In random mobility regimes (Burrell et al., 2004; Jain et al., 2006; Shah et al., 2003), random 
moving humans and animals act as "data mules", collect data opportunistically from sensor 
nodes when entering their communication ranges. A grid type topology is assumed for the 
network deployment with sensors located at the grid intersection points, where the mobile 
entities (data mules) can move in any of the four directions with equal probability (Shah et 
al., 2003) or move up and down the rows (Burrell et al., 2004). The random mobility regime 
shows improved data capacity (Grossglauser and Tse, 2002), however, in all cases, the 
worst-case latency of data delivery cannot be bounded. This unbounded latency may lead to 
excessive data caching at mobile entities, resulting in buffer overflows and data in transit 
may have to be dropped before being delivered to the destination, making it harder to 
provide transport layer reliability. 
In predictable mobility regimes (Baruah et al., 2004; Chakrabarti et al., 2003), vehicles 
moving on a predesigned path collect sensors data when they move near them. The sensor 
nodes learn the times at which they have connectivity with the vehicle, and wake up 
accordingly to transfer their data. The trajectory of the mobile vehicle is known to the sensor 
nodes, which helps the sensors to save energy by sleeping until the predicted time of data 
transfer comes. A queuing model (Chakrabarti et al., 2003) is introduced to accurately model 
the data collection process. Using this queuing system model, the success rate of data 
collection and power consumption are analysed. Also, applying reinforcement learning to 
locate the vehicle efficiently at any point of time along its path is studied in (Baruah et al., 
2004). The predictable mobility regime provides efficient solutions for saving the sensors 
energy consumption; however, it lacks flexibility and scalability as the sensors have to 
relearn the new data transfer times if the vehicle's path change and the need for redesigning 
the vehicle's path when transplanted to other networks. 
In contrast, the controlled mobility regime adapts the motion strategy of the mobile collector 
according to the network runtime conditions to balance the sensors energy consumption 
and the data delivery latency. The message ferrying approach introduced in (Kansal et al., 
2004; Zhao and Ammar, 2003; Zhao et al., 2004, 2005) controls the motion of a mobile relay 
to route messages between nodes in sparse networks. The idea is studied on networks with 
stationary sensor nodes (Kansal et al., 2004; Zhao and Ammar, 2003) and networks with 
mobile nodes (Zhao et al., 2004, 2005). The message ferry moves proactively to meet nodes 
wishing to send or receive packets and most communication involves short range radios for 
avoiding excessive energy consumption. The approach proves its strength in improving 
data delivery and energy efficiency; however, the collector acts only as a mobile relay 
between sparse sensor nodes. 
Controlling the mobile collector motion for efficient data collection is presented in (Gu et al., 
2005; Ngai et al., 2007; Somasundara et al., 2004; Tirta et al., 2006). The motion strategy of the 
mobile collector (element) is formulated as a scheduling problem based on knowing in 
advance the sensors sampling intervals and the rate by which the events in the environment 
occur. Offline solutions are provided in (Gu et al., 2005; Ngai et al., 2007; Tirta et al., 2006) 
based on having advance knowledge regarding the deployment locations of the sensors, 
their data generation rates, and buffer sizes. The solutions presented minimize the data 
latency by optimizing the collector inter-arrival times while using single hop 
communication for data transfer to minimize the sensor's energy consumption, remains that 
all operate offline and maladaptive to the network operational conditions. An online 
solution is presented in (Somasundara et al., 2004) that overcomes some of the former 

www.intechopen.com



Effective Heuristics for Route Construction of Mobile Data Collectors 225

problems. A mobile data collector is scheduled in real time to visit sensors such that no 
sensor buffer overflow occurs. The algorithm considers buffer overflow deadlines as well as 
distances between nodes in determining the visiting schedule. The new deadline for the 
node's future visit is updated, once it is visited and depends mainly on knowing the node's 
buffer size and sensing rate to compute its next overflow deadline. The solution works 
online; still, there is a requirement on having full knowledge about the operational 
parameters of the sensor node. 
This work is concerned with the controlled mobility regime. The former presents the 
solutions lying in this domain of research; however, more research remains and requires 
deep attention and addressing. The following are among these research points: 
 

 Offline solutions (Gu et al., 2005; Ngai et al., 2007; Tirta et al., 2006) produce optimized 
results but depend mainly on having in advance full knowledge about the network 
operational parameters, which may not be always feasible. Solutions working online 
and in real-time are needed to accommodate changes in the network operation. 

 The time required for the sensor's buffer to become full (overflow time) is assumed to 
be fixed and constant with time (Somasundara et al., 2004, 2007). Intelligent algorithms 
running locally on the sensor, performing local fusion and compression, impact the 
sensor's overflow time as this depends mainly on the data sensed and the quality 
threshold measures applied by the fusion and compression algorithms. Additionally, 
the overflow time can change with time according to the dynamics in the phenomenon 
which the sensors are sensing. Therefore, the change in the buffer overflow time with 
time has to be encountered in the solution. 

 In scenarios where sensor nodes form clusters (Younis and Fahmy, 2004), the mobile 
data collector can visit the centroids of these clusters (cluster heads). An early arrival 
would force the mobile collector to wait until enough data is aggregated at the cluster 
head, and a late arrival may cause missing some of the aggregated data. Adaptive 
schedule considering the runtime conditions of the sensors is required to handle such 
cases. 

 In event-driven sensor network applications, the dynamics in the phenomenon which 
the sensor nodes are sensing changes with time and the rate and times the events occur 
are not known ahead and even unpredictable. Moreover, in query-driven applications, 
the network operator may query the network to perform certain tasks, in irregular 
patterns. This requires that the motion strategy of the mobile collector to act based on 
these unpredictable situations. 

 Deploying thousands of sensors manually and setting their locations is not a feasible 
process and in most situations the sensors are deployed randomly in the environment. 
Moreover, some sensors may be carried by low mobile platforms and their locations 
change from time to time. These factors impact the mobile collector schedule and 
should be adopted properly. The network performance is considered to be dependent 
only on the sensor nodes in the network. However, the embedded capabilities of the 
mobile collector (i.e speed) can be utilized to enhance the network performance. Also, 
using multiple mobiles with appropriate cooperation strategies can add more benefit to 
the data collection operation. Adaptive decentralized solutions are required to take 
advantage of these capabilities. 
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Accordingly, in this work a dynamic scheme for data collection in wireless sensor networks 
is presented. The scheme aims to consider most of the research points described above. First 
of all, the mobile element utilized for collecting the sensors' data buffers works online and 
constructs its collection route dynamically according to the collection requests received from 
the sensors requiring the collection service. Secondly, the mobile collector does not require 
any prior knowledge about the sensors deployment positions, their data generation rates 
and buffer size. This is achieved by making the sensor node disseminates its deployment 
position in the collection request sent to the mobile collector. Additionally, when the 
sensor's buffer becomes full and after disseminating the collection request, it sleeps and 
waits the arrival of the collector, which relieves the collector the requirement of knowing 
ahead the sensor's data generation rate and buffer size to schedule its collection before the 
buffer overflow time comes. Therefore, each sensor in the network can operate with 
different sensing frequencies and its buffer size may vary according to the type of 
application the network is serving (i.e. event-driven and query-driven sensor network 
applications). However, this achieves no dependency between the sensor network and the 
mobile collector; it requires optimizing the sensor sleeping time waiting the arrival of the 
collector to avoid missing changes in the observed phenomenon and to increase the network 
activity. 
Experimental testing and simulations are performed to evaluate the presented heuristics 
with real world data parameters. Performance metrics are selected for comparing the 
proposed heuristics. The results show that the presented heuristics are capable of reducing 
the data collection time and ensure high network activity along its operational lifetime. 
Also, online and dynamic solutions can provide high flexibility and scalability and lose 
coupling between the sensor network and the mobile collectors can be achieved. 

 
2. Related Work 
 

This section presents some relevant literature in routing and scheduling theory.  
 

2.1 Travelling Salesman Problem 
The Travelling Salesman Problem (TSP) is one of the classical challenging combinatorial 
optimization problems. The objective of the TSP is to minimize the total distance travelled 
by visiting all locations once and only once and then returning to the depot point. A 
common application of the TSP is the movement of people, equipment and vehicles around 
tours of duty to minimize the total travelling cost. For example, in a school bus routing 
problem, it is required to schedule the bus to pick up waiting students from the pre-
specified locations. Post routing is another application of the TSP. The postman problem is 
modelled as traversing a given set of streets in a city, rather than visiting a set of specified 
locations. 
Besides the above mentioned applications, some other seemingly unrelated problems are 
solved by formulating them as the TSP. The genome sequencing problem occurs in the field 
of bio-engineering. The aim of this problem is to find the genome sequence based on the 
markers that serve as landmarks for the genome maps. The drilling problem is another 
application of the TSP with the objective of minimizing the total travel time of the drill. In 
the electronic industry, the printed circuit board normally has a very large number of holes 
used for mounting components or integrated chips. These holes are typically drilled by 
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automated drilling machines that move between specified locations to drill a hole one after 
another. Therefore, the locations in the drilling problem correspond to the cities in the TSP. 
The applications of the TSP are not limited to the examples described above. A detailed 
review of the applications of the TSP can be found in (Lawler et al., 1990). 
It has been proved that TSP is NP-hard in (Garey and Johnson, 1979), which implies that a 
polynomial bounded exact algorithm for TSP is unlikely to exist. Several heuristic based 
tour construction algorithms were proposed for solving the TSP. Among these, the nearest 
neighbour procedure (Rosenkrantz et al., 1977), the Clarke and Wright savings' algorithm 
(Clarke and Wright, 1964), the partitioning approach (Karp, 1977) and the minimal spanning 
tree approach (Christofides, 1976). Comprehensive review of the techniques developed for 
the TSP can be found in (Bodin et al., 1983; Laporte, 1992). 
It is important to clearly outline the differences between our problem and the conventional 
Travelling Salesman Problem. In TSP, the goal is to find a minimum cost tour that visits each 
node exactly once. However in our problem, a sensor node may need to be visited multiple 
times before all other nodes are visited depending on the rate of its data generation. In 
addition, the mobile collector downloads the data once it is in the communication range of 
the sensor node and need not to be exactly at the sensor location. Also the transfer of the 
data buffer can be done while the mobile collector is in motion. 

 
2.2 Vehicle Routing Problem 
The Vehicle Routing Problem (VRP) (Toth and Vigo, 2001) can be described as the problem 
of designing least cost routes from one depot to a set of geographically scattered points. 
There are nodes each has a service request in terms of demand for a certain quantity of 
goods, and vehicles available for servicing these requests, which are stationed at the depot. 
Each vehicle has a certain capacity in terms of quantity of goods it can carry. The goal is to 
find the number of vehicles and the sequence of nodes each vehicle has to visit such that 
sum of the distances travelled by each vehicle is minimum, subject to the following 
constraints: 
 

 Each vehicle starts and ends at the depot. 

 Each node is serviced exactly by one vehicle. 

 Capacity constraints are met, i.e. sum of demands from the nodes on a vehicle's list 
does not exceed the vehicle's capacity. 

 
The Traveling Salesman Problem (TSP) mentioned earlier is a special case of VRP, where 
there is a single vehicle that visits the nodes, and there are no capacity constraints. 
There are many variants to the basic VRP mentioned above. The VRP with time Windows 
(VRPTW) (Solomon, 1987) has an added constraint in which there is a time window within 
which each node has to be visited. The VRPTW can be defined as follows. Let G = (V, E) be a 
connected digraph consisting of a set of n + 1 nodes, each of which can be serviced only 
within a specified time interval or time window, and a set E of arcs with non-negative 
weights dij and with associated travel times, tij. The travel time tij includes a service time at 
node i, and a vehicle is permitted to arrive before the opening of the time window, and wait 
at no cost until service becomes possible, but it is not permitted to arrive after the latest time 
window. Node 0 represents the depot. Each node i, apart from the depot, imposes a service 
requirement qi that can be a delivery from, or a pickup for the depot. The main objective is 
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to find the minimum number of tours, K*, for a set of identical vehicles such that each node 
is reached within its time window and the accumulated service up to any node does not 
exceed a positive number Q (vehicle capacity). A secondary objective is often either to 
minimize the total distance travelled or the duration of the routes. All problem parameters, 
such as customer demands and time windows, are assumed to be known with certainty. 
Moreover, each customer must be served by exactly one vehicle, thus prohibiting split 
service and multiple visits. The tours correspond to feasible routes starting and ending at 
the depot. 

Fig. 1. The savings heuristic. In the left part, customers i and j are served by separate routes; 
in the right part, the routes are combined by inserting customer j after i 
 
There is a dynamic version of VRP, known as Dynamic Vehicle Routing Problem (DVRP) 
(Ghiani et al., 2003). Here the information (input) is revealed to the decision maker online 
concurrently with the determination of routes. For instance, the VRP mentioned above is 
solved for the initial requests (nodes to be visited) and routes assigned to vehicles. Then, as 
the vehicles start their scheduled routes, new requests come, which need to be 
accommodated. 
There are some differences between our problem and the VRPTW. First of all, some nodes 
may need to be visited more than once before visiting any other node once depending on its 
data generation rate. Secondly, the number of mobile collectors servicing the network is 
fixed, thus the goal is no longer to find the number of mobiles but to find the most feasible 
mobile collector for servicing the request. Also, the time window (i.e. the time for the data 
collection) is not constraint; however, the objective is to minimize the data collection time 
among all sensors and for all generated collection requests. Thus our problem reduces from 
the VRPTW to the problem of designing the route for the mobile collector to follow. This 
route must be optimized to provide the minimum data collection time among the sleeping 
sensors waiting for the arrival of the collector. 
The savings method (Clarke and Wright, 1964), originally developed for the classical VRP, is 
probably the best-known route construction heuristic. It begins with a solution in which 
every customer is supplied individually by a separate route. Combining the two routes 
serving respectively customers i and j results in a cost savings of Sij = di0 + d0j — dij. The arc 
(i, j) linking customers i and j with maximum Sij is selected subject to the requirement that 
the combined route is feasible. With this convention, the route combination operation is 
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applied iteratively. In combining routes, one can simultaneously form partial routes for all 
vehicles or sequentially add customers to a given route until the vehicle is fully loaded. To 
account for both the spatial and temporal closeness of customers, a limit to the waiting time 
of the route is set. The savings method is illustrated in Figure 1. 
The second heuristic, a time oriented nearest-neighbour, starts every route by finding an 
unrouted customer closest to the depot. At every subsequent iteration, the heuristic searches 
for the customer closest to the last customer added into the route and adds it at the end of 
the route. A new route is started any time the search fails to find a feasible insertion place, 
unless there are no more unrouted customers left. The metric used to measure the closeness 
of any pair of customers attempts to account for both geographical and temporal closeness 
of customers. 
The most successful methods among the sequential insertion heuristics is called I1 
(Solomon, 1987). A route is first initialized with a "seed" customer and the remaining 
unrouted customers are added into this route until it is full with respect to the scheduling 
horizon and/or capacity constraint. If unrouted customers remain, the initializations and 
insertion procedures are then repeated until all customers are serviced. The seed customers 
are selected by finding either the geographically farthest unrouted customer in relation to 
the depot or the unrouted customer with the lowest allowed starting time for service. After 
initializing the current route with a seed customer, the method uses two subsequently 
defined criteria c1(i,u,j) and c2(i,u,j) to select customer u for insertion between adjacent 
customers i and j in the current partial route. 
Let (i0, i1, i2,..., im) be the current route with i0 and im representing the depot. For each 
unrouted customer u, compute first its best feasible insertion cost on the route as: 
 

1 1 1
1,...,

( ( ), , ( )) min ( , , )p p
p m

c i u u j u c i u i


    (1) 

 
Next, the best customer u* to be inserted in the route is the one for which:  
 

2 2( ( *), *, ( *)) max{c ( ( ), , ( )),
u

c i u u j u i u u j u u   is unrouted and route is feasible}       (2) 

 
Client u* is then inserted into the route between i(u*) and j(u*). When no more customers 
with feasible insertions can be found, the method starts a new route, unless it has already 
routed all customers. More precisely c1(i,u,j) is calculated as: 
 

1 1 11 2 12( , , ) ( , , ) ( , , ),c i u j c i u j c i u j    where 1 2 1 21, 0, 0,          (3) 

 

11( , , ) , 0,iu uj ijc i u j d d d         (4) 

 

12 ( , , ) ,ju jc i u j b b         (5) 

 
and diu, duj and dij are distances between customers i and u, u and j and i and j respectively. 
Parameter µ  controls the savings in distance and bju denotes the new time for service to 
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begin at customer j, given that u is inserted on the route and bj is the beginning of service 
before insertion. The criterion c2(i, u, j) is calculated as follows: 
 

2 0 1( , , ) ( , , ), 0.uc i u j d c i u j        (6) 

 

Parameter   is used to define how much the best insertion place for an unrouted customer 

depends on its distance from the depot and on the other hand how much the best place 
depends on the extra distance and extra time required to visit the customer by the current 
vehicle. Other types of the insertion heuristics such as Type (I2) aims to select customers 
whose insertion costs minimize a measure of total route distance and time and Type (I3) 
accounts for the urgency of servicing a customer. 

 
3. Problem Formulation 
 

This section clearly models our problem and outlines all assumptions. A formal definition of 
the problem is presented to give an insight into the problem objectives. The problem is 
modeled as follows: 
 

 The sensor network is modeled as a fully connected graph G(V, E) of n nodes, where 
every edge (si, sj) has an associated cost c(i,j), and all the costs form a matrix 

 
, 1

( , )
n

i j
C c i j


 . 

 Sensor nodes remain stationary and are deployed uniformly at random in the sensing 
field where the phenomenon of interest is to be monitored. The sensing field dimension 
is A = L * L (m2). 

 Each sensor node has a deployment location (X, Y), buffer size of K bytes, radio 
communication radius R in meters and generates a sample every Ts seconds. 

 The time required for the buffer to be full is ≥ K * Ts, where the next time the buffer 

becomes full is unknown and differs from time to time. This is modeled by generating 
a random number between 0.0 and 1.0 to specify whether the current sample is 
qualified to be added to the buffer or not. If the random number is greater than a pre-

specified threshold φ then the sample is added to the buffer, otherwise, it is discarded. 

This ensures that the sensor's buffer full time is variable which reflects different 
network operational modes (i.e. periodic sensing, event driven, query based). This also 
simulates the operation of data aggregation algorithms operating locally on the sensor 
for reducing the redundancy in the sensor measurement which alters the buffer 
overflow time. Figure 2 shows the buffer level accumulation with time for different 
models. 

 Once the sensor's buffer is full, the sensor disseminates a collection request Q with 
fields {ID, X, Y} and goes to an idle state and sleeps waiting for the collector arrival. 
While idle the sensor does not sense any new samples but it relays collection requests 
sent by others. 

 The mobile collector starts at a central position in the sensing field, has a reasonably 
high amount of energy that can last beyond the network lifetime, and its memory size 
can accommodate the data generated by the sensors during the network operational 
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time. The mobile collector moves with a speed v ≤ Smax and it can change its speed 

during the data collection operation. 
 

 
Fig. 2. The sensor buffer level accumulation rate  

 

The following assumptions are made: 
 

 At time t = 0 all the buffers of the sensor nodes start filling up. 
 

 The actual data transfer time from the sensor node to the mobile element is negligible. 
 
The Mobile Collector Route Design (MCRD) problem is the problem of finding a sequence 
of visits to nodes requesting the collection of their data buffers such that to minimize the 
collection time required. Once a node is visited, its buffer is transferred to the mobile 
collector internal memory and its normal sensing operation is resumed. This is 
mathematically formulated as follows:  
N: is the set of sensor nodes in the network, where N = {s1, s2,..., sn},  
S: is the set of sensor sites, i.e.  deployment locations of the sensor nodes, where 
S = {(x1,y1),...(xn,yn)}, 
dij: Euclidean distance (meters) between sensor sites, where i,j   S,  
R: is the set of requests to be serviced, where R = {r1,r2,...,rm},  
Ak: is the time taken for servicing request k, where k   R, i.e. time taken for collecting 
request k generated by sensor i, where k   R, i   N,  
v: is the moving speed of the mobile collector in m/sec, 

    





  






 ≥

φ
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Mobile Collector Route Design (MCRD): 
 

min k

k

T A



            (7) 

 
where T is the overall route period, and each Ak is computed based on the distance cost 
between requests k and (k+1) and the speed selected by the mobile collector for servicing 
this request. 
The problem of finding the optimum order of arranging the requests to form the least cost 
route is NP-complete. The way is to simply enumerate each possible route, and pick the one 
with minimum total cost. Having m requests to service, gives (m — 1)! possible route. This 
leads to an O(m!) algorithm to produce the optimum route, which is not efficient to use. 

 
4. Heuristic Based Algorithms 
 

The problem of designing the mobile collector route is NP-complete. This section presents 
some heuristic based algorithms for designing the route to be followed by the mobile 
collector for collecting the data buffers of the sensor nodes requesting the collection service. 
A heuristic algorithm provides feasible solution to an optimization problem, which may or 
may not be optimal. Good heuristics give solutions that are close to the optimal solution, 
and usually are efficient in terms of theoretical or practical running time. A desirable 
property of a heuristic is that the worst-case quality of the solution provided can be 
guaranteed. For example, some heuristics guarantee that the solution they identify is at 
worst η-optimal; that is, if the optimal cost is C*, the heuristic finds a solution no greater 
than ηC* for minimization problems. In our problem, the route constructed by ordering the 
requests based on a timely manner according to their arrival is considered as an upper 
bound on the solution provided by the heuristic. 

 
4.1 Minimum Spanning Tree Route Construction 

In the Traveling Salesman Problem (TSP) (Lawler et al., 1990) context, a vertex can be 
interpreted as a sensor and the edge weight can be the distance between the sensors or the 
time of travel between any two sensors. With these notations, the mobile collector waits 
until a certain number of requests m are received, and then the route construction is 
interpreted as the problem of finding a minimum-cost tour that visits each of the sleeping 
sensors exactly once and returns to the starting point (center of the sensing field). The route 
objective is expressed as follows: 
 

1

min ( ( ), ( 1))

m

i

c R i R i



       (8) 

 
where R(i) is the ith request on the route; and c(R(i), R(i + 1)) is the distance cost from request 
i to request (i + 1). 
Defining xij = 1, if the edge from request i to request j is on the route, i,j   {1,..., m} and 0 
otherwise, maps the objective to: 
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1 1

min

m m

ij ij

i j

c 
 

      (9) 

 
subject to: 
 

1

1,

m

ij

j

i


             (10) 

1

1,

m

ij

i

j


             (11) 

 
y1=1,      (12) 

 

2 , 1iy m i                 (13) 

 

1 ( 1)(1 ), 1, 1i j ijy y m x i j            (14) 

 

 0,1 , ,ijx i j             (15) 

 
where 
m: number of collection requests; i: current request, i   {1,..., m}; j: next request, j   {1,..., m}; 
and yi : extra variable to exclude sub tours, i   {1,..., n}.  
Constraints (10) and (11) are called the degree constraints, which enforce that every sensor 
reached is left exactly once. Constraints (12), (13) and (14) are subtour elimination 
constraints, which prohibit the formation of subtours having less than m vertices. 
It is necessary to show that a route with a Hamiltonian cycle has an overall time period Amax 
less than that without. Let r0, r1, r2,... ,rm be the requests on a route, where r0 is the center of 
the sensing field from which the collector route starts and ends. c01, c12, c23,..., cm0 are the cost 

between consecutive requests. The period of the route is / ,
c

T c v


  where v is the 

mobile collector speed. If the route is a Hamiltonian cycle, Amax of any request location r is 
always equal to T. On the contrary, considering a route that is not a Hamiltonian cycle, the 
mobile collector will need to move from one end to another end, then back to the beginning 
request location to complete a cycle. The Amax of the request locations at two ends will then 
be 2T, which is much longer then T. 
Algorithm 1 presents the steps followed by the mobile collector for constructing its route. 
The minimum spanning tree is computed based, as presented by Algorithm 2, on 
partitioning the graph of the collection requests into two independent subsets, S and T, such 

that, S  T = N and S  T =  and the set (S, T) is given by all arcs (i,j), where i   S, j   T, or 

i   T, j   S. 
 





η
η
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Algorithm 1 Minimum Spanning Tree Route Construction Algorithm (MST-R)    
Input: 
m collection requests, each with fields {ID, X, Y}  
Body: 

1. Build a fully connected graph G for the m received collection requests. 
2. Add the center of the sensing field to G. 
3. Compute a minimum spanning tree T for G. 
4. Generate using Depth First Search (DFS) a list L of vertices on T. 
5. Construct the Hamiltonian cycle H for visiting the vertices L. 
6. Follow the Hamiltonian cycle H as the constructed route. 

 
Algorithm 2 Minimum Spanning Tree Algorithm      
Initialization: 

MST =  
S = {1}, T = N\S (the set S contains node 1, while the set T contains all nodes except node 1) 
Iterations: 
while | MST |< m, do 

1- Find the arc (i, j) in (S, T) with minimum cost cij 
2- Add (i, j) to MST 
3- Remove j from T and add j to S 

 
It is important to note that the list generated by the Depth-First Search (DFS) will produce 
each node twice as the DFS will visit each edge twice, once going down the tree when 
exploring it and once going up after exploring the entire sub tree. For example, in the depth-
first search of Figure 3, the vertices in order 1-2-1-3-5-8-59-5-3-6-3-1-4-7-10-7-11-7-4-1 are 
visited, thus using every tree edge exactly twice. Therefore, this tour has weight twice that 
of the minimum spanning tree, and hence at most twice optimal. To remove the extra 
vertices, at each step a shortest path to the next unvisited vertex is taken. The shortcut tour 
for the tree in Figure 3 is 1-2-3-5-8-9-6-4-7-10-11-1. This ensures that the tour gets shorter and 
within weight twice that of optimal. 

 
 
Fig. 3. A depth-first traversal of a spanning tree, with the shortcut tour 
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4.2 Dynamic Insertion Route Construction 
The minimum spanning tree route construction algorithm considers only the distance cost 
when constructing the collection route. Instead, an algorithm can be designed which gives 
weights to the distance cost and the time which the sensor remains sleeping until the 
collection is done. Based on Equation 3, each collection request is inserted dynamically in its 
minimum insertion position on the collection route. Let r1 ,r2,... ,rm be the requests to be 
collected by the mobile collector on its route R, and, Cjk is the extra cost of placing request k 
after request j on R, then it is required to: 
 

1

min *

m

jk jk

j

C X


            (16) 

 
where Xjk = 1, if the placement of request k follows request j; 0 otherwise, and 
 

1

1

m

jk

j

X



       for any k            (17) 

 
Algorithm 3 presents the procedure of finding the best insertion point on the mobile 
collector route for the current received collection request. The sensor sleeping time ST based 
on the point of insertion along the collection route is not computed absolute, but relative to 

the current time. Table 1 shows the effect of different  values. To illustrate the contents of 
the table, consider the scenario presented in Figure 4. Suppose the mobile collector just 
serviced node A and the next node on its route is node B. Before initiating the service to 
node B, a request of collection arrives from node C. The two nodes B and C have distance 
costs 5 and 15 respectively, and the sleeping time of node B is 10 time units. The insertion 

position of node C is either before node B or after node B. When   0.5, node C is inserted 

before node B and when  > 0.5, node C will be inserted after node B. When  = 0, the 
mobile collector will always favour newly arriving requests, which can result in high delays 
in servicing older requests, causing those nodes to wait long times until they are serviced. 
 
Algorithm 3 Dynamic Insertion Route Construction Algorithm     
Input: 
Request (r) with fields {ID, X, Y}  
Define: 
R: current route consisting of k requests; mp: mobile collector position; 
ST : sensor sleeping time according to the insertion point; 
rf , rl: first and last requests in R; 

2 2( ) ( )a
b a b a bC X X Y Y     

Initialize: 
Cost[1..(k+1)] = 0 
Body: 

IF (R = ) THEN R = r 
ELSE 
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Cost[1] =  * 1( ) (1 )*pp
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r r r
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Repeat for i = 2...k 

1i

i

k
i i k

ST ST C    

Cost[i] =  * 1

1
( ) (1 )*ii

i i

kk r
r k ik
C C C ST


     

1 l

r
k k rST ST C    

Cost[k+1] = 1* (1 )*
l

r
r kC ST     

Set j = index of minimum in Cost [1..(k+1)]  
Insert r in R at position j  
END 

 
4.3 Discussion 
The complexity of the MST-Route construction algorithm is upper bounded by the 
complexity of computing the MST. The MST algorithm requires (m-1) iterations in which a 
single arc is identified in (S, T) and moved into the MST. Each iteration, scans each arc to 
determine whether it is in (S, T), and if so, if it has cost less than the current minimum. Such 
an implementation would scan n arcs each iteration, for a total complexity of O(mn). The 
DFS constructs the list of nodes in an O(m). Thus the MST-R requires O(m2) running time. 
The DI-Route construction requires an O(m) to compute the cost of insertion along the 
current route and an O(log n) to find the minimum insertion point, resulting in an O(m) 
running time complexity. It should be noted that the DI-R construction works totally online 
and adapts the current route according to each received request, while the MST-R 
construction groups m received requests to construct the collection route. 
 

 [0,1] Result 

1 Insertion point is determined only by the distance cost. 

0 Insertion point is determined only by the sensor sleeping time. 

> 0.5 Distance cost contributes higher in the insertion point. 

 0.5 Sensor sleeping time contributes higher in the insertion point. 

Table 1: Effect of a on the insertion point 
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Fig. 4. An example to illustrate the effect of a on the mobile collector route 

 
5. Experimental Methodology and Results 
 

The previous section described some heuristics for constructing the route of the mobile 
collector. This section presents the evaluation of these algorithms through simulation. 

 
5.1 Methodology 
As the parameter space is huge, some parameters are fixed as follows: 
 

 Sensing Field: A square area of dimension 100 x 100 m2 is considered for the sensors 
deployment. A number of sensor nodes varying from 50 to 100 sensors are distributed 
uniformly at random preserving homogenous node density among all areas in the 
sensing field. 

 

 Sensor Parameters: Each sensor has a radio communication radius of 25m and a buffer 
of size 1 Kbyte. 

 
 

 Mobile Collector Parameters: Initially the mobile collector is localized at the center of 
the sensing field. The mobile collector moves with a fixed speed of 1m/s, and has a 
communication radius of 50m. The mobile collector achieves communication with the 
sensor node when it is in the sensor's radio communication range. 

 

 Simulation Time: The simulation run last for 50000 time units, and all results are 
averaged over 20 different independent networks. 
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 Sensors Sampling Frequency: The sampling frequency determines the time required for 
the sensor's buffer to become full and therefore controls the distribution of the 
collection requests over the simulation time. The first option assumes that events occur 
regarding some point of interest located at the center of the sensing field. In such a 
case, a higher number of the requests are coming from a specific part of the network, as 
the sensors closer to the center sample more frequently. The requests distribution in 
this case follows Gaussian distribution with small variance. A concentric topology for 
the sensors sampling rates as shown in Figure 5 is used to model this. A sequence of n 
concentric circles divides the sensing field into several ring shaped regions; Region 1 to 
Region n. The radius of each concentric circle is denoted by R1: R2, R3,..., Rn, where R1 = 
10m. The value of each radius is calculated as: 

 
Ri = i * R1;    i = [1,...,n]            (18) 

where 

1

1
2*

L
n

R
       (19) 

 
The sensors in the innermost region are assigned sensing rates in the range [1, baserate] 
and the sensing rates of sensors in regions radically outwards are calculated as: 

 
Sensingratei =  [ baserate * (i — 1) + 1 , baserate * i ],    i = {1,...,n}   (20) 

 
Fig. 5. Concentric Topology: The first type of topology considered in the simulation 
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Label Sensing Rate Topology Number of Sensors Baserate 

A1 Concentric 50 2 sec 
A2 Concentric 75 3 sec 
A3 Concentric 100 4 sec 

B1 Random 50 2 sec 
B2 Random 75 3 sec 
B3 Random 100 4 sec 

Table 2: Set of Experiments 
 

When the baserate is chosen to be 2 secs, the sensors in region R2 will have a sensing 
rate in the interval [3,4] which means that some sense a sample every 3 secs and others 
sense a sample every 4 secs. 
 
The second option assumes random occurrence of events independently from one 
another in the sensing field. In this case the requests distribution follows Poisson 
distribution. The sensing rate of each sensor node is chosen randomly in the interval 
[1, baserate * n]. 

 
Putting everything together, the experiments shown in Table 2 are run. The experiments are 
labeled for referencing purposes. For each of these, results presented are an average of 20 
runs. The parameters that change from run to run are the location of the sensor nodes, and 
correspondingly the distance cost and the sensing rates. 
 
For the purposes of evaluation, the following performance metrics are considered: 
 

 Data Collection Time: This is defined as the period from the time the sensor sends the 
collection request to the time of arrival of the mobile collector to collect the sensor's 
buffer. This is averaged across all the nodes in the network. 

 

 Request Collection Time: This is computed as the overall data collection time to the 
number of requests collected from all nodes in the network. 

 

 Sleeping Sensors Ratio: This measure is calculated as the number of sleeping sensors 
waiting the arrival of the mobile collector to the total number of sensors in the network 
over the simulation time of the experiment. 

 

 Distance Ratio: This is defined as the ratio of the distance traveled by the mobile 
collector to the number of requests collected. 

 
5.2 Performance of the MST-R 
Figure 6(a) and 6(b) show the performance results of running the MST-R algorithm on the 
set of experiments described in Table 2. The number of requests m which the mobile 
collector uses for constructing its collection route ranged form 1 to 10. The case m = 1, is the 
case where the mobile collector service the arriving requests one by one in a timely oriented 
manner. As the mobile collector waits for more requests to arrive this increases the data 
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collection time however in such a case the mobile collector service more requests on the 
same collection route which decrease its distance ratio as presented in Figure 6(c). Also, 
waiting for more requests to arrive would increase the average percentage of sensor nodes 
requesting the collection service as shown in Figure 6(d). The performance on A3 was better 
than A2 which was better than A1. This is obvious because these have sensing base rate of 2, 
3, 4 secs respectively, and higher this quantity, lesser the requests arrival rate. Similar trends 
are observed in experiments B1-B3. 

 
5.3 Effect of a on the DI-R 

Figure 7(a) and 7(b) show the result of running the DI-R construction algorithm on the set of 
experiments described in Table 2. a ranged from 0 to 1 with steps of 0.5. The data collection 
time and the request collection time decrease as a goes near to 1. This is because the request 
is inserted on the mobile collector route in the position resulting the minimum extra 
distance, as explained in Table 1. Therefore, the forth and back traveling between nodes is 
minimized which results in less waiting times for the sensors, thus less sleeping sensors as 
in Figure 7(d).  

 
Fig. 6. Performance of MST-R for Experiments A1-A3 and B1-B3 
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The performance on experiments A1-A3 is better than B1-B3. This is obvious because most 
of the events come from a specific part of the network which helps the mobile collector to 
optimize its collection route more than when the events are scattered as in experiments B1-
B3. This also appears on the distance ratio of the mobile collector shown in Figure 7(c). As 
the events are scattered randomly over the sensing field, the mobile collector is required to 
travel more for the collection which appears on the distance ratio for experiments B1-B3. It is 

hard to conclude about the dependence of  value on the results, however,  around 0.9 
leads to minimum results for the performance metrics described. 

 
5.4 Impact of the Speed of the Mobile Collector 
To get an insight into the relative performance of the two algorithms, two constrained 
topologies are used to show the impact of the mobile collector speed on the data collection 
time and the request collection time. The topologies considered employ 100 sensor nodes 
uniformly distributed in a square area of 100 x 100 (m2). A concentric and random sensing 
rate topology is used with the sensing base rate equals 2 secs. These are labeled as Topology 
A and Topology B. Figure 8(a) and 8(b) plot the performance of the two algorithms for 
different speed values for the mobile collector. The DI-R construction algorithm 
outperforms the MST-R construction algorithm, however, when the speed of the mobile 
collector increase, this difference vanishes. Also, previously the algorithms performed better 
on the concentric sensing rate topology than on the random topology, this does not hold 
when the speed of the mobile collector is increased. 

 
6. Conclusion and Future Directions 
 

Sensor networks operate under limited energy constraints. Eliminating the relaying 
overheads can extend the sensor lifetime and prolong the network operational time. In this 
context, mobile elements (robots) are utilized by acting as mechanical data carriers for 
collecting the sensory information by approaching physically the sensor node. This chapter 
presented some heuristics for constructing the mobile collector collection route. The 
algorithms performance are shown and their impact on the data collection operation is 
presented. There are many directions in which this work may be pursued further. Statistical 
measures are required to measure the buffer filling rate and thus the sensor can send its 
collection request before its buffer is full, which gives an extra advantage for the mobile 
collector. Applying multiple mobile collectors can enhance the performance. Control 
schemes for coordinating multiple collectors need to be designed efficiently to maximize the 
performance. 
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Fig. 7. Performance of DI-R for Experiments A1-A3 and B1-B3 
 

 
Fig. 8. Relative Performance for Topologies A and B 
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Since the introduction of the first industrial robot Unimate in a General Motors automobile factory in New

Jersey in 1961, robots have gained stronger and stronger foothold in the industry. In the meantime, robotics

research has been expanding from fix based robots to mobile robots at a stunning pace. There have been

significant milestones that are worth noting in recent decades. Examples are the octopus-like Tentacle Arm

developed by Marvin Minsky in 1968, the Stanford Cart crossing a chair-filled room without human assistance

in 1979, and most recently, humanoid robots developed by Honda. Despite rapid technological developments

and extensive research efforts in mobility, perception, navigation and control, mobile robots still fare badly in

comparison with human abilities. For example, in physical interactions with subjects and objects in an

operational environment, a human being can easily relies on his/her intuitively force-based servoing to

accomplish contact tasks, handling and processing materials and interacting with people safely and precisely.

The intuitiveness, learning ability and contextual knowledge, which are natural part of human instincts, are

hard to come by for robots. The above observations simply highlight the monumental works and challenges

ahead when researchers aspire to turn mobile robots to greater benefits to humankinds. This book is by no

means to address all the issues associated mobile robots, but reports current states of some challenging

research projects in mobile robotics ranging from land, humanoid, underwater, aerial robots, to rehabilitation.
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