We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,100
Open access books available

116,000
International authors and editors

125M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Abstract

Imaging techniques of the posterior segment of the eye have gradually evolved and tremendously improved during the last decade. A widespread implementation of optical coherence tomography (OCT) for the management and diagnosis of retinal conditions, with a concurrent advance in integrative technology, led to the integration of the OCT into the microscope for its intraoperative use. Regarding posterior segment eye surgery, some of the most common diagnoses in which microscope-integrated OCT (MIOCT) can result of great value are epiretinal membrane, macular hole (MH), proliferative diabetic retinopathy (PDR) and, less frequently, for inflammatory diseases, chorioretinal biopsies, and retinal implants. The impact on the surgical procedure and, possibly, on the postoperative outcome could relate to the definition of whether or not a membrane has been entirely peeled, the presence of residual membranes, and the option to perform a dissection without the need of vital dyes. The possibility of correct topographical location of hemorrhages, suspect lesions, or implants can also facilitate the surgical decision-making during biopsies or prosthetic implantation. Microscope-integrated OCT is a feasible and useful tool that can provide valuable information during surgery impact on decision-making, anatomic results, surgical safety and provide opportunity to individualize surgical treatment for each patient.

Keywords: intraoperative optical coherence tomography, retinal surgery, vitreomacular interface, membrane peeling, retinal detachment

1. Introduction

The development of microsurgery enhanced the precision with which ophthalmic surgical procedures are currently performed. Its origins date back to 1876, when the first binocular magnifying device was invented by T. Saemisch of Bonn [1]. It was not until 1953, with the manufacture of a microscope with coaxial illumination, that the use of the surgical microscope became more widely available and adapted to ocular surgery [2–4]. Three years later, in 1956, the term “microsurgery” was used for the first time by H. M. Dekking of Gönningen [5]. Almost two decades before the use of binocular magnifying devices, Hermann von Helmholtz invented ophthalmoscopy in 1851 and allowed us to see, for the first time...
time, the human retina [6]. Under this rapidly evolving background, the develop-
ment of pars plana vitrectomy (PPV) in 1970 revolutionized retinal surgery with
less invasive procedures and better results in terms of visual acuity and patient
satisfaction [7].

In addition to the operating microscope, imaging techniques of the posterior
segment of the eye have tremendously improved during the last two decades.
Optical coherence tomography (OCT) became readily and more widely available
during the last 10 years and has become one of the most commonly ordered diag-
nostic tests in ophthalmology [8–12]. The detail on the retinal architecture provided
by OCT allows to better characterize, diagnose, manage, and give prognosis of a
wide range of vitreoretinal conditions.

1.1 Integration of OCT into the operating theater

Further improvements in software and imaging started a new transition of this
powerful technology to the operating room. Firstly, it was used as a perioperative
tool to image pediatric patients, with clear limitations for image acquisition, portabil-
ity, and sterility [13, 14], and then as a handheld OCT scan head: Bioptigen SDOIS/
Envisu portable system (Bioptigen, Research Triangle Park, NC) and Optovue IVue
(Optovue, Fremont, CA) [15–18]. Advantages of the handheld OCT imaging are
flexibility of scan head orientation and dynamic positioning of the scan during
acquisition. On the other hand, disadvantages were its poor reproducibility, optimal
targeting, and the surgeon learning curve [16, 17, 19–21]. A further step forward
was taken with the integration of an OCT scan head to the operating microscope, a
model that allowed portability, stability, repeatability, efficiency, control from the
foot pedal, and an easier learning curve for surgeons [16, 17, 22–24]. However, a major
drawback of this system was the need to stop the surgical procedure to image the
retina: a lack of real-time imaging. The 2-year results of the Prospective Intraoperative
and Perioperative Ophthalmic ImagiNg With Optical CoherEncE TomogRaphy
(PIONEER) study published in 2014 [17] demonstrated the potential of this imaging
tool in the operating theater. A total of 531 eyes were enrolled, from which 256 under-
went posterior segment surgery. The three most frequent retinal procedures in this
study were epiretinal membrane (ERM) peeling (35%), macular hole (MH) surgery
(23%), and rhegmatogenous retinal detachment (RRD) repair (17%). Intraoperative
OCT impacted on the surgeons’ understanding of the anatomical configuration of
the region of interest and/or on the surgical procedure in 43% of the cases of retinal
membrane peeling and impacted on surgical decision-making in at least 13% of the
procedures in which the surgeon wanted to evaluate the outcome after initial mem-
bane peeling [17].

Microscope-integrated OCT (MIOCT) provided real-time imaging when
integrative technological progress allowed to incorporate a scanner head/system
which is, ideally, coaxial and parafocal with the optical system to the operating
microscope [25–28]. Haag-Streit (Haag-Streit, Koeniz, Switzerland), Leica (Leica
Microsystems, Buffalo Grove, IL, USA), and Zeiss (Carl Zeiss Meditec, Jena,
Germany) have currently available commercial MIOCT systems: iOCT, EnFocus,
and Rescan 700, respectively [29–34]. Despite outcomes are still debatable, litera-
ture reports have suggested the feasibility and potentially significant usefulness
of an intraoperative MIOCT [35–38]. The 3-year results of the Determination of
Feasibility of Intraoperative Spectral-Domain Microscope Combined/Integrated
OCT Visualization during En Face Retinal And Ophthalmic Surgery (DISCOVER)
study were published in 2018 [33]. In this report, 877 eyes were enrolled, and 593
of those underwent retinal surgery. The use of MIOCT altered surgical decision-
making in 29.2% of the procedures [33].
In order to enhance the intraoperative use of MIOCT, optimized features like automation, effective display systems, and better software analysis are required for the near future. The recent devices allow real-time and static capture acquisition of anterior and posterior segment images during surgery [31–34]. Nevertheless, they lack automation, and surgeon or assistant input can be necessary. The imaging scan is delivered to the surgeon in a dual manner: as an external display screen or a heads-up display within the oculars, providing versatility and facilitating its intraoperative use (Figure 1) [33]. Microscope-integrated OCT provides the surgeon with an additional tool to better evaluate the case in a real-time fashion, enhance surgical precision, and facilitate surgical decision-making.

2. Surgical implications

The intraoperative advantages of the MIOCT during surgery are wide. Table 1 summarizes the potential surgical implications according to different pathologies.

2.1 Vitreoretinal interface disorders

Conditions comprising vitreoretinal interface disorders (MH, vitreomacular traction (VMT), and ERM) result in one of the best scenarios for the use of MIOCT [34, 35, 37, 39, 40]. Intraoperative visualization of vitreomacular interface components and alterations can potentially contribute to surgical decision-making in membrane peeling procedures, because of the readiness to obtain real-time imaging of subclinical alterations (e.g., residual membranes, retinal elevations, microarchitectural perturbations in the distances between ellipsoid zone and retinal pigment epithelium (RPE), as well as alterations of the inner retinal surface) [15–17, 33, 39–42]. The ability to perform a membrane peeling with the MIOCT could result in a reduction of the use of vital dyes, a minimization of the risk of retinal pharmacotoxicity, and a reduction of surgical time [35, 43–45].
Figure 2. Intraoperative assessment after internal limiting membrane (ILM) peeling with preservative-free triamcinolone of a macular hole (MH). (A) Color screenshot of the surgical video that delineates the area of the ILM peeling. White triamcinolone particles can be easily seen. (B) Horizontal scan just inferior to the MH. (C) The two-dimensional vertical image scan evidences the transitional zone of the ILM peeling; the red arrow demonstrates the border of the ILM tear inferiorly. Hyperreflective foci correlating with triamcinolone particles can be appreciated in the vitreous cavity, and an ILM remnant stained with triamcinolone is evidenced in the inferior border of the MH (orange arrow).

Table 1. Surgical implications of microscope-integrated optical coherence tomography.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macular hole</td>
<td>Differentiation between ISN and ILM</td>
</tr>
<tr>
<td>Visuomotor imaging</td>
<td>Visualization of the ILM remnant</td>
</tr>
<tr>
<td>Delineation</td>
<td>Assessment of the ILM tear inferiorly</td>
</tr>
<tr>
<td>Injection of ILM</td>
<td>Potential reduction of the vitreous cavity</td>
</tr>
<tr>
<td>Retinal detachment</td>
<td>Identification of subfoveal MH</td>
</tr>
<tr>
<td>Vitreomacular traction syndrome</td>
<td>ILM peeling</td>
</tr>
<tr>
<td>Retinochoroidal</td>
<td>Identification of subfoveal MH</td>
</tr>
<tr>
<td>Idiopathic macular rupture</td>
<td>ILM peeling</td>
</tr>
<tr>
<td>ILM peeling</td>
<td>Identification of subfoveal MH</td>
</tr>
<tr>
<td>ILM peeling</td>
<td>ILM peeling</td>
</tr>
<tr>
<td>Ophthalmic surgery</td>
<td>Identification of subfoveal MH</td>
</tr>
</tbody>
</table>

2.1.1 Macular hole

The dynamic nature of the internal limiting membrane (ILM) peeling has been evidenced with MIOCT [39, 46]. Modifications of the retinal ultrastructure and geometry of MH during the ILM peeling have been described [17, 31, 42, 47–49]. Assessment of the border of the ILM peeling (Figure 2), residual ILM, retinal trauma (Figure 3), and anatomical closure (Figure 4) can be easily made in a real-time fashion [39, 46]. A volume increase and base area increase of MH, with a concurrent decrease in the apex height, have been evidenced following ILM peeling.
Additionally, the distance between ellipsoid zone and RPE and the lateral extension of this expansion have been documented and associated with anatomical and functional outcomes [16, 17, 41, 42, 47, 50–52].

2.1.2 Vitreomacular traction syndrome

The use of MIOCT for these cases poses a potentially useful role. Release of the traction can be confirmed; dynamic anatomical modifications, changes in outer retinal relations of ellipsoid zone and EPR and residual membranes, and formations of full-thickness macular or retinal holes can be identified as well [15, 17, 20, 33].

2.1.3 Epiretinal membrane

Outer retinal modifications have also been documented following ERM and/or ILM peel in ERM. A decrease in subretinal reflectivity appreciated after these procedures correlates with a considerable expansion of the distance between the ellipsoid zone and the RPE [16, 17, 42, 47, 51]. These changes have been also
associated with visual and anatomical recovery rates; however, further studies are needed to confirm this correlation [51].

2.2 Retinal detachment

The surgical benefit of real-time OCT imaging in retinal detachment (RD) repair may not be straightforward. However, intraoperative anatomical features could be relevant for the prognosis of these cases [17, 24, 33]. Additionally, complex cases with severe vitreoproliferative retinopathy could be assisted with real-time imaging and successfully addressed (Figure 5B). It has been evidenced that nearly all eyes undergoing surgery with perfluorocarbon liquid tamponade have some degree of subretinal fluid (Figure 5A, B) [24, 53]. According to the literature, foveal microarchitecture, the amount of submacular fluid, and the integrity of the ellipsoid zone following application of perfluorocarbon liquid may be of significance for the visual outcomes [17, 24, 33]. In cases where subretinal migration of perfluorocarbon liquid is present, correct visualization of the liquid bubbles and complete removal can be verified [53]. Detection of subclinical MH, occult membranes, or retinal breaks is possible with this technology, an advantage that modifies the surgical procedure and has an impact on the patient outcome [33].

2.3 Proliferative diabetic retinopathy

Vitreoretinal proliferation in diabetic retinopathy poses some of the most complex cases of vitreoretinal surgeries. The use of MIOCT can facilitate the correct

Figure 5.
Color photographs and microscope-integrated optical coherence tomography (MIOCT) scans of retinal detachment surgeries. (A) Real-time horizontal and vertical MIOCT scans during retinal detachment repair under perfluorocarbon liquid evidence the progressive displacement of subretinal fluid (arrowhead) and a discrete subclinical remnant of subretinal fluid under the perfluorocarbon liquid (asterisk) [33]. (B) Complex retinal detachment repair. Color photograph evidences severe vitreoretinal proliferation and subretinal band; endodiathermy has been applied superiorly (left image). Visualization under perfluorocarbon liquid after retinectomy shows a flattened retina (center image). Horizontal and vertical MIOCT scans evidence the reattached retina with scant subclinical subretinal fluid and some residual focal membranes and retinal thickening (right images) [65].
Microscope-Integrated Intraoperative Optical Coherence Tomography in Retinal Surgery
DOI: http://dx.doi.org/10.5772/intechopen.83511

identification and visualization of the surgical planes to aid membrane dissection, delineate areas of retinal detachment, or topographically localize hemorrhages (e.g., subhyaloid, sub-ILM, or subretinal hemorrhages) [31, 33, 54]. Cases of proliferative diabetic retinopathy with clinically significant macular edema can be optimally assessed to decide if an ILM peeling is needed (Figure 6) [55–58]. These clinical circumstances could potentially represent a scenario in which the use of MIOCT can facilitate surgery and enhance outcomes.

2.4 Pediatric retinal surgery

The age and cooperation of the pediatric patients make MIOCT a potentially useful tool to deploy in the examination under general anesthesia, in order to improve the understanding of pathologies such as retinopathy of prematurity (ROP), shaken baby syndrome, or any other vitreoretinal conditions that do not necessarily require VPP, like retinoblastoma [59–62]. Retinoschisis, preretinal structures and membranes, as well as lamellar or full-thickness retinal holes, which were not previously appreciated during an office examination, can be evidenced in ROP or shaken baby syndromes, respectively [59, 62].

2.5 Other vitreoretinal conditions

Chorioretinal biopsy cases could be benefitted by the correct identification of the anatomical layers conforming the surgical plane and differentiation between normal tissue and lesion. The aid of MIOCT can impact on retinal prostheses implantation (e.g., Argus II implants for retinitis pigmentosa), providing precise information of the implant location and allowing a correct positioning [33, 63, 64].

3. Conclusion

The rapid technological evolution of our era has allowed us to consider this potentially powerful field of imaging to further improve retinal surgery. Evidence has demonstrated that MIOCT is feasible and useful in the operating theater, providing valuable information to evaluate the surgical field in real time which can alter surgical decision-making, positively impact on short- and long-term
outcomes, and possibly promote the development of new surgical techniques. In the near future, improvements in OCT-compatible surgical instrumentation, feedback systems, and software are warranted to achieve an integration of this technology to our operating theaters.

Conflict of interest

The authors have no commercial or economic conflict of interest to disclose.
References

Lankenau E, Klinger D, Winter C, et al. Combining optical coherence tomography (OCT) with an operating microscope. Advances in Medical Engineering. 2007;114:343-348. DOI: 10.1007/978-3-540-68764-1_57

Ehlers JP, Kaiser PK, Srivastava SK. Intraoperative optical coherence tomography using the RESCAN 700: Preliminary results from the DISCOVER study. The British Journal of
Microscope-Integrated Intraoperative Optical Coherence Tomography in Retinal Surgery

DOI: 10.1136/bjophthalmol-2014-305294

