We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,400
Open access books available

117,000
International authors and editors

130M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter 1

Introductory Chapter: Cerium Oxide - Applications and Attributes

Sher Bahadar Khan and Kalsoom Akhtar

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.82757

1. Introduction

Cerium belongs to lanthanide series and available most abundantly in the crust of the earth with an average concentration of 50 ppm as a rare earth element. Elemental cerium is a flexible and malleable lustrous metal. Cerium metal is iron-gray in color and is highly reactive. It is also known as a strong oxidizing agent and exists as cerium oxide in association with oxygen atoms. It exists as either cerous (Ce\(^{3+}\), trivalent state) or ceric (Ce\(^{4+}\), tetravalent state) in the form of compounds [1].

It is clear from the title that this book is related to cerium oxide (CeO\(_2\)) which is one of the important transition metal oxides acting as n-type semiconductor materials. It possesses several features resulted from the combination of high amount of oxygen in its structure and the facile change between the reduced and oxidized states (Ce\(^{3+}\) and Ce\(^{4+}\)) [2]. The CeO\(_2\) has cubic fluorite structure, in which each cerium atom is surrounded by eight equivalent oxygen atoms and each oxygen atom is surrounded by a tetrahedron of four cerium atoms. Ideally, CeO\(_2\) should have a formal charge of −2 and distance between oxygen–oxygen atoms should be 2.705 Å, in which the formal charge of cerium ions is +4 [3].

The main unique characteristics of cerium oxide involve a band gap of 3–3.6 eV, high value of dielectric constant up to \(\varepsilon = 23–26\), high refractive index of \(n: 2.2–2.8\), and high dielectric strength reached to 2.6 MV cm\(^{-1}\) [4]. Such properties qualify cerium oxide-based materials to be employed in various applications, especially when they are in nanosized particles. The cerium oxide is a famous member of nanostructured materials having a wide range of applications. Cerium oxide materials/nanomaterials have been utilized in numerous fields including adsorption, catalysis, photocatalysis, sensing, fuel cells, hydrogen production, semiconductor devices as well as biomedical uses [5–10].
Commercial uses of CeO$_2$ could be utilized in the pure form or in a concentrated dose as a polishing powder for glasses as well as ophthalmic lenses or precision optics. Cerium oxide is also employed as a glass constituent for preventing solarization and discoloration, particularly in television screens. The CeO$_2$ contributes in heat-resistant alloy and ceramic coatings. Cerium oxide is also used in petroleum refining and emission controlling system in gasoline engines as well as a diesel fuel-borne catalyst to reduce particulate matter emissions. In recent years, CeO$_2$ nanoparticles have gained more consideration in biomedical research community since they could be used as inhibiting cellular agent along with their antimicrobial and antioxidant activity [1, 5].

Owing to the dramatical and widespread industrial uses of cerium oxide materials, the National Institute of Environmental Health Sciences is suggested and nominated CeO$_2$ for toxicological characterization because of its limited toxicity data, and a lack of toxicological studies for nanoscale CeO$_2$. CeO$_2$, which is one of important transition metal oxides, acts as n-type semiconductor materials that have diverse applications such as adsorption, catalysis, photocatalysis, sensing, fuel cells, hydrogen production, semiconductor devices as well as biomedical uses.

Author details

Sher Bahadar Khan1,2* and Kalsoom Akhtar1

*Address all correspondence to: sbkhan@kau.edu.sa

1 Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

2 Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia

References

